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Abstract

This paper considers a new axiom of a choice function called equal treatment of

individuals in an indifference class (ETI) in the context of matching problems. We

show that when a choice function satisfies ETI and two commonly-used axioms, substi-

tutability and size monotonicity, any individual for whom ETI applies must either be

always accepted whenever the choice set includes them or be never selected. ETI is also

generally incompatible with another axiom, q-acceptance. When ETI, substitutability,

and size monotonicity are required, the degree of q-acceptance violation depends on

the sum of the sizes of all indifference classes for which ETI applies, but when size

monotonicity is replaced by consistency, it is characterized by the size of a particular

indifference class. These results clarify the trade-off between ETI and other axioms,

which would be helpful in designing a tie-breaking rule.
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1 Introduction

In many choice problems where multiple individuals are chosen, ex post fairness among some

individuals is often a social desideratum, rather than just ex ante fairness achieved by a

lottery. In college admissions where the admission criterion is based on scores, a college

often treats applicants with the same score equally (i.e., either accepts or rejects all of

them) without breaking a tie. Examples include admissions systems in Hungary, Chile,

Australia, and China, and a tie-breaking among such applicants is even prohibited by law

in Hungary and Chile (Biró and Kiselgof, 2015; Rios et al., 2021). In the distribution of

disaster relief, all individuals in the same category (such as children and elderly people) are

treated equally. This is because the central authority would want to eliminate any envy

among them based on their ex post relief allocation and would not prefer a random lottery

(Kamada and Kojima, 2023). These examples are in stark contrast to other choice problems

such as student selection by primary or secondary schools, where a tie-breaking is used to

meet the capacity constraint of schools (Erdil and Ergin, 2008; Abdulkadiroğlu et al., 2009).

While ex post equal treatment of certain individuals is a practical requirement, the litera-

ture on choice theory and matching theory has not examined “what choice could be made” if

we require ex post fairness together with other properties of choice rules.1 It has been known

that several axioms on the choice function are important in making two-sided many-to-one

matching markets work well. When every choice function is substitutable and consistent, a

stable matching is guaranteed to exist in the market and the well-known student-proposing

Deferred Acceptance (DA) mechanism finds it (Roth, 1984; Aygün and Sönmez, 2013). With

a stronger requirement of substitutability and size monotonicity, DA becomes strategy-proof

(Hatfield and Milgrom, 2005). When a tie is not an issue, a responsive choice function would

satisfy all these relevant axioms.2 However, when equal treatment of certain individuals is

required, it is not clear what choice functions could meet this fairness while retaining other

axioms.

In this paper, we consider equal treatment of individuals in an indifference class (ETI)

as an axiom of choice functions and analyze the compatibility of this axiom with other ones

studied in the literature. We consider a partition of all individuals into indifference classes,

and ETI requires any individuals in the same indifference class be treated equally.3 Our

first main theorem shows that if a choice function satisfies ETI, substitutability, and size

1See Section 1.1 for related papers on the implication of ex post fairness on matching markets.
2See Section 2 for the definitions of these axioms and Section 3.1 for the definition of a responsive choice

function.
3In our model, we allow ETI to be applied to some indifference classes but not necessarily all of them.
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monotonicity, then for any given individual for whom ETI applies, it must satisfy either of

the following conditions: (i) it always accepts them whenever the choice set includes them;

or (ii) it never selects them (Theorem 1). This is a very strong necessary condition because

the choice function loses the ability to compare the relevant individual with the others in the

choice set. The class of choice functions could be significantly relaxed if each of the three

axioms is dropped.

To provide an intuition of this result, let us consider the following two choice functions

that are used to satisfy ETI in reality (Biró and Kiselgof, 2015; Rios et al., 2021). A q-

receptive choice function accepts individuals according to a weak priority ranking, and when

it finds multiple indifferent individuals around the “target” capacity q (i.e., the first group

of indifferent individuals for whom the size of the chosen set reaches or exceeds q), it accepts

up to all such individuals. A q-unreceptive choice function accepts individuals in a similar

way according to a weak priority ranking, but it rejects all indifferent individuals around the

target capacity. Both choice functions share the same spirit as a responsive choice function in

the sense that they compare individuals in the choice set. It is easy to verify that they meet

ETI and substitutability. Theorem 1 implies that such choice functions must necessarily

violate size monotonicity unless they accept or reject all individuals. Size monotonicity

requires that the size of the chosen set be weakly increasing when the choice set expands in

a set-inclusion sense.

Example 1. Consider three individuals s1, s2 and s3. s1’s priority is higher than s2 and s3,

and s2 and s3 are indifferent. When choice function C is 1-receptive, C({s1, s2, s3}) = {s1}
but C({s2, s3}) = {s2, s3}. When the choice set is {s2, s3}, both s2 and s3 are accepted

because they are at the borderline of q = 1. When choice function C is 2-unreceptive,

C({s2, s3}) = {s2, s3} but C({s1, s2, s3}) = {s1}. Under this choice function, s2 and s3 are

both rejected when {s1, s2, s3} applies because they are at the borderline of q = 2. Either

choice function violates size monotonicity.

As in this example, it is often the case that colleges have some sense of target capacity

and adjust the admission cutoff depending on the applicant pool. In such cases, at least

one of ETI, substitutability, and size monotonicity must be compromised. We also formally

show that once we replace size monotonicity with consistency, the set of choice functions is

significantly broader than Theorem 1, including receptive choice functions (Proposition 2).

ETI is generally incompatible with another important axiom, q-acceptance. q-acceptance

requires any individuals to be accepted up to a non-negative integer q. Since the violation

of q-acceptance can be interpreted as a departure from the target capacity, it is reasonable
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to evaluate the violation by its degree. We propose a natural way to measure the degree of

q-acceptance violation by considering the worst-case difference in the size of the chosen set,

where the worst case is taken out of all possible choice sets.

We characterize the minimum of this degree out of all choice functions that satisfy (i)

ETI, substitutability, and size monotonicity, and (ii) ETI, substitutability, and consistency.

In case (i), we provide an algorithm to find the minimum and show that the sum of the sizes

of all indifference classes for which ETI applies matters (Proposition 3). This is a natural

consequence of Theorem 1 that all indifference classes for which ETI applies must always

be accepted or rejected by any choice function satisfying these three axioms. The algorithm

embeds the partition problem in number theory since the degree of q-acceptance violation

is minimized by balancing the size of the always-accepted set and the always-rejected set.

In case (ii), we introduce a (q, q̄)-generalized receptive choice function that satisfies all three

axioms and show that the minimum of q-acceptance violation can be achieved by this choice

function by setting the parameter q̄ appropriately (Propositions 5 and 6). A (q, q̄)-generalized

receptive choice function has the features of both receptive and unreceptive choice functions.

As opposed to case (i), the minimized degree of q-acceptance violation is characterized by the

size of a certain indifference class. These highlight the cost of size monotonicity measured by

the degree of q-acceptance violation because the minimum in case (i) could be significantly

larger than that in case (ii), especially when the size of each indifference class is small. Our

results also include cases where choice functions are required to be compatible with a weak

priority ranking over individuals.

1.1 Related literature

ETI is motivated by the ex post fairness requirement in college admissions with ties. The

following papers study real-world matching markets where schools’ choices satisfy ETI. Biró

and Kiselgof (2015) study ETI in the context of Hungarian college admissions where each

college uses an unreceptive choice function.4 They propose a receptive choice function and

examine its welfare and stability consequences to the market. They also find that in markets

with receptive or unreceptive choice functions, DA violates strategy-proofness. Rios et al.

(2021) independently study ETI and receptive choice functions in the context of Chilean

college admissions. Other papers also analyze the implication of ETI for matching markets

and mechanisms (Ehlers, 2006; Fleiner and Jankó, 2014; Kamiyama, 2017; Ágoston et al.,

4Biró and Kiselgof (2015) do not name the choice rules of schools, but their “H-stable (resp. L-stable)

score-limits” correspond to the cutoffs achieved by unreceptive (resp. receptive) choice functions.
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2022). Ehlers (2006) considers a strong fairness concept that rules out any envy among tied

students and proposes a condition on the priority structure for this fairness to be compatible

with efficiency. While these papers study matching markets by focusing on specific stability

concepts or choice functions, we investigate the compatibility between ETI and other axioms

of choice functions. That is, we characterize the general class of choice functions, not just the

ones studied by the papers above, that make matching markets or mechanisms work well (in

terms of the existence of stable matchings and the strategy-proofness of stable mechanisms).

