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Motivation

• People have limited and selective memory: some events are
more likely to be recalled.

• Several forms of selective memory have been
observed/defined, e.g. positive memory bias, cognitive
dissonance reduction, associativeness, and confirmatory bias.

• We study the implications of these biases when an agent
chooses actions that maximize their expected utility and
learns about their consequences.
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Example

• An agent repeatedly observes the outcome of a test, which is
either pass, y = 1, or fail, y = 0.

• Probability of passing is p∗.

• In an incentivized experiment, Zimmermann [2020] finds that

– people are more likely to recall favorable tests.

– they overestimate their probability of passing.

• Now suppose an agent with this sort of memory takes an
action a ∈ {0, 1}, with u(a, y) = a(y − z), so a = 1 is optimal
if p∗ > z.

• Then, in the selective memory equilibrium, the agent behaves
as if they were misspecified and overconfident.
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Related Work

• Selective memory: Mullainathan [2002], Bénabou and Tirole
[2002], Jehiel [2018], and Heidhues, Koszegi, and Strack
[2023]: Short-run effects of specific biases.

• Endogenous misspecified learning: We adapt some
techniques from Esponda and Pouzo [2016], Esponda, Pouzo,
and Yamamoto [2021], and Fudenberg, Lanzani, and Strack
[2021]. Other related papers include Bohren and Hauser
[2023], and Frick, Iijima, and Ishii [2023].

• Selective Attention Compte and Postlewaite [2004],
Schwartzstein [2014], and Schweizer and De Vries [2022]
study the long-run effects of a related error: instead of not
recalling some outcomes, the agent might never observe them.
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Setup

• In the general model, each period t = 1, 2, ... the agent
observes a signal from the finite set S and chooses an action
a from the finite set A.

• This talk will supress the signals.

• Action a induces an objective probability distribution
p∗

a ∈ ∆(Y ) over the finite set of possible outcomes Y .

• Agent’s payoff is u(a, y).
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• The agent has prior µ0 over p ∈ ∆(Y )A, where pa(y) denotes
the probability of outcome y ∈ Y when action a is played:

– Agent knows that the map from actions and signals to
probability distributions depends only on their current action
and the realized signal.

– But they are uncertain about the outcome distributions each
signal-action pair induces.

• Let Θ denote the support of the agent’s prior.

• The prior is correctly specified if p∗ ∈ Θ.

• If p∗ /∈ Θ, the prior is misspecified.
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Maintained Assumption

• We assume the agent is correctly specified.

• This helps clarify the difference between selective memory and
misspecified learning.

• Also assume that the true p∗ and the models in the support of
the agent’s prior are mutually absolutely continuous. (Some
results hold under weaker assumptions.)
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Selective Memory

• In our work, memory is both

– Probabilistic: Agents may remember different things in the
same situations and

– Selective: Some experiences are more likely to be recalled.

• These features are well documented, see e.g. Kahana [2012].

• We assume that the agent’s memory of past periods is
distorted by a memory function m that specifies the
probability the agent remembers a past realization of (a, y).

• We also assume (except in an extension at the end of the
talk) that each observation is remembered or not independent
of the others.
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Overview and General Framework

• Will present results from two papers.

• Start with concepts and notation used in both.

• In “Selective Memory Equilibrium,” m : A × Y → (0, 1] is
independent of time, so the number of things the agent
remembers goes to ∞ with t.

• In “Learning, Limited Memory, and Stochastic Choice,” the
probability of remembering eeach specific event decreases over
time quickly enough that only finite many events are
remembered.

• After history ht = (ai, yi)t
i=1, the recalled periods Rt are a

random subset of {1, ..., t}.

• ht(Rt) is the subsequence of ht that only contains the periods
in Rt.
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Beliefs

• The agent computes beliefs at time t by applying Bayes rule
to ht(Rt) as if those were the only periods that were observed:

µ(C|ht(Rt)) =
∫

C

∏
τ∈Rt

paτ (yτ )dµ(p)∫
Θ

∏
τ∈Rt

p,aτ (yτ )dµ(p)
.

• In particular, agents don’t try to draw inferences about
un-recalled events from recalled past actions.

• See e.g. Reder [2014] for evidence that agents are often näive
about their selective memory and do not make inferences
about their forgotten observations from the actions they
remember taking.
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Agent’s Behavior

• Belief µ determine the actions that maximize the
current-period subjective expected utility:

BR(µ) = argmaxa∈A

∫
Θ

∑
y∈Y

u(a, y)pa(y)dµ(p).

