Bayes correlated equilibria and no-regret dynamics

Kaito Fujii (National Institute of Informatics)

16 Feb. 2024 @ UTokyo

Self-introduction

Kaito Fujii (National Institute of Informatics, Tokyo)

- I obtained my PhD from Prof. Iwata (UTokyo) (combinatorial optimization group)
- I joined NII in 2020 and started game theory

Research Topics

Optimization, operations research, machine learning

Goals of algorithmic game theory

Goal 1 Computing equilibria efficiently

- Is it possible to compute equilibria of a given game in reasonable time?
- If it is difficult, is it possible to find an evidence for difficulty?

Goal 2 Guaranteeing quality of equilibria (price of anarchy)

- In the worst equilibria, how much does social welfare deteriorate?

This study aims to achieve these two goals for Bayesian games

There are various other goals (e.g., computing auctions, cooperative games)

Table of Contents

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

Two-player zero-sum games

A game is zero-sum \Leftrightarrow the total payoff is always zero

Two-player non-zero-sum games

雨 and at an intersection decide whether to go or to stop

Nash equilibria:

1. (Go, Stop)
2. (Stop, Go)
3. Both choose Go and

Stop with prob. 1/2

Computing Nash equilibria

Problem Compute any Nash equilibrium given a payoff table

 Is there an algorithm that runs in time polynomial in \#actions?- Two-player zero-sum games: Yes

Linear-programming-based algorithm [von Neumann 1928, Khachiyan'79]

- Two-player non-zero-sum games: No (probably)

This problem is PPAD-complete [Chen-Deng-Teng'09]
Computer scientists "believe" that solving it in poly-time is impossible
Question Is there any equilibrium concept easy to compute?

Correlated equilibria

Players' actions can be correlated via a traffic signal

Correlated equilibria:

infinitely many including Nash eq.
e.g.) (Go, Stop) with prob. $1 / 2$
(Stop, Go) with prob. 1/2

Correlated equilibria

$N=\{1,2, \ldots, n\}$ players
A_{i} finite set of actions for player $i \in N$

$$
A_{i}=\{\mathrm{Go}, \mathrm{Stop}\}
$$

$A=A_{1} \times A_{2} \times \cdots \times A_{n}$ set of action profiles
$v_{i}: A \rightarrow[0,1]$ utility function for player $i \in N$

Definition

A distribution over action profiles $\pi \in \Delta(A)$ is a correlated equilibrium
\Leftrightarrow For any player $i \in N$ and deviation $\phi: A_{i} \rightarrow A_{i}$,

$$
\underset{a \sim \pi}{\mathbb{E}}\left[v_{i}\left(\phi\left(a_{i}\right), a_{-i}\right)\right] \leq \underset{a \sim \pi}{\mathbb{E}}\left[v_{i}(a)\right] .
$$

※ If π is a product distribution, this definition coincides with Nash equilibria

Correlated equilibria

Definition

A distribution over action profiles $\pi \in \Delta(A)$ is a correlated equilibrium $\stackrel{\Delta}{\Leftrightarrow}$ For any player $i \in N$ and deviation $\phi: A_{i} \rightarrow A_{i}$,

$$
\underset{a \sim \pi}{\mathbb{E}}\left[v_{i}\left(\phi\left(a_{i}\right), a_{-i}\right)\right] \leq \underset{a \sim \pi}{\mathbb{E}}\left[v_{i}(a)\right]
$$

	Go		Stop
Go	0^{0}	0	4

We can define a CE $\pi \in \Delta(A)$ as follows:
$\pi($ Go, Stop $)=1 / 2, \pi($ Stop,$G o)=1 / 2$
Each player cannot increase the payoff by any ϕ
e.g., $\phi($ Go $)=$ Stop, $\phi($ Stop $)=$ Stop decreases it

LP formulation of correlated equilibria

The set of CEs is expressed by linear constraints with $|A|$ variables

$$
\mathrm{CE}=\left\{\begin{array}{l|l}
\pi \in[0,1]^{A} & \begin{array}{l}
\sum_{a \in A:} \pi(a)\left[v_{i}(a)-v_{i}\left(a_{i}^{\prime \prime}, a_{-i}\right)\right] \leq 0\left(\forall i \in N, \forall a_{i}^{\prime}, a_{i}^{\prime \prime} \in A_{i}\right) \\
a_{i}=a_{i}^{\prime} \\
\sum_{a \in A} \pi(a)=1
\end{array}
\end{array}\right\}
$$

If the number of players is a constant, the size of this LP is polynomial
\rightarrow The problem of finding (also optimizing) a CE is tractable [Khachiyan'79]
Question How about cases where the number of players is large?

