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Approach

Study multi-dimensional screening where seller observes rich data
about consumer’s type

I e.g., technological advances in data collection/analysis.

Study convergence rate of mechanisms: how fast does the seller’s
revenue approximate first-best with rich data

I natural efficiency measure of mechanisms in data-rich settings

Main Questions:

1 What is the optimal convergence rate?

2 Can simple mechanisms achieve the optimal convergence rate?
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Model

Seller:

endowed with a finite set, G , of indivisible goods.

Single buyer of unknown type θ ∈ Θ ⊆ RG
++:

Θ: compact set with non-empty interior,

θ drawn according to prob. with density g ,

consuming goods B ⊆ G with transfer t yields:

1B · θ − t.

I 1B` := 1`∈B .



Seller’s Information

Before sale, seller observes a sequence of n signals, xn = (x1, . . . , xn):

x1, . . . , xn: drawn iid Pθ ∈ ∆(X ) with density f (·, θ).

n parametrizes richness of seller’s data.

Technical regularity assumptions on g and f throughout:

more details

After observing xn, seller commits to a direct mechanism, (q, t):

q : Θ→ ∆(2G ),

t : Θ→ R.
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Seller’s Problem

RSB(xn) := sup
(q,t)

E [t(θ) | xn]

such that for all θ,

∑
B⊆G

q(B | θ)
(
1B · θ

)
− t(θ) = max

θ′∈Θ

∑
B⊆G

q(B | θ′)(1B · θ)− t(θ′), (IC)

∑
B⊆G

q(B | θ)(1B · θ)− t(θ) ≥ 0. (IR)



Simple Mechanisms

(Pure) bundling: post a single price, pG , for grand bundle, G

Rbd(xn): optimal revenue under bundling mechanisms

Separate sales: post a price, pg , for each good g ∈ G

Rsep(xn): optimal revenue under separate sales mechanisms
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E
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]
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[
Rbd(xn)

]
,E [Rsep(xn)]→ E

[
1G · θ

]
︸ ︷︷ ︸

first best

.

1 What are the rates of convergence of the above?

2 How do they compare?
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Main Results



Fisher Information

Informativeness of signals determines how much surplus seller can capture.

What is the right measure of informativeness?

Fisher information at θ:

I (θ) :=

(
−E

[
∂2

∂θg∂θg ′
ln f (x1, θ) | θ

])
g ,g ′∈G

differential analogue of Kullback-Leibler divergence:

KL(Pθ,Pθ′) = (θ − θ′) · I (θ)(θ − θ′) + o
(
‖θ − θ′‖2

)
Assume henceforth that I (θ) is positive definite for all θ

ensures complete learning about θ for large n.
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Fisher Information and Bernstein-von Mises

Bernstein-von Mises Theorem:

under regularity, conditional on θ, beliefs of seller ≈ N(θ, 1
n I (θ)−1).

For each bundle B ⊆ G , define:

λB(θ) :=
√
1B · I (θ)−11B .

Thus,

1B · θ ≈ N

(
1B · θ, λ

B(θ)√
n

)
.
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Main Theorem

Theorem

Under both the optimal and bundling mechanisms, first-best gap vanishes
at the same rate:

E
[
1G · θ

]
− E

[
RSB
n (xn)

]
= E

[
λG (θ)

]√ ln n

n
+ o

(√
ln n

n

)
;

E
[
1G · θ

]
− E

[
Rbd
n (xn)

]
= E

[
λG (θ)

]√ ln n

n
+ o

(√
ln n

n

)
.



Main Theorem (Cont.): Separate Sales

Theorem

Under separate sales, first-best gap vanishes at a slower rate:

E
[
1G · θ

]
− E [Rsep

n (xn)] = E

∑
g∈G

λg (θ)

√ ln n

n
+ o

(√
ln n

n

)
.

By triangle inequality,∑
g∈G

λd(θ) =
∑
g∈G

√
1g · I (θ)−1 · 1g ≥

√
1G · I (θ)−11G = λG (θ).



Discussion

Optimal and pure bundling converge to first best at same rate.

Any additional benefit from using more general mechanisms has at
most a second-order effect on seller’s revenue beyond pure bundling.

To interpret, under pure bundling,

for any ε > 0, εn extra signals outperforms SB for n suff. large.

In contrast, under separate sales,

number of extra signals needed to outperform SB for n suff. large is
at least 

E
[∑

g∈G λ
g (θ)

]
E [λG (θ)]

2

− 1


︸ ︷︷ ︸

>0

n.
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Fisher Information: Gaussian Example
Suppose |D| = 2 and

xi ∼ N

((
θ1

θ2

)
,

(
σ2 ρσ2

ρσ2 σ2

))
Inverse Fisher information:

I (θ)−1 =

(
σ2 ρσ2

ρσ2 σ2

)

Bundling and optimal mechanism:

E
[
1G · θ

]
− E

[
Rbd(xn)

]
≈ σ

√
2(1 + ρ)︸ ︷︷ ︸
λG (θ)

√
ln n

n
.