In this sense, our approach contributes to a better understanding of matching markets where

ETI is required.

Our paper contributes to the literature on choice and matching theory.5 Path inde-

pendence, which is equivalent to substitutability and consistency, has been studied in the

literature of choice theory (Plott, 1973; Aizerman and Malishevski, 1981). Following this,

several results have been shown on the choice functions satisfying certain axioms including

path independence. For example, Chambers and Yenmez (2017) study path-independent

and size monotonic choice functions; Doğan et al. (2021) characterize path-independent and

acceptant choice functions. We add to this literature by introducing and examining our new

fairness axiom, ETI.

Our results also relate to a broader literature on priority design, which has received

considerable attention in recent years. In the context of affirmative action in India, Sönmez

and Yenmez (2022) design a choice function that satisfies desirable properties reflecting

the laws of India. Echenique and Yenmez (2015) characterize the choice functions used in

affirmative action policies such as quotas (Abdulkadiroğlu and Sönmez, 2003) and reserves

(Hafalir et al., 2013). Affirmative action with complex constraints has been studied in a

variety of settings using the priority design approach (Imamura, 2020; Aygün and Turhan,

2022; Doğan et al., 2022). Other papers examine applications other than affirmative action

such as walk zones reserves in school choice (Dur et al., 2018) and medical rationing during

a pandemic (Pathak et al., 2021).

Recently, it has been known that achieving size monotonicity is challenging in some

real-life applications. One such example is refugee resettlement, where each institution has

a capacity and families may have different sizes (Delacrétaz et al., 2020). One of their

proposed choice functions is shown to violate size monotonicity.6 A similar result holds

in several applications such as daycare seat allocation and college admissions with budget

constraints (Kamada and Kojima, 2023). The violation of size monotonicity in these models

5See Alva and Doğan (2021) for a recent survey of this topic.
6They also provide another choice function that satisfies size monotonicity.
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is due to heterogeneous individual sizes. By contrast, our paper finds that size monotonicity

may be violated when ETI is prioritized, which is a different logic from theirs.

2 Model

Consider a choice problem where multiple individuals (e.g., students or applicants) are cho-

sen. Let S be a finite set of individuals. A choice function C : 2S → 2S is such that C(S) ⊆ S

for any S ⊆ S. To introduce our fairness notion, we consider a partition of S, denoted by

I . That is, I is a set of subsets I of S such that ∪I∈I I = S and for any I, I ′ ∈ I , I ̸= I ′

imply I ∩ I ′ = ∅. We call each element I of I an indifference class. A subset of I is called

a collection of indifference classes. For any collection of indifference classes I ⊆ I , define

I≥2 := {I ∈ I : |I| ≥ 2}. In words, I≥2 is the set of all indifference classes I ∈ I whose size

is greater than or equal to two.

Our new axiom of a choice function requires ex post equal treatment of individuals in the

same indifference class.

Definition 1. Choice function C satisfies equal treatment of individuals in an indifference

class (ETI) for a collection of indifference classes I ⊆ I if for any S ⊆ S, I ∈ I, and
s, s′ ∈ S ∩ I, s ∈ C(S) if and only if s′ ∈ C(S).

Note that we allow for any I ⊆ I in our analysis. This means that ETI can be applied

only for certain indifference classes and not necessarily for all of them. For example, it is

possible that children (or elderly people) need to be treated equally while others may not

need to be. A college may want to treat students with a certain high score equally but may

be willing to break a tie for those with a lower score.

This paper considers the compatibility of ETI with the following three axioms:

1. Substitutability: for any S, S ′ ⊆ S with s ∈ S ⊆ S ′, s ∈ C(S ′) implies s ∈ C(S).

2. Size monotonicity: for any S, S ′ ⊆ S with S ⊆ S ′, |C(S)| ≤ |C(S ′)|.

3. Consistency: for any S, S ′ ⊆ S with C(S ′) ⊆ S ⊆ S ′, C(S) = C(S ′).7

These axioms are known to be the key to guaranteeing and implementing a stable match-

ing in markets. In two-sided many-to-one matching markets (with contracts), a stable match-

ing exists and can be found by the student-proposing DA mechanism if every choice function

7Consistency is also known as “irrelevance of rejected contracts” in the literature of matching with

contracts (Aygün and Sönmez, 2013).
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is substitutable and consistent (Roth, 1984; Aygün and Sönmez, 2013).8 In addition, DA

becomes strategy-proof if every choice function is substitutable and size monotonic (Hatfield

and Milgrom, 2005).

Following these arguments, we consider the compatibility of ETI with two sets of axioms:

(i) substitutability and size monotonicity, and (ii) substitutability and consistency. The first

exercise allows us to understand how restrictive choice functions would be if we require ETI

together with substitutability and size monotonicity, which are often assumed in the match-

ing literature. Note that consistency is implied by the combination of substitutability and

size monotonicity. Thus, the second exercise further allows us to study how the requirement

can be weakened if we replace size monotonicity with consistency.

3 Implications of ETI

In this section, we provide several characterization results of choice functions that satisfy

ETI and other axioms.

3.1 Compatibility with substitutability and size monotonicity

We first show that if we require ETI together with substitutability and size monotonicity,

the set of choice functions is severely constrained.

Theorem 1. Suppose that choice function C satisfies ETI for a collection of indifference

classes I, substitutability, and size monotonicity. Then for any I ∈ I≥2 and s ∈ I, either of

the following conditions holds:

1. s ∈ C(S) for all S ⊆ S with s ∈ S, or

2. s /∈ C(S) for all S ⊆ S.

In words, the necessary condition means that any individual s ∈ I ∈ I≥2 must be

either accepted or rejected irrespective of the choice set. Thus, when these three axioms are

required, C loses the ability to compare s with other individuals in S.

The main proof idea is as follows. It suffices to show that the three axioms imply

s ∈ C({s}) ⇒ s ∈ C(S) for any s ∈ I ∈ I≥2 and S ∋ s.9 When the choice set expands by

8It is known that substitutability and consistency are equivalent to another single axiom called path

independence: Choice function C is path independent if for every S and S′, C(S ∪ S′) = C(C(S) ∪ C(S′))

(Plott, 1973; Aizerman and Malishevski, 1981).
9Note that substitutability implies the other direction.
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one, substitutability implies that individuals who are originally rejected cannot be chosen

from an expanded choice set, and hence the size of the chosen set increases by at most one.

On the other hand, since s ∈ I ∈ I≥2, there is another individual s′ ∈ I \ {s} who must

be treated equally as s. If we suppose s ∈ C({s}) but s were not chosen from some larger

choice set S ∋ s, we can always find a situation where s is chosen from an original choice set

but both s and s′ would be rejected when the choice set expands by one. This would be a

contradiction to size monotonicity because the size of the chosen set strictly decreases.

Since ETI does not require anything regarding those who are in a singleton indifference

class, i.e., individuals s such that {s} ∈ I, Theorem 1’s condition is not sufficient for the

three axioms. The next corollary confirms that when |I| ≥ 2 for any I ∈ I and we consider

ETI for I , the same condition becomes sufficient.

Corollary 1. Suppose |I| ≥ 2 for any I ∈ I . Then choice function C satisfies ETI for I ,

substitutability, and size monotonicity if and only if for any I ∈ I , either of the following

conditions hold:

1. I ∩ S ⊆ C(S) for all S ⊆ S, or

2. I ∩ C(S) = ∅ for all S ⊆ S.

Proof. The “only if” direction follows from Theorem 1. We show the “if” direction. Clearly,

C satisfies ETI for I . Let I a := {I ∈ I : I ∩ S ⊆ C(S) for all S ⊆ S}. Then we have

C(S) = (∪I∈I aI) ∩ S for any S ⊆ S. C is substitutable because for any S, S ′ ⊆ S with

s ∈ S ⊆ S ′, s ∈ (∪I∈I aI)∩S ′ implies s ∈ (∪I∈I aI)∩S. C satisfies size monotonicity because

for any S, S ′ ⊆ S with S ⊆ S ′, |I ∩ S| ≤ |I ∩ S ′| for all I ∈ I a leads to |(∪I∈I aI) ∩ S| ≤
|(∪I∈I aI) ∩ S ′|.

In Theorem 1, the three axioms are independent. Indeed, each of them plays a crucial

role and once we drop any of them, the necessary condition would be significantly weakened.