Computing correlated equilibria

Theorem [Foster-Vohra'97, Hart-Mas-Collel'00, Blum-Mansour'07]

There exists a poly-time algo. for computing a CE of n-player games
Since v_{i} requires space exponential in n, we assume oracle access to v_{i}
※ An ϵ-approximate CE is obtained in time polynomial in $n, \max _{i \in N}\left|A_{i}\right|$, and $1 / \epsilon$
cf. Computing Nash equilibria is PPAD-complete even for two-player games

The problem of computing any CE is easier than computing any NE

No-regret dynamics

Algorithm Simulate no-regret dynamics converging to a CE
Players learn their strategy in repeated play of the same game

for $t=1,2, \ldots, T$ do
Each player $i \in N$ decides a (mixed) strategy $\pi_{i}^{t} \in \Delta\left(A_{i}\right)$
All players' strategies $\left(\pi_{i}^{t}\right)_{i \in N}$ are revealed to each other
Each player i obtains reward $\mathbb{E}\left[v_{i}\left(a^{t}\right)\right]$, where $a_{i}^{t} \sim \pi_{i}^{t}$ independently $(\forall i)$

Swap regret [Blum-Mansourot]

$$
\begin{gathered}
\operatorname{SwapRegret}_{i}^{T} \triangleq \max _{\phi: A_{i} \rightarrow A_{i}} \sum_{t=1}^{T} \underset{\text { reward in round } t \text { if }}{\mathbb{E}\left[v_{i}^{t}\left(\phi\left(a_{i}^{t}\right), a_{-i}^{t}\right)\right]}-\sum_{t=1}^{T} \frac{\underset{\text { reward in round } t}{\mathbb{E}}\left[v_{i}^{t}\left(a^{t}\right)\right]}{\text { the actions are replaced }} \\
\text { according to } \phi
\end{gathered}
$$

Theorem [Blum-Mansour'07]
If swap regret of every player grows sublinearly in T,
the empirical distribution converges to a correlated equilibrium
\sim 不~~~
The uniform mixture of action profiles of T rounds
Another variant called internal regret does not work for Bayes correlated equilibria

Table of Contents

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

Price of anarchy (PoA)

the social welfare achieved by the worst equilibrium

$$
\mathrm{PoA} \triangleq \frac{\inf _{\pi: \text { equilibrium }} \mathbb{E}_{a \sim \pi}\left[v_{\mathrm{SW}}(a)\right]}{\max _{a \in A} v_{\mathrm{SW}}(a)}
$$

$v_{\text {SW }}: A \rightarrow \mathbb{R}_{\geq 0}$ social welfare usually $v_{\mathrm{SW}}(a) \triangleq \sum_{i \in N} v_{i}(a)$
the optimal social welfare
※ PoA depends on the equilibrium concept (PoA for NE, etc.)

Coop. Defect
Cooperate

10^{10}	0^{15}
15^{0}	1^{1}

In the prisoners' dilemma game, the PoA can be close to 0
the worst equilibrium: 2 at (Defect, Defect) the optimal: 20 at (Cooperate, Cooperate)

Smoothness framework (1/2) [Roughgarden'15]

Question For what class of games is the PoA lower-bounded?

Definition [Roughgarden'15]

An n-player game is (λ, μ)-smooth
$\Delta \forall a, a^{*} \in A: \underbrace{\sum_{i=1}^{n} v_{i}\left(a_{i}^{*}, a_{-i}\right)}_{\begin{array}{c}\text { Player } i \text { switches } \\ \text { from } a_{i} \text { to } a_{i}^{*}\end{array}} \geq \lambda \underbrace{v_{\mathrm{SW}}\left(a^{*}\right)}_{\begin{array}{c}\text { social welfare } \\ \text { achieved by } a^{*}\end{array}}-\mu \underbrace{v_{\mathrm{SW}}(a)}_{\begin{array}{c}\text { social welfare } \\ \text { achieved by } a\end{array}}$
a^{*} social optimal
$\left(a_{1}^{*}, a_{-1}\right)\left(a_{2}^{*}, a_{-2}\right) \underbrace{\text { 者 }}_{a} \cdots \cdots\left(a_{n}^{*}, a_{-n}\right)$

