
Rational beliefs when the truth is not an option

by Filippo Massari & Jonathan Newton

No statistical model is “true” or “false”, “right” or “wrong”; the models just 

have varying performance, which can be assessed.

Jorma Rissanen - Information and complexity in statistical modeling (2007).

The human mind is programmed for survival, not for truth.

John Gray - Seven types of  atheism (2018).



A model

Random unobserved state of  the world 𝜔 ∈ 𝛺

Decision maker chooses action 𝑥 from finite 𝑋 𝑥 ∈ 𝑋

Gives rise to a consequence 𝑦 = 𝑓 𝑥, 𝜔 ∈ 𝑌

Playing 𝑥 gives distribution over consequences 𝑄 ⋅ 𝑥

Payoff 𝜋(𝑥, 𝑦)

Strategy 𝜎 is a distribution over 𝑋 𝜎

𝜃 ∈ Θ is a parameter vector (beliefs, model etc.) 𝜃 ∈ Θ

Each 𝜃 associated with distributions over consequences 𝑄𝜃 ⋅ 𝑥)
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Solution concepts for such a setting?

Best response (uncontroversial)

For given beliefs 𝜃, any actions played should be (subjective) best responses 
to these beliefs.

𝑥 ∈ arg max
𝑥∈𝑋

𝐸𝑄𝜃 ⋅|𝑥 π(𝑥,⋅)

Let 𝚲 be the set of  pairs (𝜃, 𝑥) that satisfy this.

If  𝑥 is part of  a pair 𝜃, 𝑥 ∈ Λ, we say that 𝑥 is justifiable and that it is 
justified by model 𝜃. 
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Solution concepts for such a setting?

Berk-Nash equilibrium (popular)

For a given strategy 𝜎, beliefs should maximize expected log-likelihood.

𝜃 ∈ arg max
𝜃∈Θ

𝐸𝜎𝐸𝑄(⋅|𝑥) log 𝑄𝜃 ⋅ 𝑥

Equivalent to minimizing weighted KL divergence (for given 𝜎).

Justification is that these are the beliefs that a Bayesian learner would learn.
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Berk-Nash equilibrium is a multi-selves model

BNE finds Nash equilibrium of  a game with two players, 

‘Payoffs player’ who chooses 𝜎 given 𝜃, so that for all 𝑥 in the support of  𝜎,

𝑥 ∈ arg max
𝑥∈𝑋

𝐸𝑄𝜃 ⋅|𝑥 π(𝑥,⋅)

‘Beliefs player’ who chooses 𝜃 given 𝜎,

𝜃 ∈ arg max
𝜃∈Θ

𝐸𝜎𝐸𝑄(⋅|𝑥) log 𝑄𝜃 ⋅ 𝑥

Makes one think… what is the DM’s objective ?
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What is best in life?

Conan the barbarian (1982)

Is BNE DM’s objective to maximize payoffs?

 No, this is the objective of  his ‘payoffs self ’.

Is BNE DM’s objective to have accurate beliefs?

 No, this is the objective of  his ‘beliefs self ’.

A Berk Nash-Equilibrium DM is instrumentally rational (see Nozick, 1993) for the 
objective of  attaining consistency between a payoffs self  and beliefs self. 

What is instrumentally rational for a DM who cares about payoffs and accuracy in 
a first order sense?
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The Pareto frontier

DM cares about payoffs and accuracy.

Π 𝜃, 𝑥 = 𝐸𝑄(⋅|𝑥)π 𝑥,⋅

𝐿𝐿 𝜃, 𝑥 = 𝐸𝑄 ⋅|𝑥 log 𝑄𝜃 ⋅ 𝑥

Maximize weighted sum such that actions are best responses to beliefs.

Λ𝛼
∗ = arg max

𝜃,𝑥 ∈Λ
 𝛼 Π 𝜃, 𝑥 + 1 − 𝛼  𝐿𝐿 𝜃, 𝑥 ,

for given 0 ≤ 𝛼 ≤ 1.

This basically sends us to the Pareto frontier in payoff-accuracy space.

If  you prefer KL, can use that instead
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Example – Coin Toss.

Heads or tails 𝐏 𝝎 = 𝑯 = 𝟎. 𝟕, 𝐏 𝝎 = 𝑻 = 𝟎. 𝟑

Actions (bets)  𝑿 = 𝑯, 𝑻

Consequences 𝒚 = 𝒇 𝒙, 𝝎 = 𝝎

Payoffs  𝝅 𝒙, 𝒚 = 𝟏 if 𝒙 = 𝒚 

   𝝅 𝒙, 𝒚 = 𝟎 if  𝒙 ≠ 𝒚

Models  𝚯 = 𝜽𝟏, 𝜽𝟐    s.t.   𝑸𝜽𝟏 𝑯 = 𝟎. 𝟒𝟓,  𝑸𝜽𝟐 𝑯 = 𝟎. 𝟗

0.7 0.3
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Example – Coin Toss.