• A policy π specifies an action for every recalled history.

• We assume the agent acts myopically: For all ht,

π(ht) ∈ BR(µ(·|ht)).
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Memory Weighted Likelihood Maximizers
• If a standard Bayesian agent always plays action a, their

beliefs concentrate on the likelihood maximizers given the true
distribution p∗:

argmaxp∈Θ
∑
y∈Y

p∗
a(y) log pa(y).

• With selective memory, the analog of the true long run
distribution p∗ is the memory-weighted outcome distribution
pm,

pm(a, y) :=
∑
y∈Y

m(a, y)p∗
a(y).

• And the analog of the maximum likelihood estimate is the set
of memory-weighted likelihood maximizers

Θm(a) := argmaxp∈Θ
∑

y

m(a, y)p∗
a(y) log pa(y).
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Mixed Actions

• “Selective Memory Equillibrium” focused on pure equilibria.

• ”Limited Memory...” extends to mixed actions, as mixed
actions are needed to capture the limit of long but finite
memories.

• The memory-weighted likelihood maximizers with mixed
actions just use the avergage memory weighted outcome
distribution ∑

a∈A

α(a)
∑
y∈Y

m(a, y)p∗
a(y)

in place of ∑
y∈Y

m(a, y)p∗
a(y).
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Definition

• A pure selective memory equilibrium is an action a such that
there is ν ∈ ∆(Θm(δa)) such that a ∈ BR(ν).

• A unitary-beliefs selective memory equilibrium is a α ∈ ∆(A)
such that there is ν ∈ ∆(Θm(α)) such that a ∈ BR(ν) for all
a ∈ supp(α).

• A heterogeneous-beliefs selective memory equilibrium is a
α ∈ ∆(A) such that for all a ∈ supp(α) there is
νa ∈ ∆(Θm(α)) such that a ∈ BR(νa).

• These equilibrium concepts depend on the prior’s support but
not the prior probabilities.
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• Unitary selective memory equilibria always exist.

• As with the existence of Berk-Nash equilibrium, this can be
shown by considering a zero-sum game between the agent and
an adversary who picks beliefs for the agent

• Heterogeneous-belief selective memory equilibrium requires
that every action in supp(α) is justified by a belief over the
likelihood maximizers corresponding to the mixed action α.

• This differs from heterogeneous-belief self-confirming
equilibrium, where each action a in the support of α can be a
best response to belief over the maximizers corresponding to a
alone.

15 / 41



“Selective Memory Equilibrium”

• Now specialize to the case where m : A × Y → (0, 1] is
independent of time.

Definition
• Action a is a limit action if there is an optimal policy π such

that
Pπ [sup{t : at ̸= a} < ∞] > 0.

• a is a global attractor if for every optimal policy π

Pπ [sup{t : at ̸= a} < ∞] = 1.
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Limit Strategies are Selective Memory Equilibria
Theorem

Every limit action is a selective memory equilibrium.

Proof Sketch
• A preliminary lemma shows that if a is a limit strategy, it’s

sufficient to look at what happens when the agent always
plays a.

• By the SLLN the empirical frequency converges to p∗.
• A variation of the Borel-Cantelli lemma implies that almost

surely the recalled history is large, and the SSLN implies that
a large recalled history is close to the memory-weighted
outcome distribution.

• Then extend Berk [1966]’s concentration result: On a set of
recalled histories with objective probability → 1, the
distributions that don’t maximize the memory-weighted
likelihood have posterior probability → 0.

• So asymptotically the agent best replies to Θm(a).
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• In Zimmermann [2020], the agent observes three noisy reports
about their performance relative to other subjects. Each
report is either positive, y = 1, or negative, y = 0.

– People are more likely to recall favorable tests.

– They overestimate their probability of passing.

• To model this, we assume that

m(a, y) =
{

1 if y = 1
ϕ if y = 0

with ϕ < 1.
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Misattribution in a Joint Task

• Besides the IQ test, the agent has a co-worker relationship.

• Outcome space Y = {0, 1}2, where y1 denote the test result
and y2 denotes whether the group project succeeded.

• y2 independently drawn as a mixture of p∗
1 and some q∗

p∗
2(y2) = αp∗

1(y2) + (1 − α)q∗(y2) ,

where α measure the correlation between performance in the
two tasks.

• The agent knows this relation and has full support belief on
p1 ∈ ∆(Y ) and q ∈ ∆(Y ).
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• The distribution that matches the fraction of own successes
among the recalled experiences is an element of Θ, so it’s the
unique memory-weighted likelihood maximizer.