The deviations significantly increase social welfare towards the optimal

Smoothness framework (2/2) [Roughgarden'15]

Smooth games are a broad class of games with bounded PoA

Theorem [Roughgarden'15]

PoA for correlated equilibria is at least $\frac{\lambda}{1+\mu}$ in (λ, μ)-smooth games
※ Roughgarden further proved this bound for coarse correlated equilibria

Examples of smooth games

Congestion games, various auctions, competitive facility location, effort market games, competitive information spread, ...

Table of Contents

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

Battle of the sexes

and independently decide where to go
prefers sea C , while \because prefers mountain

Bayesian games [Harsanyi67]

Players' types are generated from a common prior distribution

 Each of and prefers and with prob. $1 / 2$ for each(Each player knows the prior distribution only, not the others' types)

Notations for Bayesian games

$N=\{1,2, \ldots, n\}$ players
A_{i} finite set of actions for player $i \in N$
Θ_{i} finite set of types for player $i \in N$

$$
\begin{aligned}
N & =\{\mathbf{\mathbf { 2 } , \bullet \}} \\
A_{1}=A_{2} & =\{\mathbf{c}, \mathbf{m}\}
\end{aligned}
$$

$A=\prod_{i \in N} A_{i}$ action profiles, $\Theta=\prod_{i \in N} \Theta_{i}$ type profiles
$\rho \in \Delta(\Theta)$ prior distribution over type profiles
$\rho($ type:c, type:cc) $=1 / 4$
$v_{i}: \Theta \times A \rightarrow[0,1]$ utility function for player $i \in N \quad v_{1}($ type: \mathbf{c}, type: $\mathbf{c} ; \mathbf{c}, \mathbf{L})=1$

Computational studies on Bayesian games 23/40

- Equilibrium computation:

Computing Bayes Nash equilibria (BNE) is PPAD-complete
Existing algorithms can compute weak equilibria (Bayes coarse CE)
[Hartline-Syrgkanis-Tardos'15]

- Price of anarchy

Smoothness framework provides PoA bounds only for BNE
[Roughgarden'15b, Syrgkanis-Tardos'13]
Q Is there any equilibrium concept that has both merits?

Various Bayes correlated equilibria [Forges93] 24/40

Bayesian solution

Strategic-form CE

Bayes Nash equilibria

Communi
-cation equilibria

Various Bayes correlated equilibria [Forges93] 24/40

Bayesian solution

Agent-normalform CE

Communication equilibria [Myerson'82, Forges86]

Equilibria realized by a credible mediator

(1) Each player tells the mediator their types

(2) The mediator sends a recommendation to each

Same type \rightarrow Recommend their preferred place Different types \rightarrow Recommend or Ceach with prob. 1/2

Communication equilibria [Myerson'82, Forgess6]

Definition

A distribution $\pi \in \Delta(A)^{\Theta}$ is a communication equilibrium
$\stackrel{\Delta}{\Leftrightarrow}$ For any player $i \in N, \psi: \Theta_{i} \rightarrow \Theta_{i}$, and $\phi: \Theta_{i} \times A_{i} \rightarrow A_{i}$,

$$
\underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{a \sim \pi\left(\psi\left(\theta_{i}\right), \theta_{-i}\right)}{\mathbb{E}}\left[v_{i}\left(\theta ; \phi\left(\theta_{i}, a_{i}\right), a_{-i}\right)\right]\right] \leq \underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{a \sim \pi(\theta)}{\mathbb{E}}\left[v_{i}(\theta ; a)\right]\right] .
$$

Two incentive constraints

1 No incentive to tell an untrue type (represented by ψ)
(2) No incentive to disobey the recommendation (represented by ϕ)

Agent-normal-form correlated equilibria

ANFCE is defined as CE of the agent normal form

Agent normal form of Bayesian games

The same player with different types are regarded as different players Only (hypothetical) players with realized types play the game

Difference from communication equilibria:

- No incentive constraint for truthful type telling
- The distribution must satisfy some technical condition called strategy representability

Our contribution 1: dynamics

We propose no-regret dynamics converging to ANFCE \cap Com.Eq.