Best response gives   Λ = { 𝜃1, 𝑇 , 𝜃2, 𝐻 } and we obtain

Π 𝜃1, 𝑇 = 0.3 < 0.7 = Π 𝜃2, 𝐻 , 𝐿𝐿(𝜃1, 𝑇) > 𝐿𝐿 𝜃2, 𝐻

Giving,

 Λ𝛼
∗ = (𝜃1, 𝑇) if  𝛼 <

𝑙𝑜𝑔
1331

1024

4+𝑙𝑜𝑔
1331

1024

,  Λ𝛼
∗ = (𝜃2, 𝐻) if  𝛼 >

𝑙𝑜𝑔
1331

1024

4+𝑙𝑜𝑔
1331

1024

.

With Λ𝛼
∗ = { 𝜃1, 𝑇 , 𝜃2, 𝐻 } on the boundary.

Aside: BNE for this example is (𝜃1, 𝑇).
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About 𝚲∗

Look at the extremes of  the Pareto frontier.

If  𝛼 = 0, consequences independent of  actions & this is known, it is like BNE.

Proposition 1 (DM chooses a model for accuracy alone)

Let 𝑄 and 𝑄𝜃, for all 𝜃, be independent of  𝑥 (like in the coin toss example). 
Then Λ0

∗  is the set of  pure BNE (in the coin toss example, this is (𝜃1, 𝑇)).

When 𝛼 =1, it is like NE of  a restricted game.

Proposition 2 (DM chooses a model for payoffs alone)

Λ1
∗  is the set of  pure NE of  the game with action set equal to the set of  justifiable 

actions and payoffs given by EQ(⋅|𝑥)π(𝑥,⋅) for each such 𝑥 (in the coin toss example, 
this is (𝜃2, 𝐻)).
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About 𝚲∗

Under independence, if  the model is well-specified, then these solutions 
pretty much converge to the same thing.

Proposition 3 (well-specified, independent)

Let 𝑄 and 𝑄𝜃, for all 𝜃, be independent of  𝑥 (like in the coin toss example). 
Let the problem be well-specified, so that there exists 𝜃† such that 𝑄 = 𝑄𝜃† .

• If  𝑥 is a BR to 𝜃†, then 𝜃†, 𝑥 ∈ Λ𝛼
∗ .

• Conversely, if  𝜃∗, 𝑥∗ ∈ Λ𝛼
∗ , then 𝑥∗ is a BR to 𝜃†. For 𝛼 < 1, 𝑄𝜃∗ = 𝑄𝜃† .

A notable exception to the last statement is 𝛼 = 1. Consider the coin toss 
example, but with the true model 𝑝 𝐻 = 0.7 added to the model set. When 
𝛼 = 1, the DM is indifferent between the true model and 𝜃2.
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Beyond independence – example 
(Nyarko,1990; Esponda & Pouzo, 2016)

Monopolist has two possible prices 𝑥 ∈ {2,10}

Demand 𝑦 = 𝑎 − 𝑏𝑥 + 𝜔, where 𝜔~𝑁 0,1 .

𝜃 = 𝑏, 𝑎 ∈ Θ is a parameter vector.

Θ set of  parameters that monopolist considers.

Monopolist’s payoff  𝜋 𝑥, 𝑦 = 𝑥𝑦.

True parameters 𝜃0 = 4,42 .
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Cycling (Nyarko,1990)

Monopolist has two possible prices 𝑥 ∈ {2,10}

Demand 𝑦 = 𝑎 − 𝑏𝑥 + 𝜔, where 𝜔~𝑁 0,1 .

𝑎

𝑏
= 12 gives threshold parameter values.
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Cycling (Nyarko,1990)

Monopolist has two possible prices 𝑥 ∈ {2,10}

Demand 𝑦 = 𝑎 − 𝑏𝑥 + 𝜔, where 𝜔~𝑁 0,1 .

𝑎

𝑏
= 12 gives threshold parameter values.

Setting 𝑥 = 2 leads to parameters 𝜃 = (3,40) 
being learned by a standard Bayesian. 