First, it is well-known that a responsive choice function with a strict priority, which does

not satisfy ETI in general, satisfies substitutability and size monotonicity. Formally, let strict

priority ranking ⊵ be a complete, transitive, and antisymmetric binary relationship on S.10

Given a strict priority ranking ⊵, choice function C is q-responsive if

C(S) =

S if |S| ≤ q,

{s ∈ S : s⊵ s∗(S)} otherwise,

10For all s, s′ ∈ S, we write s▷ s′ to mean s⊵ s′ and s′�⊵s.
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where s∗(S) ∈ S is the unique individual who satisfies |{s ∈ S : s ⊵ s∗(S)}| = q when

|S| > q. Choice function C is responsive if it is q-responsive for some integer q. Note that

a responsive choice function may not be well-defined with a “weak” priority ranking (that

will be defined below) because s∗(S) may not exist.

Second, there are many choice functions that satisfy ETI and substitutability but do not

meet the condition in Theorem 1. As discussed in Introduction, receptive and unreceptive

choice functions serve as examples. Let weak priority ranking ⪰ be a complete and transitive

binary relationship on S such that s ∼ s′ for any s, s′ ∈ I ∈ I .11 Let s∗∗(S) be one of the

highest priority individuals who satisfy |{s ∈ S : s ⪰ s∗∗(S)}| ≥ q when |S| > q. In other

words, s∗∗(S) is one of the individuals for whom the size of the chosen set reaches or exceeds

q for the first time once C accepts individuals according to ⪰ and treats all indifferent

individuals (according to ⪰) equally.

Definition 2. Given a weak priority ranking ⪰, choice function C is q-receptive if

C(S) =

S if |S| ≤ q,

{s ∈ S : s ⪰ s∗∗(S)} otherwise.

Choice function C is receptive if it is q-receptive for some integer q.

Given a weak priority ranking ⪰, choice function C is q-unreceptive if

C(S) =

S if |S| ≤ q,

{s ∈ S : s ≻ s∗∗(S)} otherwise.

Choice function C is unreceptive if it is q-unreceptive for some integer q.

Both receptive and unreceptive choice functions can be seen as a generalization of a

responsive choice function to the case with a weak priority ranking. The difference stems from

the acceptance of individuals at the “borderline,” i.e., individuals s such that s ∼ s∗∗(S): A

q-receptive choice function accepts all such individuals, while a q-unreceptive choice function

rejects all of them. As a result, when |S| ≥ q, we always have |C(S)| ≥ q (resp. |C(S)| ≤ q)

if C is q-receptive (resp. q-unreceptive). It is easy to verify that both satisfy ETI and

substitutability. They are more flexible than the necessary condition of Theorem 1 in the

sense that the selection from choice set S can depend on S. Then, as implied by Theorem 1,

these choice functions violate size monotonicity (see Example 1). Section 3.2 further provides

a characterization result of choice functions with ETI when substitutability and consistency

are required.

11For all s, s′ ∈ S, we write s ∼ s′ to mean s ⪰ s′ and s′ ⪰ s, and write s ≻ s′ to mean s ⪰ s′ and s′�⪰s.
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Third, when only ETI and size monotonicity are required, the following proposition

characterizes the set of choice functions. Here, for a concise characterization, assume |I| ≥ 2

for every I ∈ I . A profile of sets of indifference classes (Ĩ (S))S∈2S ⊆ I 2|S|
is said to be

increasing if

|S ∩ (∪I∈Ĩ (S)I)| ≤ |S ′ ∩ (∪I∈Ĩ (S′)I)|

for any S, S ′ ∈ 2S with S ⊆ S ′.

Proposition 1. Choice function C satisfies ETI for I and size monotonicity if and only

if C(S) = S ∩ (∪I∈Ĩ (S)I) where (Ĩ (S))S∈2S is an increasing profile of sets of indifference

classes.

Theorem 1 implies that with all the three axioms, essentially C(S) = S ∩ (∪I∈Ĩ (S)I)

where Ĩ (S) = Ĩ (S ′) for any S, S ′ ∈ 2S would need to hold.12 By contrast, the combination

of ETI and size monotonicity is more flexible than that because Ĩ (S) ̸= Ĩ (S ′) is possible.

For example, consider the following choice function C:

C(S) =

S ∩ I if |S ∩ I| ≥ a,

∅ otherwise.

for some I ∈ I and an integer a ∈ {2, . . . , |I|}. This C satisfies the condition of Proposition

1 because we can take Ĩ (S) = ∅ for any S ⊆ S with |S ∩ I| < a and Ĩ (S) = {I}
otherwise. Hence, it satisfies both ETI for I and size monotonicity. This choice function

C exhibits complementarity between individuals in I because C({i}) = ∅ and C(I ′) = I ′ for

any i ∈ I ′ ⊆ I with |I ′| ≥ a.

3.2 Compatibility with substitutability and consistency

Next, we consider consistency instead of size monotonicity. Note that we impose consistency

here because substitutability (of every choice function) alone is not sufficient for the existence

of a stable matching in matching markets (Aygün and Sönmez, 2013). But since consistency

is weaker than the combination of substitutability and size monotonicity, we indeed show

that the set of choice functions is significantly larger than the one in Theorem 1. For example,

it is easy to verify that a receptive choice function satisfies consistency in addition to ETI

and substitutability. Our next result generalizes this observation.

12Technically, Ĩ (S) = Ĩ (S′) may not need be satisfied for all S, S′ ∈ 2S , but whether or not I is in Ĩ (S)

needs to be consistent across all S ⊆ S such that S ∩ I ̸= ∅.
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Proposition 2. Suppose that choice function C satisfies substitutability and consistency.

Then C satisfies ETI for a collection of indifference classes I if and only if for all I ∈ I,
s ∈ I, and S ⊆ S with s ∈ S,

s ∈ C(S) ⇐⇒ I ⊆ C(S ∪ I). (1)

To make the difference more salient, we can rewrite Theorem 1 in the following way:

Theorem 1. (Arranged.) Suppose that choice function C satisfies substitutability and size

monotonicity. Then C satisfies ETI for a collection of indifference classes I if and only if

for all I ∈ I≥2, s ∈ I, and S ⊆ S with s ∈ S,

s ∈ C(S) ⇐⇒ I ⊆ C(S). (2)

This illustrates how flexible choice functions can be by replacing size monotonicity with

consistency. Equation (1) requires the selection of an individual s from a choice set S be

the same as when S ∪ I would apply. By contrast, equation (2) requires the selection of an

individual s from a choice set S be the same as when all individuals (i.e., S) would apply.

The former allows the selection of s from S to depend on the choice set S while the latter

does not, highlighting the flexibility of choice functions when size monotonicity is dropped.

4 Degree of q-acceptance violation

4.1 Measuring the degree of q-acceptance violation

In this section, we consider another important axiom called acceptance, which is often used

in real-world choice problems. Choice function C is q-acceptant if |C(S)| = min{q, |S|} for

any S ⊆ S. Choice function C is acceptant if it is q-acceptant for some integer q. The idea

of acceptance is that there is some rigid capacity q, and any individuals can be accepted up

to the capacity q.

Clearly, ETI has a potential conflict with acceptance. For example, if there is an indif-

ference class I ∈ I with |I| > q, then ETI for I and q-acceptance are not compatible. Note

that there is a reasonable class of choice functions that satisfy acceptance and all axioms

considered in this paper except ETI: a responsive choice function with any strict priority is

substitutable, size monotonic, consistent, and acceptant. The violation of acceptance can

be interpreted as a departure from the target capacity. In many applications such as college

admissions, some small departure from the target capacity may be tolerable but a too large

fluctuation in the number of accepted individuals would be less desirable. Therefore, it is
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reasonable to evaluate the violation of acceptance by its degree, and the trade-off between

the axioms of choice functions and the violation of acceptance should be discussed when we

consider ETI.

To quantify the degree of violation of q-acceptance, we consider the following measure,

α(q, C), which is the worst-case difference in the size of the chosen set :

α(q, C) = max
S:S⊆S

∣∣∣|C(S)| −min{q, |S|}
∣∣∣.

This is the maximum difference in the size of the chosen set between a given choice function

C and a q-acceptant choice function when all choice sets S ⊆ S are considered.

The question of this section is as follows: given a set of axioms including ETI, what is the

minimum of α(q, C) among all choice functions C that satisfy those axioms? The solution

can be interpreted as the necessary flexibility of the size of the chosen set when we require a

certain set of axioms. Following Section 3, we consider the following two sets of axioms: (i)

ETI, substitutability, and size monotonicity, and (ii) ETI, substitutability, and consistency.

In each case of (i) and (ii), we also consider when choice functions are compatible with a

weak priority ranking over individuals, which is a natural requirement in many applications.