Separate sales:

E
[
1G · θ

]
− E [Rsep(xn)] ≈ 2σ︸︷︷︸

λ1(θ)+λ2(θ)

√
ln n

n
.
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Proof Outline

1 Reduction to normally distributed types;

2 Convergence rates of pure bundling and separate sales;

3 General mechanisms cannot improve the convergence rate.
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Key Idea: Bernstein-von Mises Theorem

Define RSB(µ,Σ),Rbd(µ,Σ),Rsep(µ,Σ):

corresponding optimal revenues when θ′ ∼ N(µ,Σ)

Lemma

For any θ ∈ Θ and for all i ∈ {SB, bd, sep},

E
[
R i
n(xn) | θ

]
− R i

(
θ,

1

n
I (θ)−1

)
= o

(√
ln n

n

)
.
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Convergence Rates of Simple Mechanisms

By Lemma, suffices to show for each θ∗:

1G · θ∗ − Rbd

(
θ∗,

1

n
I (θ∗)−1

)
= λG (θ∗)

√
ln n

n
+ o

(√
ln n

n

)
,

1G · θ∗ − Rsep

(
θ∗,

1

n
I (θ∗)−1

)
=

∑
g∈G

λg (θ∗)

√ ln n

n
+ o

(√
ln n

n

)
.



Warm-Up Exercise: Single-good Monopoly

Pure bundling & separate selling: single-good mech design

single posted price optimal.

Consider a type distribution, Fn, for a single good: N(µ, σ2/n).

assume µ > 0.

What is the optimal profit, Π∗n, under uniform monopoly pricing?

Π∗n = max
p

p(1− Fn(p)), p∗n = arg max
p

p(1− Fn(p)).
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Warm-up Exercise: Single-good Monopoly

Proposition (Single-Good Monopoly)

µ− Π∗n = σ

√
ln n

n
+ o

(√
ln n

n

)
.

Moreover,

p∗n = µ− σ
√

ln n

n
+ o

(√
ln n

n

)
,Fn(p∗n) = o

(√
ln n

n

)



Proof of Proposition

µ− Π∗n = µ− p∗n︸ ︷︷ ︸
intensive margin

+ µFn(p∗n)︸ ︷︷ ︸
extensive margin

− (µ− p∗n)Fn(p∗n)︸ ︷︷ ︸
smaller order terms

.

Key idea: suppose that pn = µ− α
√

ln n
n for some α > 0.

µ− Π∗n ≈ α
√

ln n · n−
1
2︸ ︷︷ ︸

intensive margin

+
µ√
2π

σ

α
√

ln n
· n−

α2

2σ2︸ ︷︷ ︸
extensive margin

At α = σ, intensive margin dominates and

µ− Π∗n ≈ σ
√

ln n · n−
1
2︸ ︷︷ ︸

intensive margin

.

Moreover, α = σ is optimal because,

1 If α > σ, intensive margin increases.

2 If α < σ, extensive margin dominates.
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Implications of Proposition

Single-good monopoly proposition implies:

1G · θ∗ − Rbd

(
θ∗,

1

n
I (θ∗)−1

)
=
√
1G · I (θ∗)−11G︸ ︷︷ ︸

λG (θ)

√
ln n

n
+ o

(√
ln n

n

)

Moreover,

1G · θ∗ − p∗n︸ ︷︷ ︸
intensive margin

≈ λG (θ∗)

√
ln n

n
, Fn(p∗n)︸ ︷︷ ︸

extensive margin

= o

(√
ln n

n

)

Gap to first-best under optimal bundling is of the same order as the
intensive margin.



Implications of Proposition (Cont.)

Single-good monopoly proposition also implies:

1G ·θ∗−Rsep

(
θ∗,

1

n
I (θ∗)−1

)
=
∑
g∈G

√
1g · I (θ∗)−11g︸ ︷︷ ︸

λg (θ∗)

√
ln n

n
+o

(√
ln n

n

)

⇒ suboptimality of separate sales.
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Proof Outline

1 Reduction to normal types;

2 Convergence rates of pure bundling and separate sales;

3 General mechanisms cannot improve the convergence rate.



Pure Bundling vs. “Simple” Mixed Bundling Mechanisms

First consider deterministic mechanisms:

Offer a collection of deterministic bundles:

S1 = G ,S2, . . . ,Sm ( G .



Pure Bundling vs. “Simple” Mixed Bundling Mechanisms

Consider first the optimal bundling mechanism with price p∗G .