• The perceived fraction of successes is

p1 = p∗

p∗︸︷︷︸
Successes

+ (1 − p∗) × ϕ︸ ︷︷ ︸
Failures

= p∗ + p∗(1 − p∗)
ϕ/(1 − ϕ) + p∗ .

• This ratio is increasing in the memory’s selectiveness ϕ.
• To match their belief about their own ability, the agent’s

belief about the coworker’s ability concentrates on

q = q∗ − α

1 − α

p∗(1 − p∗)
ϕ/(1 − ϕ) + p∗

which is decreasing in the selectiveness and how the two tasks
are related.

• The agent thus overestimates their ability and underestimates
the co-worker’s ability.
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• Now suppose the agent starts out with an unbiased belief
about their coworkers ability, and each period t chooses the
fraction 1 − α of work to delegate to them.

• Here the memory-weighted likelihood maximizers do depend
on the agents action, so our global convergence theorem
doesn’t apply, but we can give a direct proof that there is a
global attractor.

• As the agent over-remembers their own successes, they
become overconfident about their own ability and overly
pessimistic about their coworkers, so delegate less work to
them, which makes the misinference problem worse.

• And under-delegation in the unique limit strategy
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Risk Attitudes and Extreme Experience Bias

• Let y ∈ Y ⊂ R be an amount of money received by the agent,
u(a, y) = v(y) for some concave v : Y → R.

• Safe action a = 0 with outcome y0 and risky action a = 1.

• Extreme events are more likely to be recalled:
m(a, y) = h(|y − Ep∗

1
(y)|), with h increasing.

• Extreme experience bias makes the risky action seem more
risky than it is.

• So if p∗
1 is symmetric, and choosing the lottery over the safe

action isn’t a selective memory equilibrium with perfect
memory, then it’s not a selective memory equilibrium with
extreme experience bias.
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Selective Memory Equilibrium and Misspecification

• Let Θ1(σ) be the likelihood maximizers with perfect memory.

Definition
1. Strategy σ is a Berk-Nash equilibrium if it is a best response

to some belief ν over elements of Θ1.
2. A Berk-Nash equilibrium σ is a self-confirming equilibrium if

there is p ∈ Θ that exactly matches p∗ when σ is played.
3. Strategy σ is a uniformly strict Berk-Nash equilibrium if σ is

the unique best response to every belief over elements of Θ1.
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Definition
A Berk-Nash equilibrium and a selective memory equilibrium are
belief equivalent if they prescribe the same behavior, and are
supported by the same belief.

Proposition

1. Every uniformly strict Berk-Nash equilibrium with support Θ
is belief equivalent to a selective memory equilibrium with full
support for some memory function.

2. Every uniformly strict selective memory equilibrium with
support Θ is belief equivalent to a uniformly strict Berk-Nash
equilibrium for some Θ′.

The uniform strictness conditions are needed:
• There are Berk-Nash equilibria that are not belief equivalent

to any selective memory equilibrium with full support.
• There are selective memory equilibria that are not belief

equivalent to any Berk-Nash equilibrium.
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Behavioral Implications

• Misspecificied learning has been proposed as an explanation of
persistent suboptimal behavior. Examples:

– Dogmatic overconfidence as an explanation for entrepreneurs’
investment choices (Heidhues, Koszegi, Strack 2018)

– Incorrect beliefs and lemon markets (Esponda 2008).

– Failure to understand regression to the mean and overly active
teaching attitudes (Esponda and Pouzo 2016)

• But some analysts question why the agent doesn’t realize that
they are misspecified once they have lots of data.

• Our results show that most behavior that can be rationalized
with misspecification can be explained by selective memory.
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(Strong) Sufficient Condition for Global Convergence

• Suppose there is a p̂ = {p̂a}a∈A that is the unique memory
weighted likelihood maximizer regardless of how the agent
plays.

• Satisfied when the agent correctly believes their actions have
no influence on the distribution of outcomes, and has the same
memory function for all actions, as in some of our examples.

• We show this implies global convergence, and use it to prove
existence of pure selective memory equilibrium.
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Partial Naïveté

• Suppose actions have no effect on the outcome distribution,
so memory depends only on y. (The paper treats the general
case).

• And suppose the agent either doesn’t remember their own
actions or believes their actions convey no information, so
they don’t draw inferences about forgotten experiences based
on their actions.

• We assume the agent knows how many observations they
have made.