Formally, given a weak priority ranking ⪰, choice function C is ⪰-compatible if for any S ⊆ S
and s, s′ ∈ S, s ∈ C(S) and s′ /∈ C(S) imply s ⪰ s′. Note that our analysis in this section

covers the case without ⪰-compatibility as a special case because ⪰-compatibility does not

have any restriction when ⪰ is such that s ∼ s′ for any individuals s, s′ ∈ S.
Since any two individuals in the same indifference class are assumed to be indifferent in

a weak priority ranking, for the sake of notational simplicity, we write I ⪰ I ′, I ⪰ s′, or

s ⪰ I ′ if s ⪰ s′ for some s ∈ I and s′ ∈ I ′.

4.2 When ETI, substitutability, and size monotonicity are re-

quired

Let C⪰
1 (I) be the set of all choice functions that satisfy ETI for I, substitutability, size

monotonicity, and ⪰-compatibility. The goal of this section is to provide an algorithm that

finds the minimum of α(q, C) among all choice functions C in C⪰
1 (I) for any inputs (q, I,⪰).13

By exploiting Theorem 1, we first derive key necessary conditions for a choice function to be

in C⪰
1 (I).

13The environment (S,I ) is also the inputs of the algorithm, but we omit it because it is fixed throughout

the paper.
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Lemma 1. For a given choice function C, let A(C) = {s ∈ S : s ∈ C(S) for any S ⊆ S
with s ∈ S} and R(C) = {s ∈ S : s /∈ C(S) for any S ⊆ S}. If C is in C⪰

1 (I), it satisfies
the following conditions:

(i) I ⊆ A(C) or I ⊆ R(C) for any I ∈ I≥2, and s ⪰ s′ for any s ∈ A(C) and s′ ∈ R(C);

(ii) for any I ′ ∈ I \ I≥2, I
′ ⊆ A(C) if there exists I ∈ I≥2 such that I ⊆ A(C) and I ′ ≻ I;

and

(iii) for any I ′ ∈ I \I≥2, I
′ ⊆ R(C) if there exists I ∈ I≥2 such that I ⊆ R(C) and I ≻ I ′.

The implication of Lemma 1 is that when we search for the minimum of α(q, C) in

C⪰
1 (I), we can restrict our attention to the choice functions satisfying conditions (i)–(iii). Of

theoretical interest, it is worth noting that ⪰-compatibility is not enough to derive conditions

(ii) and (iii) and we use substitutability and size monotonicity as well.

The next lemma finds the minimum of α(q, C) by fixing the sets of always-accepted and

always-rejected individuals. For given disjoint sets A,R ⊆ S, let C⪰
1 (I, A,R) be the set of

all choice functions C ∈ C⪰
1 (I) such that A∩S ⊆ C(S) and R∩S ⊆ S \C(S) for all S ⊆ S.

Lemma 2. For disjoint sets A,R ⊆ S and an integer q, suppose that C⪰
1 (I, A,R) is

nonempty. Then, the following holds:

min
C∈C⪰

1 (I,A,R)

α(q, C) = max
{
|A| − q,min{|R|, q}

}
.

Lemma 2 shows that the minimum of α(q, C) in C⪰
1 (I, A,R) is determined by the sizes

of A and R. Given Lemmas 1 and 2, our question reduces to how to minimize max
{
|A| −

q,min{|R|, q}
}
among all pairs (A,R) that satisfy the conditions (i)–(iii) in Lemma 1. The

next example illustrates how we can do this.

Example 2. Consider four indifference classes I1, I2, I3, I4 with |I1| = 15, |I2| = |I4| = 2,

|I3| = 4, a weak priority ranking I1 ∼ I2 ≻ I3 ≻ I4, q = 10, and a collection of indif-

ference classes I = {I1, I2, I4}. To find min
C∈C⪰

1 (I) α(q, C), it suffices to find (A,R) ⊆ S2

that minimizes max
{
|A| − 10,min{|R|, 10}

}
by satisfying conditions (i)–(iii) of Lemma 1.

Condition (i) implies that I1, I2, and I4 must be included in either A or R. If I1 ⊆ R,

we immediately have max
{
|A| − 10,min{|R|, 10}

}
= 10. Then, consider I1 ⊆ A and

see if we can achieve a smaller value than 10. There are two possibilities, I2 ⊆ A or

I2 ⊆ R, because I1 ∼ I2 and either case is ⪰-compatible. If I2 ⊆ A, we can achieve

max
{
|A|−10,min{|R|, 10}

}
= max

{
17−10,min{2, 10}

}
= 7 by I3 ⊆ S\(A∪R) and I4 = R.

If I2 ⊆ R, condition (iii) requires I3∪ I4 ⊆ R and we achieve max
{
|A|−10,min{|R|, 10}

}
=

max
{
15− 10,min{8, 10}

}
= 8. Thus, min

C∈C⪰
1 (I) α(q, C) = 7 in this example.

13



There are two lessons from this example. First, when more than one indifference classes

in I≥2 are not strictly ranked, we need to consider all possibilities of assigning them to A or

R. That is, we need to find the optimal way to partition I1 and I2 into A and R. Second, by

conditions (ii) and (iii), whether or not an indifference class in I \ I≥2 needs to be in A or

R depends on the assignment of indifference classes in I≥2. When I1 ∪ I2 = A, I3 does not

need to be included in either of A or R. But when I2 ⊆ R, condition (iii) requires I3 ⊆ R as

well.

To generalize the exercise in Example 2, we define an algorithm to find the optimal pair

(A,R) ⊆ S2, which achieves max
{
|A| − q,min{|R|, q}

}
= min

C∈C⪰
1 (I) α(q, C). To do so,

the following mathematical objects need to be defined. Given an integer q ≥ 0, for any

(A,R) ⊆ S2 and any χ1, χ2 ⊆ 2S , define

f(χ1, χ2, A,R) := max
{( ∑

Y ∈χ1

|Y |
)
+ |A| − q,min

{( ∑
Y ∈χ2

|Y |
)
+ |R|, q

}}
.

For χ ⊆ 2S , let D(χ) := {(χ1, χ2) ⊆ χ2 : χ1 ∪ χ2 = χ, χ1 ∩ χ2 = ∅}. Given q, for any χ ⊆ 2S

and any finite sets A and R, define

π(χ,A,R) ∈ arg min
(χ1,χ2)∈D(χ)

f(χ1, χ2, A,R).

π1(χ,A,R) (resp. π2(χ,A,R)) denotes the first (resp. second) element of π(χ,A,R).

Let I1(⪰) := {I ∈ I : ��∃I ′ ∈ I such that I ′ ≻ I}. Recursively, Ik+1(⪰) is defined as

Ik+1(⪰) := {I ∈ I \ (∪k
l=1Il(⪰)) : ��∃I ′ ∈ I \ (∪k

l=1Il(⪰)) such that I ′ ≻ I}.
For k ∈ {2, . . . , K}, when (∪k−1

l=1 Il(⪰)) ∩ I≥2 is nonempty, let Iak ∈ (∪k−1
l=1 Il(⪰)) ∩ I≥2

be an indifference class that satisfies I ⪰ Iak for all I ∈ (∪k−1
l=1 Il(⪰))∩ I≥2. Define A(1) := ∅

and A(k) := ∪I∈∪k−1
l=1 Il(⪰)I for k ∈ {2, . . . , K}. Define AT (1) := ∅ and

AT (k) :=

∪I∈I :I⪰Iak
I if (∪k−1

l=1 Il(⪰)) ∩ I≥2 ̸= ∅

∅ otherwise

for k ∈ {2, . . . , K}.
For k ∈ {1, . . . , K − 1}, when (∪K

l=k+1Il(⪰)) ∩ I≥2 is nonempty, let Irk ∈ (∪K
l=k+1Il(⪰

))∩ I≥2 be an indifference class that satisfies Irk ⪰ I for all I ∈ (∪K
l=k+1Il(⪰))∩ I≥2. Define

R(k) := ∪I∈∪K
l=k+1Il(⪰)I for k ∈ {1, . . . , K − 1}, and R(K) := ∅. Define

RB(k) :=

∪I∈I :Irk⪰II if (∪K
l=k+1Il(⪰)) ∩ I≥2 ̸= ∅

∅ otherwise

14



for k ∈ {1, . . . , K − 1}, and RB(K) := ∅.
Define the following three potential solutions, the interior solution σI : {1, . . . , K} →

N0, the top-corner solution σT : {1, . . . , K} → N0, and the bottom-corner solution σB :

{1, . . . , K} → N0.
14 For each k ∈ {1, . . . , K},

• σI(k) := f
(
π1(Ik(⪰) ∩ I≥2, A(k), R(k)), π2(Ik(⪰) ∩ I≥2, A(k), R(k)), A(k), R(k)

)
,

• σT (k) := f(∅,Ik(⪰) ∩ I≥2, A
T (k), R(k)), and

• σB(k) := f(Ik(⪰) ∩ I≥2, ∅, A(k), RB(k)).