In repeated play, players aim to minimize untruthful swap regret defined later

Theorem (informal)

Dynamics with $o(T)$ untruthful swap regret converge to ANFCE \cap Com.Eq. and can be simulated by the proposed algorithm in polynomial time

Our contribution 2: PoA bounds

PoA bounds for ANFCE \cap Com.Eq. via smoothness arguments

Previous results PoA bounds for BNE via smoothness
\downarrow extend
[Roughgarden'15b, Syrgkanis-Tardos'13]
Our results PoA bounds for ANFCE \cap Com.Eq. via smoothness
※ PoA decreases as equilibria get broader (the worst equilibrium considered)

Theorem (informal)

PoA for ANFCE \cap Com.Eq. is at least $\lambda /(1+\mu)$
if a game for each fixed $\theta \in \Theta$ is (λ, μ)-smooth

Applications:
$v_{\mathrm{SW}}=\sum_{i} v_{i}$ case, various auctions, ...

Table of Contents

Background 1: Equilibrium computation

Background 2: Price of anarchy

Our results on Bayesian games

Details of the proposed dynamics

No-regret dynamics in Bayesian games

For $t=1,2, \ldots, T$:
Each player $i \in N$ decides a (mixed) strategy $\pi_{i}^{t} \in \Delta\left(A_{i}\right)^{\Theta_{i}}$
All players' strategies $\left(\pi_{i}^{t}\right)_{i \in N}$ are revealed to each other
Each player i obtains reward $\mathbb{E}\left[v_{i}\left(\theta ; a^{t}\right)\right]$, where $\theta \sim \rho$ and then $a_{i}^{t} \sim \pi_{i}^{t}\left(\theta_{i}\right)$ independently for each i

※ We consider the expected value w.r.t. θ and a in each round

Untruthful swap regret

Untruthful swap regret for player $i \in N$

$$
\begin{array}{r}
R_{\mathrm{US}, i}^{T}=\max _{\substack{\psi: \theta_{i} \rightarrow \theta_{i} \\
\phi: \theta_{i} \times A_{i} \rightarrow A_{i}}} \sum_{t=1}^{T} \underset{\theta_{i} \sim \rho_{i}}{\mathbb{E}}\left[\underset{\substack{\sim \\
\sim_{i} \sim \pi_{i}^{t}\left(\psi\left(\theta_{i}\right)\right)}}{\mathbb{E}}\left[u_{i}^{t}\left(\theta_{i}, \phi\left(\theta_{i}, a_{i}\right)\right)\right]\right] \\
\\
-\sum_{t=1}^{T} \underset{\theta_{i} \sim \rho_{i}}{\mathbb{E}}\left[\underset{a_{i} \sim \pi_{i}^{t}\left(\theta_{i}\right)}{\mathbb{E}}\left[u_{i}^{t}\left(\theta_{i}, a_{i}\right)\right]\right],
\end{array}
$$

where $u_{i}^{t}\left(\theta_{i}, a_{i}\right) \triangleq \underset{\theta_{-i} \sim \rho_{-i} \mid \theta_{i}}{\mathbb{E}}\left[\underset{-i \sim \pi_{-i}^{t}\left(\theta_{-i}\right)}{\mathbb{E}}\left[v_{i}(\theta ; a)\right]\right]$ is the reward vector at round t
(ρ_{i} the marginal distribution, $\rho_{-i} \mid \theta_{i}$ the conditional distribution)
Two incentive constraints for communication equilibria

1. No incentive to tell an untrue type (represented by ψ)
2. No incentive to disobey the recommendation (represented by ϕ)

Untruthful swap regret minimization

Suppose each player minimizes USR against adversarial players

Upper bound Φ-regret minimization framework + decomposition

Theorem

The proposed algo. achieves $R_{\mathrm{US}, i}=O\left(\sqrt{T \max \left\{\left|A_{i}\right| \log \left|A_{i}\right|, \log \left|\Theta_{i}\right|\right\}}\right)$

Lower bound Analyze a hard instance with optimal stopping theory

Theorem

Any algorithm satisfies $R_{\mathrm{US}, i}=\Omega\left(\sqrt{T \max \left\{\left|A_{i}\right| \log \left|A_{i}\right|, \log \left|\Theta_{i}\right|\right\}}\right)$

External regret minimization algo.