• The agent is partially naïve: they believe they remember each
occurrence of y outcome with probability m̂(y), instead of the
true probability m(y).
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Selective Memory Equilibrium with Partial Naïveté

• To adapt selective memory equilibrium to partial naïveté we
modify the definition of the memory weighted likelihood
maximizers.

• Let

Θm,m̂(σ)=argmin
p∈Θ

∑
y∈Y

m(y)p∗(y) log (m̂(y)p(y))

+
(
1 −

∑
y∈Y

m(y)p∗(y)
)
log

(
1 −

∑
y∈Y

p(y)m̂(y)
)
.

Definition
A partially naïve selective memory equilibrium is a strategy σ such
that there exists a belief ν ∈ Θm,m̂(σ) with σ ∈ BR(ν).
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• Every limit strategy for (Θ, m, m̂) is a partially naive selective
memory equilibrium for that Θ, m, m̂.

• If the agent is aware of their own forgetfulness but believes
that their memory function is constant, the equilibria are the
same as when the agent is fully naïve.

• If the agent is fully aware of their memory function, then
selective memory equilibria coincide with self-confirming
equilibria.

• If the agent partially realizes that their memory is selective,
the relevant measure of distortion is m(y)/m̂(y), i.e., the
ratio between how forgetful the agent is and how forgetful
they think they are.
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Limited and Selective Memory

• We modify the model to keep the expected number of
instances recalled bounded.

• For some fixed integer k,

mt(a, y) = km(a, y)/t.

• Here k is the asymptotic expected number of recalled histories.

• We don’t expect actions to converge as often the agent will
rely on a finite number of observations.

• But we look at the convergence of the empirical action
frequency

αt(a) = 1
t

t∑
τ=1

Ia(aτ )
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• Let ηα be a distribution over histories defined as follows.

• The number of times each action-outcome pair (a, y) occurs
is Poisson with parameter k [α(a)p∗

a(y)] m(a, y).

• The number of occurrences for each pair is independent.

• Let Fα be the distribution of beliefs induced by distribution ηα

over recalled histories:

Fα(B) = ηα{h : µ(·|h) ∈ B}.
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Definition
A limited-memory equilibrium is an α ∈ ∆(A) for which there is a
measurable ρ : ∆(Θ) → ∆(A) such that

1. at every belief ν the action is optimal, i.e., ρ(ν) ∈ ∆(BR(ν)),
and

2. α equals the action frequencies induced by ρ, i.e.,
α = E[ρ(ν)|ν ∼ F m,µ0

α ].

• A fixed point condition characterizes the action distribution α
in a limited-memory equilibrium: The agent’s behavior best
replies to the distribution of memory that it induces.

• Note that the set of limited-memory equilibria depends on the
prior µ0 through its effect on posterior beliefs µ(·|h).

32 / 41



Theorem

A limited-memory equilibrium exists.

• Proof shows that the correspondence that maps α ∈ ∆(A) to
the set of action distributions induced by the distribution of
beliefs F m,µ0

α and some best response selection ρ ∈ Πo

satisfies the conditions of the Kakutani fixed point theorem.

• The next result shows that whenever the agent behavior
converges to an action distribution, that distribution is a
limited memory equilibrium
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Theorem

If α is a limit frequency, then α is a limited-memory equilibrium.

• The first step of the proof uses a law of large numbers for
martingale differences to prove that if the empirical action
distribution converges to α, then the joint distribution of
actions and outcomes converges to a weighted average of the
action contingent true DGP.

• Then show this implies that the distribution of recalled
experiences converges to ηm

α , which follows from the Poisson
limit theorem on the

• Finally use stochastic approximation arguments as in
Esponda, Pouzo, and Yamamoto [2021] to show that if the
empirical distribution converges to α yet α is not a
limited-memory equilibrium, the empirical distribution must
move away from α infinitely often.
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Relation between Finite and Infinite Memory

Theorem

Suppose (αk)k∈N is a sequence of limited-memory equilibria each
with memory capacity k and that limk→∞ αk = α̂. Then α̂ is a
heterogeneous-beliefs selective memory equilibrium.

• First step: show that when αk → α the distributions of
recalled histories also converge, so the the agent’s beliefs
concentrate on Θm(α̂).

• Then note that each action ã for which α̂(a) > 0 is a best
reply is a best reply to some belief concentrated on Θm(α̂).