The following Algorithm outputs a value σ∗ ∈ N0 from the inputs (q, I,⪰).

Step 1. If I1(⪰) ∩ I≥2 ̸= ∅ and σB(1) > σI(1) hold, terminate the algorithm and define

σ∗ := σI(1). Otherwise, proceed to Step 2.

Step k ∈ {2, . . . , K − 1}. If Ik(⪰) ∩ I≥2 ̸= ∅ and σB(k) > min{σI(k), σT (k)} hold, termi-

nate the algorithm and define σ∗ := min{σI(k), σT (k)}. Otherwise, proceed to Step

k + 1.

Step K. If IK(⪰) ∩ I≥2 ̸= ∅ holds, define σ∗ = min{σI(K), σT (K)}. Otherwise, define

σ∗ := σB(k∗) where k∗ is the largest integer with Ik∗(⪰) ∩ I≥2 ̸= ∅.

This Algorithm examines the candidates of (A,R) ⊆ S2 for minimizing max
{
|A| −

q,min{|R|, q}
}
among those satisfying the conditions (i)–(iii) in Lemma 1. The basic idea is

that the Algorithm considers each Ik(⪰) sequentially from high to low priority, and it solves

the partition of Ik(⪰)∩I≥2 into either A or R, by fixing the assignment of other indifference

classes as given. The problem in each step is a slight modification of the partition problem

in number theory, which is to find the optimal partition of positive integers into two sets in

a way that the difference in the sum of the integers is minimized.15

There is a subtle variation in how the assignment of other indifference classes are fixed

depending on whether all indifference classes in Ik(⪰) ∩ I≥2 are to be in A or R. When at

least one indifference class in Ik(⪰)∩I≥2 is to be included in each of A and R, conditions (ii)

and (iii) of Lemma 1 imply that all individuals ranked strictly higher than Ik(⪰) (namely,

14N0 denotes the set of all non-negative integers.
15This optimization problem is known to be NP-complete, but there are many algorithms that can solve

it in practice. See Korf (1998) for a review of algorithms for the partition problem including approximate

algorithms (such as the greedy heuristic and the Karmarkar-Karp algorithm) and exact ones (such as the

complete greedy algorithm and the Complete Karmarkar-Karp algorithm).
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A(k)) must be in A and all individuals ranked strictly lower than Ik(⪰) (namely, R(k))

must be in R. The interior solution σI(k) of Step k represents the optimized value of the

partition problem with this supposition. On the other hand, when all indifference classes in

Ik(⪰) ∩ I≥2 are to be in R, indifference classes that are not in I≥2 and ranked just above

Ik(⪰) (if such ones exist) do not need to be included in A. AT (k) reflects this fact, and the

top-corner solution σT (k) of Step k represents the value of f when all indifference classes in

Ik(⪰)∩I≥2 are to be in R. Similarly, the bottom-corner solution σB(k) of Step k represents

the value of f when all indifference classes in Ik(⪰) ∩ I≥2 are to be in A. In each step, the

Algorithm seeks a (potentially) lower value in the next step if σB(k) is lower than σI(k) and

σT (k), but terminates otherwise.

Intuitively, the Algorithm finds the optimal solution because the size of A monotoni-

cally increases while that of R decreases as it proceeds through the steps. This guarantees

that min{σI(k), σT (k), σB(k)} weakly decreases to a certain step and then starts to weakly

increase. Lemmas 3 and 4 formalize this intuition and show that the output σ∗ of the Algo-

rithm is indeed the minimum of all potential solutions examined in the Algorithm, i.e, σ∗ is

equal to mink∈{1,...,K}
{
min{σI(k), σT (k), σB(k)}

}
.

Lemma 3. Suppose that at Step k ∈ {1, . . . , K−1}, Ik(⪰)∩I≥2 ̸= ∅ holds and the Algorithm

proceeds to Step k + 1. Then, we have min{σI(k), σT (k), σB(k)} ≥ σ∗.

Lemma 4. Suppose that the Algorithm terminates at Step k ∈ {1, . . . , K − 1}. Then, we

have σ∗ < min{σI(l), σT (l), σB(l)} for all l ∈ {k + 1, . . . , K}.

Finally, by showing that the optimal pair (A,R) ⊆ S2 is always included in those exam-

ined in the Algorithm, we obtain our desired result.

Proposition 3. The output σ∗ of the Algorithm satisfies σ∗ = min
C∈C⪰

1 (I) α(q, C).

While this proposition does not provide a closed-form solution of the optimal solution

σ∗ in terms of the inputs, there are three properties of σ∗ that are worth clarifying. First,

the sum of the sizes of all indifference classes in I≥2 matters for σ∗, not just the size of

one particular indifference class in I≥2. This is because σ∗ is determined by the sizes of

the optimal A and R, which together must cover all indifference classes in I≥2. Second, for

the same reason as above, σ∗ increases as ETI applies for a larger collection of indifference

classes I ′ ⊇ I conditional on q and ⪰. Third, σ∗ is always capped by q because α(q, C) = q

for choice function C that does not accept anyone is in C⪰
1 (I).

Next, we focus on the following two extreme cases and illustrate that the problem can

be simplified in different ways.
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When I ∼ I ′ for any I, I ′ ∈ I .

This case is equivalent to not requiring ⪰-compatibility. In such a case, the problem is

reduced to a one-shot partition problem, and we can represent the solution in a more concise

manner.

Proposition 4. Suppose that I ∼ I ′ for any I, I ′ ∈ I . Given a collection of indifference

classes I and an integer q, min
C∈C⪰

1 (I) α(q, C) is given as follows:

min
C∈C⪰

1 (I)
α(q, C) =



q if e > 3q

min
{
q, e−q

2
+minr∈R(I)

∣∣∣ e−q
2

− r
∣∣∣} if e ∈ (2q, 3q]

e−q
2

+minr∈R(I)

∣∣∣ e−q
2

− r
∣∣∣ if e ∈ (q, 2q]

0 if e ≤ q

where e :=
∑

I∈I≥2
|I| andR(I) := {r ∈ R : r = |I(1)|+|I(2)|+· · ·+|I(l)| for some indifference classes

I(1), I(2), . . . , I(l) ∈ I≥2}.

This formula allows us to confirm the three general properties of σ∗ explained above.

When I ≻ I ′ or I ′ ≻ I holds for any I, I ′ ∈ I .

In the other extreme case, all indifference classes are strictly ranked with each other,

and hence the partition problem in each step becomes trivial. In such a case, the Algorithm

is simplified as follows and the solution can be found without involving algorithms for the

partition problem. Let Ik be the k-th highest ranked indifference class according to ⪰ among

those in I≥2. Let Ak := {s ∈ S : s ⪰ Ik} for each k ∈ {1, . . . , K} and Rk := {s ∈ S : Ik+1 ⪰
s} for each k ∈ {0, . . . , K − 1}.

Step 1. If |A1|−q ≥ min{|R1|, q}, terminate the algorithm. Define σ∗ := min
{
min{|R0|, q}, |A1|−

q
}
. Otherwise, proceed to Step 2.

Step k ∈ {2, . . . , K − 1}. If |Ak| − q ≥ min{|Rk|, q}, terminate the algorithm. Define σ∗ :=

min
{
min{|Rk−1|, q}, |Ak| − q

}
. Otherwise, proceed to Step k + 1.

Step K. Define σ∗ := min
{
min{|RK−1|, q}, |AK | − q

}
.

4.3 When ETI, substitutability, and consistency are required

Let C⪰
2 (I) be the set of all choice functions that satisfy ETI for I, substitutability, con-

sistency, and ⪰-compatibility. We first introduce a new class of choice functions, (q, q̄)-

generalized receptive choice functions. Then, we show that min
C∈C⪰

2 (I) α(q, C) is achieved by

this choice function by setting an appropriate parameter for q̄.
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To give an intuition for why we propose a new choice function, consider receptive and

unreceptive choice functions, which both meet ETI and substitutability. The next example

illustrates that a receptive choice function may accept too many individuals, an unreceptive

choice function may reject too many, and an alternative does better than both of them with

regard to the minimization of α(q, C).