However, under these parameters, 𝑥 = 10 
maximizes payoff.
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Cycling (Nyarko,1990)

Monopolist has two possible prices 𝑥 ∈ {2,10}

Demand 𝑦 = 𝑎 − 𝑏𝑥 + 𝜔, where 𝜔~𝑁 0,1 .

𝑎

𝑏
= 12 gives threshold parameter values.

Setting 𝑥 = 2 leads to parameters 𝜃 = (3,40) 
being learned by a standard Bayesian. 

However, under these parameters, 𝑥 = 10 
maximizes payoff.

Similarly, 𝑥 = 10 leads to a Bayesian learning 
parameters at which 𝑥 = 2 maximizes payoff.
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Berk-Nash Equilibrium 
(Esponda & Pouzo, 2016)

Monopolist can adopt parameters 𝜃∗ that 
support mixing between the two prices. 

Mixing probabilities must be such that a 
standard Bayesian monopolist learns 𝜃∗.

Elegant solution, but leads to the curious 
outcome where the monopolist mixes between 
actions that give different objective payoffs.
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Recall, BNE finds Nash equilibrium of  a game 
between two players

• One player who maximizes payoffs by 
choosing a strategy given beliefs.

• Another player who maximizes log-
likelihood (minimizes K-L) by choosing 
beliefs given a strategy.

The objective functions of  these players are 
optimized independently. There may exist a 
profitable ‘coalitional’ deviation.

In this example, keeping parameters 𝜽∗ 
while increasing the probability of  𝒙 = 𝟐 
increases payoff  while decreasing K-L.
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𝚲𝜶
∗  for 𝟎 ≤ 𝜶 < 𝟏.

Selects the same parameters as BNE (i.e. 𝜃∗), 
while 𝑥 = 2 is played with probability one.

This gives strictly higher payoffs & strictly 
lower K-L divergence than the BNE.
      (In general, trade offs exist – e.g. coin toss)

What has been sacrificed?

𝜃∗ is not what a standard Bayesian would learn 
if  we fixed 𝑥 = 2.

18/27



𝚲𝜶
∗  for 𝜶 = 𝟏.

Selects any parameters that support 𝑥 = 2.

Essentially, standard payoff  optimization 
would occur given the (possibly restricted) set 
of  actions that are justifiable given Θ 
(Proposition 2).

Can think of  Θ as a set of  ‘stories’ that justify 
actions. Arguably, should select which of  these 
stories lead to higher payoffs.
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The paper points out that BNE may lead the DM to adopt a model that induces a 

worse action than another model within the support of  the DM’s prior. But this is a 

well-known fact, and it is roughly because the two objectives of  true 
payoff  optimization and statistical fit do not always line up.

The framing of  BNE as the outcome of  a dual-self  exercise is 
odd…and does not reflect the vast majority of  the literature on BNE, which presents 

it as the outcome of  a learning in games exercise.

BNE need not be efficient as NE of  a 2-player game 

can be Pareto inefficient (cf. Prisoner’s dilemma).

Bold statement is true by definition for Λα
∗  as it 

traverses the Pareto frontier from α = 0 to α = 1. 

Potential misunderstanding (contradicted by monopoly example)
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Learning to maximize the goal function – Generalized Bayes’

• Consider a DM who is part of  a (possibly infinite) population. 

• In every period 𝑡 ≥  1, for every 𝜃, 𝑥 ∈ Λ , there are some members of  the 

population who follow the model 𝜃 and play 𝑥.

• Every member of  the population experiences the same sequence of  states {𝜔𝑡}𝑡 .

• Assume a uniform bound on the absolute value of  log-likelihoods. 

• DM learns from realized payoffs and log-likelihoods of  players in the population.

Generalized likelihood of  𝜃, 𝑥 ∈ Λ after 𝑡 periods is

𝑔𝑄 𝜃,𝑥 𝜔1, … , 𝜔𝑡 = ෑ

𝜏=1

𝑡

exp 𝛼 𝜋 𝑥, 𝑓 𝑥, 𝜔𝜏 + 1 − 𝛼 log 𝑄𝜃 𝑓 𝑥, 𝜔𝜏 𝑥  

Proposition 5 (Learnable by generalized Bayesian updating)

Bayesian updating with these likelihoods leads to probability concentrating on 
models that are arbitrarily close to maximizing the goal function.
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Learning to maximize the goal function – Reinforcement learning

𝑔𝑄 𝜃,𝑥 𝜔1, … , 𝜔𝑡 = ෑ

𝜏=1

𝑡

exp 𝛼 𝜋 𝑥, 𝑓 𝑥, 𝜔𝜏 + 1 − 𝛼 log 𝑄𝜃 𝑓 𝑥, 𝜔𝜏 𝑥  

Set 𝛼 = 1 and take log to get

log 𝑔𝑄 𝜃,𝑥 𝜔1, … , 𝜔𝑡 = 

𝜏=1

𝑡

𝜋 𝑥, 𝑓 𝑥, 𝜔𝜏

Similar to reinforcement algorithm of  Erev & Roth (1998).