• There may not be a single belief that makes all of these
actions best replies, and we show by example that the limit
need not be a unitary-beliefs selective memory equilibrium.
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Example

• Y = {−1, 1}, A = {−1, 0, 1}, u (a, y) = ay − 0.1I{−1,1} (a):

• The agent’s myopic best response is 1 if µ(p)>9/16, −1 if
µ(p) < 7/16 and 0 if 7/16 < µ(p) < 9/16.

• Suppose the agent believes that p, the probability of y = 1, is
independent of a and is either equal to 0.9 or 0.1.

• The probability of y = 1 is indeed independent of a, and equal
to 0.5.

• Here both p = .1 and p = .9 are likelihood maximizers.

• So a = 0 is a unitary belief equilibrium, supported by the
belief that both models are equally likely.
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• There aren’t any unitary beliefs equilibria with positive
probability of both a = −1 and a = 1, because the unique
belief that makes actions −1 and 1 indifferent is uniform over
0.9 and 0.1, and at that belief action 0 is preferred to both.

• However when the agent’s memory is finite, beliefs will
oscillate between being relatively sure that p = .1, relatively
sure that p = .9, and close enough to 1/2, 1/2 that 0 is
optimal.

• So as the memory length goes to infinity, the limit of the
limited-memory equilibria assigns positive probability to both
−1 and 1, which requires heterogeneous beliefs.
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Extension (in Development): “Rehearsal”

• Rehearsal means that an experience is more likely to be
recalled if it was recalled last period (see Kandel et al. [2000]).

• Recalled histories are no longer conditionally independent
given the realized history.

• Instead there is a Markov chain, the expected number of times
experience (a, y) is recalled is proportional to the frequency of
a, the probability of y given a, how memorable that experience
is, and whether it occurred or was recalled in the last period.

• We conjecture that this Markov chain admits a unique
stationary distribution and that this distribution is the limit
time-average distribution over recalled histories.

• And plan to characterize what these distributions can be.
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Other Extensions
.

• Generalize i.i.d. signals to a Markov process - would allow for
the gambler’s fallacy if switches in signals are more
memorable.

• Relation between selective memory and PT/CPT.

• Allow the number of recalled instances of an experience to be
concave in the number of times an experience has occurred.

• Multiple interacting agents.
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Thanks!
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Maintained Assumption

Assumption

(i) There is p ∈ Θ such that for all y ∈ Y , a ∈ A, and s ∈ S,
p∗

s,a(y) > 0 only if pa(y) > 0.
(ii) The agent is correctly specified.

Back to the text

41 / 41



Selective Memory Equilibrium and Misspecification

Definition

1. Action a is a Berk-Nash equilibrium if for all s ∈ S, there
exists ν ∈ ∆(Θ1) such that a(s) ∈ BR(s, ν).

2. A Berk-Nash equilibrium a is a self-confirming equilibrium if
there is p ∈ Θ such that for all s ∈ S, pa = p∗

a.
3. action a is a uniformly strict Berk-Nash equilibrium if for all

ν ∈ ∆(Θ1), a = BR(ν).

Definition
A Berk-Nash equilibrium a with support Θ and a selective memory
equilibrium a′ with support Θ′ are belief equivalent if a = a′, and
there exists a belief ν ∈ ∆(Θ1(a) ∩ Θm

s (a)) such that
a(s) ∈ BR(s, ν).

Back to slides
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Remembered Histories

• After history ht = (si, ai, yi)t
i=1 and signal st+1, the

probability distribution over recalled periods is given by

P [Rt = B|ht, st+1]

=
t∏

i=1

(
Ii∈Bmst+1(si, ai, yi) + Ii/∈B(1 − mst+1(si, ai, yi))

)
the recalled periods determines the recalled sub-history. The
recalled history is the subsequence of recalled experiences
ht(Rt) = (si, ai, yi)i∈Rt .

Back to slides
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Counterexamples without Uniform Strictness

• Y = {−1, 1}, probability of 1 is 0.5 regardless of a. If the
agent does not have selective memory, but is misspecified,
with Θ = [0, .2] ∪ [.8, 1] as the probability of 1 under both
actions.

• Then both .2 and .8 are likelihood maximizers, which cannot
arise from selective memory with full support prior.

• Y = {−1, 0, 1}, uniform probability over outcomes regardless
of a, with Θ = {(1/3, 1/3, 1/3), (1/3, 1/6, 1/2)} and
m(a, y) = ⊮y=−1.

• Then both (1/3, 1/3, 1/3) and (1/6, 1/6, 1/2) are
memory-weighted likelihood maximizers, but they can’t both
be maximizers with perfect memory.

Back to slides
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