Example 3. Consider five individuals s1, s2, s3, s4, s5, target capacity q = 2, and a weak

priority ranking such that s1 ≻ s2 ∼ s3 ∼ s4 ≻ s5.
16 C and C ′ denote 2-receptive and

2-unreceptive choice functions, respectively. Then, C({s1, s2, s3, s4}) = {s1, s2, s3, s4} and

C ′({s2, s3, s4}) = ∅ hold, and we can see α(2, C) = α(2, C ′) = 2. Consider another choice

function C ′′ such that

C ′′(S) =

{s1} if s1 ∈ S,

C(S) otherwise.

Then, it is easy to see that α(2, C ′′) = 1.

This example suggests that a hybrid C ′′ of C and C ′ would achieve a smaller α(q, C)

than these two, by either being receptive or unreceptive around the borderline depending

on the choice set. Moreover, this C ′′ satisfies consistency although the 2-unreceptive choice

function C ′ does not.17 The main innovation of this hybrid function C ′′ is to carefully choose

when it mimics a receptive and an unreceptive choice function. This C ′′ is indeed one of the

(q, q̄)-generalized receptive choice functions, which we propose. To define them formally, we

need the following new class of priorities.

Definition 3. ⪰ is a weak priority ranking with a tie-breaking if ⪰ is a complete and

transitive binary relationship on S such that s ∼ s′ for any s, s′ ∈ I ∈ I and satisfies the

following conditions.18

Condition T1. For any I, I ′ ∈ I with I ̸= I ′, either [s ≻ s′ for all s ∈ I and s′ ∈ I ′] or

[s′ ≻ s for all s ∈ I and s′ ∈ I ′] holds.

Condition T2. For any I /∈ I and s, s′ ∈ I with s ̸= s′, either s ≻ s′ or s′ ≻ s holds.

Compared to a weak priority ranking we use throughout the paper, a weak priority

ranking with a tie-breaking is required to be strict between all indifference classes and also

all individuals in any I /∈ I. Given weak priority ranking with a tie-breaking ⪰, we write

16We assume that I = {{s1}, {s2, s3, s4}, {s5}}.
17C ′({s1, s2}) = {s1, s2} but C ′({s1, s2, s3}) = {s1}.
18For all s, s′ ∈ S, we write s ∼ s′ to mean s ⪰ s′ and s′ ⪰ s, and write s ≻ s′ to mean s ⪰ s′ and s′�⪰s.
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I ≻ I ′ if s ≻ s′ for all (s, s′) ∈ I × I ′, write I ≻ s′ if s ≻ s′ for all s ∈ I, and write s ≻ I ′ if

s ≻ s′ for all s′ ∈ I ′.

Definition 4. Given a collection of indifference classes I, weak priority ranking with a tie-

breaking ⪰, and integers (q, q̄) with q̄ ≥ q, choice function C is (q, q̄)-generalized receptive if

for all S ⊆ S, C(S) is determined by the following algorithm.

Step 1. Let I1(S) ∈ I be an indifference class such that I1(S) ∩ S ̸= ∅ and

I1(S) ⪰ s for any s ∈ S. Set S1(S) = S ∩ I1(S). If maxI∈I≥2
|I| > q̄, terminate

the algorithm and set C(S) = ∅. If maxI∈I≥2
|I| ≤ q̄ and |S1(S)| ≥ q, terminate

the algorithm and set C(S) as:

C(S) =

S1(S) if I1(S) ∈ I,

{s ∈ S : s ⪰ s∗} otherwise,

where s∗ ∈ S1(S) is defined as an individual with |{s ∈ S : s ⪰ s∗}| = q.

Otherwise, proceed to Step 2.

Step t ≥ 2. If St−1(S) = S, terminate the algorithm and set C(S) = S. Let

I t(S) ∈ I be an indifference class such that I t(S) ∩ S ̸= ∅ and I t(S) ⪰ s

for any s ∈ S \ St−1(S). Set St(S) = St−1(S) ∪ (S ∩ I t(S)). If |St−1(S)| +
maxI∈I≥2:It−1(S)≻I |I| > q̄, terminate the algorithm and set C(S) = St−1(S). If

|St−1(S)| + maxI∈I≥2:It−1(S)≻I |I| ≤ q̄ and |St(S)| ≥ q, terminate the algorithm

and set C(S) as:

C(S) =

St(S) if I t(S) ∈ I,

{s ∈ S : s ⪰ s∗} otherwise,

where s∗ ∈ St(S) is defined as an individual with |{s ∈ S : s ⪰ s∗}| = q.

Otherwise, proceed to Step t+ 1.

Choice function C is generalized receptive if it is (q, q̄)-generalized receptive for some integers

q and q̄.19

This choice function is based on the q-receptive choice function, but in some cases, it

accepts strictly less than q individuals (even when |S| > q). Those cases are described as

19A (q, q̄)-generalized receptive choice function is q-receptive when q̄ ≥ |S|. Conversely, any q-receptive

choice function is generalized receptive if a weak priority ranking with a tie-breaking is used to define it

(instead of a weak priority ranking).
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follows: given the currently accepted subset St−1(S) with |St−1(S)| < q, if further accepting

the largest indifference class below (no matter whether these individuals are in S) would

make the size of the chosen set strictly greater than q̄, it ends up accepting only St−1(S).

The subtlety of this construction is in the choice of these cases: it rejects any indifference

class below St−1(S) even when further accepting S ∩ I t(S) would not exceed q̄.

To see this point in Example 3, consider C ′′, which corresponds to the (2, 3)-generalized

receptive choice function, and any S ∋ s1. In Step 1, by |S1(S)| = |{s1}| < 2, the algorithm

proceeds to Step 2. In Step 2, since |S1(S)|+maxI∈I≥2:I1(S)≻I |I| = |{s1}|+ |{s2, s3, s4}| > 3,

the algorithm stops and we have C ′′(S) = {s1}. This means that even when the size of S is

two (e.g., S = {s1, s2} or {s1, s5}) and the parameter q is two, C ′′ only accepts s1.

We can show that a generalized receptive choice function satisfies the desired three ax-

ioms.

Proposition 5. Given a collection of indifference classes I and weak priority ranking with a

tie-breaking ⪰, for any integers (q, q̄) with q̄ ≥ q, (q, q̄)-generalized receptive choice function

C satisfies ETI for I, substitutability, and consistency.

This choice function satisfies ETI by construction, and it is relatively straightforward to

show that it is substitutable. To see why this choice function successfully meets consistency,

let us see two cases where an unreceptive choice function violates consistency. The first case is

where an unreceptive choice function rejects an individual when another individual from the

same indifference class is added to the choice set: in Example 3, C ′({s1, s2}) = {s1, s2} but

C ′({s1, s2, s3}) = {s1}. On the other hand, the (2, 3)-generalized receptive choice function

C ′′ satisfies C ′′({s1, s2}) = C ′′({s1, s2, s3}) = {s1} by rejecting any individuals following s1.

The second case is where an unreceptive choice function rejects an individual when other

individuals with higher priority are added to the choice set: C ′({s1, s5}) = {s1, s5} but

C ′({s1, s2, s3, s4, s5}) = {s1}. C ′′ does not have this problem either because C ′′({s1, s5}) =
C ′′({s1, s2, s3, s4, s5}) = {s1}.

Our goal is to find a generalized receptive choice function that is ⪰-compatible and

minimizes α(q, C). Since a generalized receptive choice function is defined with a weak

priority ranking with a tie-breaking, we need to construct it from a weak priority ranking ⪰,

which does not satisfy Conditions T1 and T2 in general. We say that weak priority ranking

with a tie-breaking ⪰∗ is constructed from ⪰ if ⪰∗ satisfies the following five conditions.

1. For any I ∈ Ik(⪰) and I ′ ∈ Ik′(⪰), I ≻∗ I ′ if k < k′.

2. For any Ik(⪰) and I, I ′ ∈ Ik(⪰) with I ̸= I ′, either I ≻∗ I ′ or I ′ ≻∗ I.
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3. For any Ik(⪰), I ∈ Ik(⪰) \ I≥2, and s, s′ ∈ I with s ̸= s′, either s ≻∗ s′ or s′ ≻∗ s.