Consider finite Λ, 𝜋 > 0, relax assn of  updating all 𝑔𝑄 𝜃,𝑥  every period & instead 
update them all at once, then in subsequent periods update each w.p. proportional to 
log 𝑔𝑄 𝜃,𝑥 , then Thm 2 of  Beggs(2005) implies posterior concentrates on Λ𝛼=1

∗ .

Note, this argument also applies for 𝛼 < 1, providing that 𝛼 𝜋 + 1 − 𝛼  log Q𝜃 is 
suitably normalized to be strictly positive at all outcomes.
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Learning to maximize the goal function – Imitation

Consider a population of  unit mass. 

Let the share of  the population following 𝜆 ∈ Λ at time 𝑡 be given by 𝜍𝑡(𝜆).

Assume (for simplicity) that 𝜍0 has finite support. 

In period 𝑡, some share of  the population is randomly matched to one another. 

If  pair following 𝜆1and 𝜆2 are matched and 𝜆1 Pareto dominates 𝜆2 in terms of  
Π ⋅,⋅  and 𝐿𝐿 ⋅,⋅ , then the player following 𝜆2 switches to 𝜆1.

Let Λ𝑑𝑜𝑚 be set of  𝜆 Pareto dominated by some 𝜆′ with 𝜍0 𝜆′ > 0. 

…a mode of  behavior is irrational for a given decision maker, if, when the 

decision maker behaves in this mode and is then exposed to the analysis of  her 

behavior, she feels embarrassed.

Itzhak Gilboa – Theory of  decision under uncertainty (2009, p.139).
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Learning to maximize the goal function – Imitation

Consider a population of  unit mass. 

Let the share of  the population following 𝜆 ∈ Λ at time 𝑡 be given by 𝜍𝑡(𝜆).

Assume (for simplicity) that 𝜍0 has finite support. 

In period 𝑡, some share of  the population is randomly matched to one another. 

If  pair following 𝜆1and 𝜆2 are matched and 𝜆1 Pareto dominates 𝜆2 in terms of  
Π ⋅,⋅  and 𝐿𝐿 ⋅,⋅ , then the player following 𝜆2 switches to 𝜆1.

Let Λ𝑑𝑜𝑚 be set of  𝜆 Pareto dominated by some 𝜆′ with 𝜍0 𝜆′ > 0. 

Proposition X (Learnable by imitation)

As 𝑡 → ∞, 𝜍𝑡 Λ𝑑𝑜𝑚 → 0. 
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Learning to maximize the goal function – Evolution

Let realized payoffs be understood as evolutionary fitness (assuming 𝜋 > 0).

From period 𝑡 − 1 to 𝑡, the share of  the population playing 𝜆 changes 
proportionally to the mean realized payoff  of  agents that play 𝜆 in period 𝑡 − 1, 
with a normalization so that the total mass of  the population remains one.

If  agents have independent realizations of  the state, then the mean realized payoff  
of  those following a model equals the model’s expected payoff.

It follows that models with higher expected payoffs lead to higher growth.

Proposition 6 (Learnable by evolution - independent states)

If  agents have independent realizations of  the state, then as 𝑡 → ∞, 𝜍𝑡 comes to 
place all weight on the (𝜃, 𝑥) in the support of  𝜍0 that maximize 𝐸𝑄 ⋅ 𝑥 𝜋(𝑥,⋅). 

That is, evolution selects a model that would be chosen by our goal function with 
𝛼 = 1.
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Learning to maximize the goal function – Evolution

If  agents have the same realization of  the state, then maximizing expected fitness 
for a single period is no longer the same as maximizing long run fitness.

Want to maximize geometric mean rather than arithmetic mean, therefore take logs.

Proposition 7 (Learnable by evolution - shared states)

If  agents have the same realization of  the state, then as 𝑡 → ∞, 𝜍𝑡 comes a.s. to 
place all weight on the (𝜃, 𝑥) in the support of  𝜍0 that maximize 𝐸𝑄 ⋅ 𝑥 log 𝜋(𝑥,⋅).

That is, if  we transform payoffs by log(⋅), then evolution selects a model that would 
be chosen by our goal function with 𝛼 = 1.