Recall:

1 First-best gap from optimal bundling mechanism:

1G · θ∗ − Rbd

(
θ∗,

1

n
I (θ∗)−1

)
≈ λG (θ∗)

√
ln n
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Fn(p∗G ) = o

(√
ln n

n
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.
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Pure Bundling vs. “Simple” Mixed Bundling Mechanisms

Keeping fixed p∗G , benefit of additionally offering S2, . . . ,Sm only
materializes if G is rejected.

but this benefit is small: Fn(p∗G ) = o

(√
ln n
n

)
.

Only way to improve profits substantially is to raise pG � p∗G .

But this makes the extensive margin too large: Fn(pG )�
√

ln n
n .

Any surplus from sales of S2, . . . ,Sm bounded away from 1G · θ∗.
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General Mechanisms

Using single-good monopoly proposition, straightforward to compare
convergence rates for “simple” mechanisms.

pure bundling vs. separate sales.

pure bundling vs. mixed bundling.

However, general mechanisms can be substantially more complex:

Offer random bundles;

Offer continuum of random bundles.

Question: How to bound the convergence rate for all mechanisms?

Challenge: solving for optimal mechanism for n is intractable.
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Key Idea: Relaxed Problem

Fix some (|D| − 1)× |D| matrix, A, with full row rank.

Relaxed Problem:

R̄SB

(
θ∗,

1

n
I (θ∗)−1

)
:= sup

(q,t)
E [t(θ)]

such that for all θ,

∑
B⊆G

q(B | θ)
(
1B · θ

)
−t(θ) = max

θ′:Aθ′=Aθ

∑
B⊆G

q(B | θ′)(1B ·θ)−t(θ′), (IC)

∑
B⊆G

q(B | θ)(1B · θ)− t(θ) ≥ 0. (IR)



Rewriting Relaxed Problem

Relaxed Problem:

R̄SB

(
θ∗,

1

n
I (θ∗)−1 | y

)
= sup

(q,t)
E [t(θ) | Aθ = y ]

such that for all θ ∈ A−1(y),

∑
B⊆G

q(B | θ)
(
1B · θ

)
−t(θ) = max

θ′∈A−1(y)

∑
B⊆G

q(B | θ′)(1B ·θ)−t(θ′), (IC)

∑
B⊆G

q(B | θ)(1B · θ)− t(θ) ≥ 0. (IR)

Note:

R̄SB

(
θ∗,

1

n
I (θ∗)−1

)
= E

[
RSB

(
θ∗,

1

n
I (θ∗)−1 | y

)]
.



Relaxed Problem



Proof Overview

1 In the relaxed problem, R̄SB
(
θ∗, 1

n I (θ
∗)−1 | y

)
, type space is

one-dimensional.

I We prove that there exist optimal mechanisms that offer only
deterministic bundles or a single random bundle.

F Rules out “complex” mechanisms that offer a continuum of random
bundles.

2 Similar arguments to comparison of pure bundling to deterministic
mixed bundling ⇒ approx. optimality of pure bundling after all y .

3 ⇒ pure bundling after all y is approximately optimal in relaxed
problem.
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How to Choose A?

Can choose A such that y = Aθ is orthogonal to 1G · θ:

(1G · θ | Aθ = y) ∼ (1G · θ) ∀y .

Ensures that optimal bundling mechanism in relaxed problem is the same
as the optimal bundling mechanism in the original problem.

Set price at original grand bundle price after all y .

∴ optimal mechanism does not improve (in terms of convergence rate) on
pure bundling.
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Concluding Remarks

Optimal convergence rate to first best achieved by pure bundling:

While analysis is conducted asymptotically, numerical examples
suggest pure bundling ≈ SB well before SB ≈ FB.

Ongoing work:

Incorporate costs, general non-additive utilities.

Approach of analyzing convergence rates seems fruitful in other
applications:

Large markets: Rustichini, Satterthwaite, and Williams (1994),
Satterthwaite and Williams (2002), Hong and Shum (2004)

Moral hazard contracts: Frick, Iijima, Ishii (2023)
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Thank you!



Regularity Assumptions
1 g is strictly positive and locally Lipschitz continuous.
2 For each x ∈ X , f (x , ·) > 0 and twice-differentiable in θ.
3 There exists L such that

sup
θ,g ,g ′,x

∣∣∣∣∂2 log f (x , θ)

∂θg∂θg ′

∣∣∣∣ ≤ L,

sup
θ,θ′,(d ,d ′),x

∣∣∣∣∂2 log f (x , θ)

∂θg∂θg ′
− ∂2 log f (x , θ′)

∂θg∂θg ′

∣∣∣∣ ≤ L‖θ − θ′‖.

4 Pθ is continuous in θ with respect to Total-variation metric.

5 supθ E
[
(supθ′∈Θ log f (x , θ′))2 | θ

]
<∞.

6 Fisher information matrix I (θ) as defined by

I (θ) := −
(
E
[

∂2

∂θgθg ′
log f (x , θ) | θ

])
g ,g ′∈G

is positive definite for each θ.
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