4. For any Ik(⪰) and I, I ′ ∈ I≥2 ∩ Ik(⪰), I ≻∗ I ′ if |I| > |I ′|.

5. For any Ik(⪰), I ∈ I≥2 ∩ Ik(⪰), and I ′ ∈ Ik(⪰) \ I≥2, I ≻∗ I ′.

The first three conditions guarantee that this ⪰∗ satisfies Conditions T1 and T2. The

first condition also guarantees that generalized receptive choice functions with ⪰∗ are ⪰-

compatible. The fourth condition says that any indifference classes in I≥2 ∩ Ik(⪰) should

be ordered by their size. The fifth condition requires that in each Ik(⪰), indifference classes

in I≥2 be prioritized over others. The last two conditions are for the minimization of α(q, C)

because as we see below, the size of indifference classes in I≥2 in a certain low-priority range

contributes to α(q, C).

For any indifference class I ∈ I and weak priority ranking with a tie-breaking ⪰∗, define

I := {s ∈ S : s ≻∗ s′ ∀s′ ∈ I}∪I.20 Let I∗(⪰∗) be an indifference class such that |I∗(⪰∗)| > q

and |I∗(⪰∗) \ I∗(⪰∗)| ≤ q. In words, I∗(⪰∗) is an indifference class at the borderline of q

when S is the choice set. To avoid the trivial case, we assume |I| ≤ 2q for all I ∈ I. Note

that if there exists I ∈ I such that |I| > 2q, then min
C∈C⪰

2 (I) α(q, C) = q.21

Proposition 6. Given a collection of indifference classes I, an integer q, and a weak priority

ranking ⪰, suppose |I| ≤ 2q for all I ∈ I and consider weak priority ranking with a tie-

breaking ⪰∗ constructed from ⪰. Define

α∗ := max
{
1l{I∗(⪰∗)∈I≥2}

[
min

{
|I∗(⪰∗)| − q,

⌊
|I∗(⪰∗)|

2

⌋}]
, max
I∈I≥2:I∗(⪰∗)≻∗I

⌊
|I|
2

⌋}
.

Then, we have min
C∈C⪰

2 (I) α(q, C) = α∗. Moreover, (q, q + α∗)-generalized receptive choice

function C∗ with ⪰∗ achieves the minimum, i.e., α(q, C∗) = α∗.

Roughly speaking, min
C∈C⪰

2 (I) α(q, C) is determined by the size of an indifference class I ∈
I≥2, which is ranked weakly lower than I∗(⪰∗) according to ⪰∗. The size of an indifference

class I with I ≻∗ I∗(⪰∗) does not matter because such an indifference class could always

be accepted (for example, consider {s1} in Example 3). Any indifference class I ∈ I≥2

with I∗(⪰∗) ≻∗ I has the possibility that it is at the borderline. Since ETI applies to

20The same definition applies to a weak priority ranking. I depends on ⪰∗ but we omit the dependence

since the weak priority ranking with a tie-breaking is fixed in the relevant discussion.
21If there exists I ∈ I such that |I| > 2q, then C(I) = I or C(I) = ∅ holds for any choice function C

satisfying ETI. Then, α(q, C) ≥ ||C(I)| − q| ≥ q holds. A choice function C ′ with C ′(S) = ∅ for any S ⊆ S
achieves α(q, C ′) = q.
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I ∈ I≥2, the worst case in which I is at the borderline and the chosen set size departs

from q most is when the choice set S ⊆ S is such that S ⊆ Ī, I ⊆ S and |S| = q +
⌊
|I|
2

⌋
.

For I∗(⪰∗), since |I∗(⪰∗)| may only exceed q by a small amount, the worst-case violation

in which I∗(⪰∗) is at the borderline and the chosen set size departs from q most is given

by min
{
|I∗(⪰∗)| − q,

⌊
|I∗(⪰∗)|

2

⌋ }
. α∗ is found by the largest out of all such values. Note

that the fourth and fifth conditions for the construction of ⪰∗ are important because within

each Ik(⪰), prioritizing any indifference classes in I≥2 over others and prioritizing larger

indifference classes over smaller ones in I≥2 minimize the value of α(q, C).

It is worth noting that substitutability plays a crucial role in the proof of this proposition.

Although the minimum is found by a generalized receptive choice function, other choice

functions in C⪰
2 (I) are not necessarily compatible with any weak priority ranking with a

tie-breaking. Proposition 6 even covers the case where ⪰-compatibility is not required at all

because the weak priority ranking ⪰ can be such that I ∼ I ′ for any I, I ′ ∈ I . When we

compare an arbitrary choice function C ∈ C⪰
2 (I) and the (q, q + α∗)-generalized receptive

choice function C∗, we exploit the substitutability of the former and show that α(q, C) is

weakly higher than α(q, C∗).

5 Discussions

5.1 When only ETI and substitutability are required

Our analysis in the main sections required consistency, in addition to ETI and substitutabil-

ity. However, in some applications such as college admissions in Hungary, unreceptive choice

functions, which are not consistent, are used. Although a stable matching (in a standard

sense) is not guaranteed to exist under these choice functions, Biró and Kiselgof (2015) show

that they lead to matchings that satisfy a certain generalization of stability.22 Then, if we

compromise consistency, could we further minimize the violation of q-acceptance? That

is, would the minimum of α(q, C) be further lowered than min
C∈C⪰

2 (I) α(q, C) if we drop

consistency from Proposition 6?

The answer is indeed no. This immediately follows from the proof of Proposition 6.

When we show that α∗ is the lower bound of all choice functions in C⪰
2 (I), consistency is

not used. Then, the same minimum α∗ applies to the class of choice functions with ETI,

22Fleiner and Jankó (2014) also study various stability concepts when a choice function is not path in-

dependent, including the one proposed by Fleiner (2003). Their focus is on the existence and properties of

stable matchings.
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substitutability, and ⪰-compatibility, and it is achieved by the same generalized receptive

choice function. However, note that for some choice set, it is possible that another hybrid

of receptive and unreceptive choice functions (which is not consistent) achieves a smaller

violation than our generalized receptive choice function. Our measure of violation α(q, C)

does not change because this does not happen for the worse case out of all possible choice

sets S ⊆ S. Thus, if we take another measure of q-acceptance violation, such as the mean

across all possible choice sets, it could be affected by whether consistency is required. We

leave the investigation of other approaches to measuring q-acceptance violation for future

research.

5.2 Cost of size monotonicity in terms of α(q, C)

Our results in Section 4 imply that given ETI and substitutability, there is a clear trade-off

between size monotonicity and q-acceptance. That is, the requirement of size monotonicity in

addition to ETI, substitutability, and consistency would increase the degree of q-acceptance

violation by min
C∈C⪰

1 (I) α(q, C) − min
C∈C⪰

2 (I) α(q, C).23 Following the discussion in Section

5.1, this increment would be the same when we consider only ETI and substitutability.

Since the main benefit of size monotonicity is the strategy-proofness of the DA mechanism in

matching markets, our approach provides one way to measure the “cost” of size monotonicity

in terms of the magnitude of q-acceptance violation.

To give a sense of how this depends on the structure of indifference classes, consider the

following example.

Example 4. Suppose I = I , |S| > 3q, and |I| = |I ′| ≥ 2 for any I, I ′ ∈ I . Then,

min
C∈C⪰

1 (I)
α(q, C)− min

C∈C⪰
2 (I)

α(q, C) = max
{
q −

⌊
|I|
2

⌋
, 0
}
.

Here, the cost of size monotonicity increases as the size of each indifference class de-

creases. When size monotonicity is required, the Algorithm in Proposition 3 finds that

min
C∈C⪰

1 (I) α(q, C) hits the upper bound q. Note that this does not depend on the size of

each indifference class. By contrast, we can see that in Proposition 6, min
C∈C⪰

2 (I) α(q, C)

is equal to
⌊
|I|
2

⌋
in this case. Therefore, size monotonicity would be seen as more costly

when each indifference class is smaller. This message can be generalized to a more complex

environment.

23Note that this is always non-negative by C⪰
1 (I) ⊆ C⪰

2 (I).
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Our measure of the cost of size monotonicity helps us understand the implications of

policies that determine the structure of indifference classes. For example, in admissions

markets where ETI is applied to every priority category, the central authority could make

the priority categories finer by using more detailed information.24 This has indeed happened

in Hungary in 2007, where ties became less common and the size of each tie was reduced

due to the change in how final scores are calculated (Biró and Kiselgof, 2015). Such policies

would weakly reduce both min
C∈C⪰

1 (I) α(q, C) and min
C∈C⪰

2 (I) α(q, C) in general, but Example

4 implies that min
C∈C⪰

1 (I) α(q, C)−min
C∈C⪰

2 (I) α(q, C) would increase unless the size of each

indifference class reduces to one. Therefore, whether or not a size monotonic choice function

is used should be discussed together with the partition structure of indifference classes.