$u^{t} \in[0,1]^{A}$ reward vector in round $t \in[T]$
$\pi^{t} \in \Delta(A)$ mixed strategy in round $t \in[T] \quad$ ※ Subscript i is omitted from now on

$$
\text { ExternalRegret }^{T} \triangleq \max _{a^{*} \in A} \sum_{t=1}^{T} u^{t}\left(a^{*}\right)-\sum_{t=1}^{T} \underset{a^{t} \sim \pi^{t}}{\mathbb{E}}\left[u^{t}\left(a^{t}\right)\right]
$$

Multiplicative Weights Update method: Initialize $\pi^{1}(a)=1 /|A|(\forall a \in A)$, For each $t \in[T]$: Update $\pi^{t+1}(a) \propto \pi^{t}(a) \exp \left(\eta u^{t}(a)\right)(\forall a \in A)$

Theorem [Cesa-Bianchi-Lugosi'07]
If $\eta=\sqrt{\frac{\log |A|}{T}}$, MWU achieves ExternalRegret ${ }^{T}=O(\sqrt{T \log |A|})$

Swap regret minimization algo. [slum-Mansouro7] $\quad 35 / 40$

$$
\text { SwapRegret }^{T} \triangleq \max _{\phi: A_{i} \rightarrow A_{i}} \sum_{t=1}^{T} \underset{a^{t} \sim \pi^{t}}{\mathbb{E}}\left[u^{t}\left(\phi\left(a^{t}\right)\right)\right]-\sum_{t=1}^{T} \underset{a^{t} \sim \pi^{t}}{\mathbb{E}}\left[u^{t}\left(a^{t}\right)\right]
$$

$$
\begin{aligned}
\text { SwapRegret }^{T} \triangleq \max _{Q \in \mathcal{Q}} \sum_{t=1}^{T}\left\langle Q \pi^{t}, u^{t}\right\rangle-\sum_{t=1}^{T}\left\langle\pi^{t}, u^{t}\right\rangle \\
\quad \text { where } \mathcal{Q}=\left\{Q \in[0,1]^{A \times A} \mid \mathbf{1} Q=\mathbf{1}\right\}
\end{aligned}
$$

SwapRegret ${ }^{T} \triangleq \max _{Q \in \mathcal{Q}} \sum_{t=1}^{T}\left\langle Q, \pi^{t} \otimes u^{t}\right\rangle-\sum_{t=1}^{T}\left\langle Q^{t}, \pi^{t} \otimes u^{t}\right\rangle$ if $Q^{t} \pi^{t}=\pi^{t}$ for all $t \in[T]$

Swap regret minimization algo. [Blum-Mansouro7] $\quad 36 / 40$

$$
\text { SwapRegret }{ }^{T} \triangleq \max _{Q \in \mathcal{Q}} \sum_{t=1}^{T}\left\langle Q, \pi^{t} \otimes u^{t}\right\rangle-\sum_{t=1}^{T}\left\langle Q^{t}, \pi^{t} \otimes u^{t}\right\rangle \text { if } Q^{t} \pi^{t}=\pi^{t} \text { for all } t \in[T]
$$

1: Initialize subroutines $\left(\mathcal{E}_{a}\right)_{a \in A}$ for external regret minimization with actions A
2: for $t=1,2, \ldots, T$ do
3: Let $q_{a}^{t} \in \Delta(A)$ be the output of subroutine \mathcal{E}_{a} for each $a \in A$
4: \quad Let Q^{t} be an $|A| \times|A|$ matrix with each column q_{a}^{t}
5: \quad Find $\pi^{t} \in \Delta(A)$ such that $\pi^{t}=Q^{t} \pi^{t}$
6: Observe u^{t} and feed $\pi^{t}(a) u^{t}$ to subroutine \mathcal{E}_{a}

Untruthful swap regret minimization algo.