Further note, with shared states, mixing across models may be beneficial. This is 
analogous to the literature on risk preferences and selection for genotypes that 
generate heterogeneous risk preferences in phenotype (Heller & Nehama, 2022).
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Summary 

Thank you for listening!

To explore evolutionary robustness and plausibility of  learning rules 
under misspecification.

There is other work considering evolutionary robustness under 
misspecification (Fudenberg & Lanzani; He & Libgober).  

This other work takes Bayesian learning (K-L minimization) as given and 
explores robustness in other dimensions.
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Miscellaneous slides from 

previous presentations



Back

Probability concentrates on the model with the largest expected log 

likelihood (Berk, 1966).

Blue model: 0.7 log(0.45) + 0.3 log(0.55) ≈ −0.74 
Red model: 0.7 log(0.9) + 0.3 log(0.1) ≈ −0.76

Note, this model, the blue model, minimizes Kullback-Leibler divergence 

to the true model.

KL blue = 0.7
log 0.7

log 0.45
+ 0.3

log 0.3

log 0.55
≈ 0.92

KL red = 0.7
log 0.7

log 0.9
+ 0.3

log 0.3

log 0.1
≈ 2.53

 



Back

Comparing expected log generalized likelihoods:

Blue: 0.7 log
𝑒0

𝑒0+𝑒1 + 0.3 log
𝑒1

𝑒0+𝑒1 = 0.3 + 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑑𝑒𝑝 𝑡𝑒𝑟𝑚𝑠

Red: 0.7 log
𝑒1

𝑒0+𝑒1 + 0.3 log
𝑒0

𝑒0+𝑒1 = 0.7 + 𝑚𝑜𝑑𝑒𝑙 𝑖𝑛𝑑𝑒𝑝 𝑡𝑒𝑟𝑚𝑠

Note that the RHS equals expected payoff  under the model plus some 

model independent terms. 

Therefore, updating probabilities in the same way as a Bayesian… 

…but using generalized likelihoods instead of  standard likelihoods…

…concentrates probability on models that maximize expected payoff.



Consider a biased coin that has a true 
probability of  heads of  0.7

0.7 0.3



However Bob only considers the following two possibilities, neither 
of  which corresponds to the truth. 

His model is misspecified.

0.45 0.55 0.9 0.1
Bob



He observes a sequence of  tosses of  the coin and can bet heads or 
tails each time, earning a dollar every time he is correct.

Recall that the true probability of  heads is 0.7

0.45 0.55 0.9 0.1
Bob



Bob is a Bayesian learner.

If  he places positive initial probability on the blue and the red models, 
then over time he places almost all weight on the blue model.

Blue model minimizes Kullback-Leibler divergence from the truth.

0.45 0.55
0.9 0.1

Detail

Bob



Hence he will bet tails every period. 

As the true probability of  heads is 0.7, he will earn an average payoff  over 
time of  0.3 dollars per period.

If  he had instead learned the red model, he would have bet heads every 
period and earned an average payoff  of  0.7 dollars!

0.45 0.55
0.9 0.1

Bob



Alice is not a Bayesian.

Rather than update her prior probabilities 
over red and blue using standard likelihoods, 
she uses generalized likelihoods that 
depend on payoffs (Grunwald, 1998).

Alice



Let’s start with the blue model.

Recall that a believer in this model will bet on tails.

If  she followed the blue model and tails 
arose, she would obtain a payoff  of  1.

0.45 0.55

If  she followed the blue model and heads arose, 
she would obtain a payoff  of  0.



Take a sequence of  observations, say
 heads, tails, tails…

The likelihood of  this sequence under the 
blue model is

0.45 0.55 0.55 …

0.45 0.55



Take a sequence of  observations, say
 heads, tails, tails…

The generalized likelihood under the blue 
model is

𝑒0

𝑒0 + 𝑒1
⋅

𝑒1

𝑒0 + 𝑒1
⋅

𝑒1

𝑒0 + 𝑒1
…

0.45 0.55

Exponents in numerator are the payoffs from the sequence 

heads, tails, tails… when the blue model is followed.

The denominator normalizes.



Do the same for the red model.

Now applying standard Bayesian learning using these generalized 
likelihoods… 

Alice



…over time she comes to place all weight on the red model. 
Hence she bets heads and earns an average payoff  of  0.7 dollars.

The model she learns is in some sense wrong, but in a pragmatic 
sense it works out just as well as if  she had learnt the correct 
probability of  heads.

0.9 0.1

0.45 0.55

Detail

Alice
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