$$
R_{\mathrm{US}, i}^{T}=\max _{\substack{\psi: \Theta \rightarrow \Theta \\ \phi: \Theta \times A \rightarrow A}} \sum_{t=1}^{T} \underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{a \sim \pi^{t}(\psi(\theta))}{\mathbb{E}}\left[u^{t}(\theta, \phi(\theta, a))\right]\right]-\sum_{t=1}^{T} \underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{a \sim \pi^{t}(\theta)}{\mathbb{E}}\left[u^{t}(\theta, a)\right]\right]
$$

$$
\begin{gathered}
\text { SwapRegret }^{T} \triangleq \max _{Q \in \mathcal{Q}} \sum_{t=1}^{T}\left\langle Q \pi^{t}, u^{t}\right\rangle-\sum_{t=1}^{T}\left\langle\pi^{t}, u^{t}\right\rangle, \text { where } \\
\mathcal{Q}=\left\{\begin{array}{ll}
Q \in[0,1]^{(\Theta \times A) \times(\Theta \times A)} & \begin{array}{l}
\text { there exists some } W \in[0,1]^{\Theta \times \Theta} \text { such that } \\
\sum_{\theta^{\prime} \in \Theta} W\left(\theta, \theta^{\prime}\right)=1(\forall \theta \in \Theta) \text { and } \\
\sum_{a \in A} Q\left((\theta, a),\left(\theta^{\prime}, a^{\prime}\right)\right)=W\left(\theta, \theta^{\prime}\right)\left(\forall \theta, \theta^{\prime} \in \Theta, a^{\prime} \in A\right)
\end{array}
\end{array}\right\}
\end{gathered}
$$

※ π^{t} and u^{t} are flattened to be a $|\Theta| \times|A|$ dimensional vector

Untruthful swap regret minimization algo.

Full description of the algorithm

The set of types Θ_{i} and the set of actions A_{i} are specified in advance. The reward vector $u_{i}^{t} \in[0,1] \Theta_{i} \times A_{i}$ is given at the end of each round $t \in[T]$. Initialize subroutines as follows:

- let $\mathcal{E}_{\theta_{i}}$ be a multiplicative weights algorithm with decision space Θ_{i} for each $\theta_{i} \in \Theta_{i}$
- let $\mathcal{E}_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}$ be AdaHedge with decision space A_{i} for each $\theta_{i}, \theta_{i}^{\prime} \in \Theta_{i}$ and $a_{i}^{\prime} \in A_{i}$
for each round $t=1, \ldots, T$ do
Let $w_{\theta_{i}}^{t} \in \Delta\left(\Theta_{i}\right)$ be the output of $\mathcal{E}_{\theta_{i}}$ in round t for each $\theta_{i} \in \Theta_{i}$
Let $y_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}^{t} \in \Delta\left(A_{i}\right)$ be the output of $\mathcal{E}_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}$ in round t for each $\theta_{i}, \theta_{i}^{\prime} \in \Theta_{i}$ and $a_{i}^{\prime} \in A_{i}$
Define $Q^{t} \in[0,1]\left(\Theta_{i} \times A_{i}\right) \times\left(\Theta_{i} \times A_{i}\right)$ by $Q^{t}\left(\left(\theta_{i}, a_{i}\right),\left(\theta_{i}^{\prime}, a_{i}^{\prime}\right)\right)=w_{\theta_{i}}^{t}\left(\theta_{i}^{\prime}\right) y_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}^{t}\left(a_{i}\right)$ for each $\theta_{i}, \theta_{i}^{\prime} \in \Theta_{i}$ and $a_{i}, a_{i}^{\prime} \in A_{i}$
Compute an eigenvector $x^{t} \in \mathbb{R}^{\Theta_{i} \times A_{i}}$ of Q^{t} such that $Q^{t} x^{t}=x^{t}$ and $\left(x^{t}\right)^{\top} \mathbf{1}=\left|\Theta_{i}\right|$
Decide the output $\pi_{i}^{t} \in \Delta\left(A_{i}\right)^{\Theta_{i}}$ by $\pi_{i}^{t}\left(\theta_{i} ; a_{i}\right)=x^{t}\left(\theta_{i}, a_{i}\right)$ for each $\theta_{i} \in \Theta_{i}$ and $a_{i} \in A_{i}$
Observe reward vector $u_{i}^{t} \in[0,1]^{\Theta_{i} \times A_{i}}$ and feed reward vectors to subroutines as follows:
- feed $\sum_{a_{i}, a_{i}^{\prime} \in A_{i}} y_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}^{t}\left(a_{i}\right) \pi_{i}^{t}\left(\theta_{i}^{\prime} ; a_{i}^{\prime}\right) \rho_{i}\left(\theta_{i}\right) u_{i}^{t}\left(\theta_{i}, a_{i}\right)$ as the reward for decision $\theta_{i}^{\prime} \in \Theta_{i}$
to subroutine $\mathcal{E}_{\theta_{i}}$ for each $\theta_{i} \in \Theta_{i}$
- feed $\pi_{i}^{t}\left(\theta_{i}^{\prime} ; a_{i}^{\prime}\right) \rho_{i}\left(\theta_{i}\right) u_{i}^{t}\left(\theta_{i}, a_{i}\right)$ as the reward for decision $a_{i} \in A_{i}$ to subroutine $\mathcal{E}_{\theta_{i}, \theta_{i}^{\prime}, a_{i}^{\prime}}$ for each $\theta_{i}, \theta_{i}^{\prime} \in \Theta_{i}$ and $a_{i}^{\prime} \in A_{i}$

ANFCE \cap Com.Eq. in Bayesian games satisfies the following goals

Goal 1 Efficient computation

- No-regret dynamics converging to ANFCE \cap Com.Eq.
- Algorithm for simulating the dynamics with the optimal convergence rate

Goal 2 PoA bounds

- Extension of the smoothness framework from BNE to ANFCE \cap Com.Eq.

Reference

- Avrim Blum and Yishay Mansour. 2007. From External to Internal Regret. Journal of Machine Learning Research 8, $1307-1324$.
- Xi Chen, Xiaotie Deng, and Shang-Hua Teng. 2009. Settling the complexity of computing two- player Nash equilibria. Journal of the ACM 56, 3, 14:1-14:57.
- Cesa-Bianch and Lugosi. 2007. Prediction, Learning, and Games, Cambridge University Press.
- Françoise Forges. 1986. An approach to communication equilibria. Econometrica, 1375-1385.
- Françoise Forges. 1993. Five legitimate definitions of correlated equilibrium in games with incomplete information. Theory and Decision 35, 277-310.
- Dean P Foster and Rakesh V Vohra. 1997. Calibrated learning and correlated equilibrium. Games and Economic Behavior 21(1-2), 40-55.
- John C. Harsanyi. 1967. Games with Incomplete Information Played by "Bayesian" Players, I-III. Management Science 14(3):159-182, 14(5):320-334, 14(7):486-502.
- Sergiu Hart and Andreu Mas-Colell. 2000. A simple adaptive procedure leading to correlated equilibrium. Econometrica 68(5), 1127-1150.
- Jason D. Hartline, Vasilis Syrgkanis, and Éva Tardos. 2015. No-Regret Learning in Bayesian Games. In NIPS 2015, 3061-3069.
- Tim Roughgarden. 2015a. Intrinsic Robustness of the Price of Anarchy. Journal of the ACM 62(5), 32:1-32:42.
- Tim Roughgarden. 2015b. The Price of Anarchy in Games of Incomplete Information. ACM Transactions on Economics and Computation 3(1), 6:1-6:20.
- Vasilis Syrgkanis and Éva Tardos. 2013. Composable and efficient mechanisms. In STOC 2013. 211-220.
- Illustrations: "Twemoji" by Twitter, Inc and other contributors is licensed under CC BY 4.0

Definition

We call a type-wise distribution $\pi \in \Delta(A)^{\Theta}$ strategy-representable if there exists $\sigma \in \Delta(S)$ such that $\pi(\theta ; a)=\operatorname{Pr}_{s \sim \sigma}(s(\theta)=a)$ for each $\theta \in \Theta$ and $a \in A$.

Definition

For any $\epsilon \geq 0$, a distribution $\sigma \in \Delta(S)$ is an ϵ-approximate agent-normalform correlated equilibrium if for any $i \in N$ and $\phi: \Theta_{i} \times A_{i} \rightarrow A_{i}$, it holds that

$$
\begin{equation*}
\underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{s \sim \sigma}{\mathbb{E}}\left[v_{i}(\theta ; s(\theta))\right]\right] \geq \underset{\theta \sim \rho}{\mathbb{E}}\left[\underset{s \sim \sigma}{\mathbb{E}}\left[v_{i}\left(\theta ; \phi\left(\theta_{i}, s_{i}\left(\theta_{i}\right)\right), s_{-i}\left(\theta_{-i}\right)\right)\right]\right]-\epsilon . \tag{1}
\end{equation*}
$$