6 Concluding remarks

In this paper, we showed that the requirement of ETI can restrict possible choice functions

given other standard axioms. Our Theorem 1 can be seen as either a possibility or impossibil-

ity result depending on the context. When the capacity is inflexible and min
C∈C⪰

1 (I) α(q, C)

we characterized is seen as too large, the policymaker would need to compromise one of the

three axioms. As discussed in Section 3.1, the set of choice functions would be significantly

enlarged in either of the three different directions. On the other hand, if the q-acceptance

violation is not a problem, Theorem 1 implies that the three axioms are compatible. In this

case, the school would need to commit to which indifference classes to accept irrespective of

the choice sets. One such example is a choice based on the absolute performance measure

rather than the relative performance of the applicants.

Our model focused on the choice problem of one school, and thus the interaction with

the matching market with multiple such schools has not been examined. For example, we

characterized the q-acceptance violation α(q, C) by taking the worst case out of all possible

choice sets, but a potential choice set to each school can be determined by the matching

market. Then, possible violation realized in a matching market may not be as large as

α(q, C). Further, we consider the standard axioms such as substitutability, size monotonicity,

and consistency to make the matching market work well. It is not clear yet how large the

implications of the lack of these axioms as well as ETI are to the incentives and welfare

of the agents. Therefore, it would be a fruitful direction to examine the impacts of these

axioms on the agents’ welfare at the matching market level.

24Technically, this is seen as a general version of tie-breaking that still leaves some indifference classes.
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Doğan, B., S. Doğan, and K. Yıldız (2021): “On Capacity-Filling and Substitutable

Choice Rules,” Mathematics of Operations Research, 46, 856–868.
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Appendix A Omitted proofs

Appendix A.1 Proof of Theorem 1

It suffices to show that for all I ∈ I≥2 , s ∈ I, and S with s ∈ S,

s ∈ C({s}) ⇐⇒ s ∈ C(S).

(⇐) This follows from the substitutability of C.

(⇒) Toward a contradiction, suppose that there exist I ∈ I≥2, s ∈ I, and S ⊆ S with

s ∈ S such that s ∈ C({s}) and s /∈ C(S). Then there must exist S ′ ⊂ S and t ∈ S \S ′ such

that s ∈ C(S ′) and s /∈ C(S ′ ∪ {t}). Let s′ be an arbitrary individual in I \ {s}.
Note that the substitutability of C implies

C(X ∪ {y}) \ C(X) ⊆ {y} (3)

for any arbitrary X ⊆ S and y ∈ S.

Case 1. When s′ ∈ S ′.

ETI for I implies {s, s′} ⊆ C(S ′) and {s, s′} ∩ C(S ′ ∪ {t}) = ∅. Together with equation

(3) where X = S ′ and y = t, we have |C(S ′ ∪ {t})| < |C(S ′)|, which is a contradiction to

the size monotonicity of C.

Case 2. When s′ /∈ S ′ and s′ ∈ C(S ′ ∪ {s′}).
First, s′ ̸= t should hold because ETI for I implies s ∈ C(S ′ ∪ {s′}) but we have

s /∈ C(S ′ ∪ {t}). Since C is substitutable, s /∈ C(S ′ ∪ {t}) implies s /∈ C(S ′ ∪ {s′, t}). By

ETI for I, we have {s, s′} ⊆ C(S ′ ∪ {s′}) and {s, s′} ∩ C(S ′ ∪ {s′, t}) = ∅. Together with

equation (3) where X = S ′ ∪{s′} and y = t, we have |C(S ′ ∪{s′, t})| < |C(S ′ ∪{s′})|, which
is a contradiction to the size monotonicity of C.

Case 3. When s′ /∈ S ′ and s′ /∈ C(S ′ ∪ {s′}).25

We have s ∈ C(S ′), and ETI for I implies {s, s′} ∩ C(S ′ ∪ {s′}) = ∅. Together with

equation (3) where X = S ′ and y = s′, we have |C(S ′ ∪ {s′})| < |C(S ′)|, which is a

contradiction to the size monotonicity of C.

Appendix A.2 Proof of Proposition 1

If part. Since C(S) is written as S ∩ (∪I∈Ĩ (S)I) where Ĩ (S) is a set of indifference classes

for each S ∈ 2S , for any I ∈ I , s ∈ C(S) if and only if s′ ∈ C(S) for any s, s′ ∈ S∩ I, which

25In this case, s′ = t is possible.
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implies ETI for I . Further, since (Ĩ (S))S∈2S is increasing and C(S) = S ∩ (∪I∈Ĩ (S)I),

|C(S)| ≤ |C(S ′)| for any S, S ′ ∈ 2S with S ⊆ S ′, which implies size monotonicity.

Only if part. Since C satisfies ETI for all indifference classes in I , for every S ∈ 2S , there

must be a set of indifference classes Ĩ (S) ⊆ I such that C(S) is written as S ∩ (∪I∈Ĩ (S)I).

Size monotonicity of C implies |C(S)| ≤ |C(S ′)| for any S, S ′ ∈ 2S with S ⊆ S ′. Then, we

have |S ∩ (∪I∈Ĩ (S)I)| ≤ |S ′ ∩ (∪I∈Ĩ (S′)I)| for such S and S ′, implying that (Ĩ (S))S∈2S is

increasing.

Appendix A.3 Proof of Proposition 2

If part. For any S ⊆ S, I ∈ I, and s, s′ ∈ S ∩ I, s ∈ C(S) implies s′ ∈ I ⊆ C(S ∪ I). Since

C is substitutable, s′ ∈ C(S ∪ I) implies s′ ∈ C(S). Thus, C satisfies ETI for I.

Only if part. Take arbitrary I ∈ I≥2, s ∈ I, and S ⊆ S with s ∈ S.

(⇐) Since C is substitutable, s ∈ I ⊆ C(S ∪ I) implies s ∈ C(S).

(⇒) When I ⊆ S, s ∈ C(S) and ETI for I imply I ⊆ C(S) = C(S ∪ I), and the proof

is done. Suppose I ̸⊆ S. Toward a contradiction, suppose that s ∈ C(S) and I ̸⊆ C(S ∪ I).

I ̸⊆ C(S ∪ I) and ETI for I imply I ⊆ (S ∪ I) \ C(S ∪ I). Then, we have s ∈ C(S) and

s ̸∈ C(S ∪ I) at the same time. However, this implies C(S ∪ I) ̸= C(S) while C(S ∪ I) ⊆ S,

which is a contradiction to the consistency of C.

Appendix A.4 Proof of Lemma 1

Consider an arbitrary choice function C ∈ C⪰
1 (I). Theorem 1 implies the first part of condi-

tion (i), and ⪰-compatibility implies the second part of condition (i). Take any indifference

class I ′ ∈ I such that there exists I ∈ I≥2 with I ⊆ A(C) and I ′ ≻ I. Since I ′ ⊆ C(S) holds
by I ⊆ A(C) and ⪰-compatibility, I ′ ∩ S ⊆ C(S) must also hold for any S ⊆ S by the sub-

stitutability of C. Then, condition (ii) holds. Take any indifference class I ′ ∈ I such that

there exists I ∈ I≥2 with I ⊆ R(C) and I ≻ I ′. Take any s ∈ I and s′ ∈ I ′. By I ⊆ R(C)

and ⪰-compatibility, C({s, s′}) = ∅. Then, size monotonicity implies C({s′}) = ∅. By the

substitutability of C, s′ /∈ C(S) for any S ⊆ S, which implies s′ ∈ R(C). Thus, condition

(iii) also holds.

Appendix A.5 Proof of Lemma 2

To find the minimum of α(q, C) in C⪰
1 (I, A,R), we define the following choice function.
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Definition 5. Choice function C is quasi-q-acceptant if S is partitioned into three sets A,

R, and T , and C(S) satisfies the following three conditions for any S ⊆ S:

1. s ∈ C(S) for any s ∈ A ∩ S;

2. s /∈ C(S) for any s ∈ R ∩ S; and

3. |T ∩ C(S)| = max
{
0,min{q − |A ∩ S|, |T ∩ S|}

}
.

For given (A,R) ⊆ S2, consider a quasi-q-acceptant choice function C∗ ∈ C⪰
1 (I, A,R)

where T is defined as S\(A∪R). Take any S ⊆ S. When |C∗(S)| strictly exceeds min{q, |S|},
min{q, |S|} = q must happen because otherwise |C∗(S)| > |S| would be a contradiction.

Then, we have ∣∣|C∗(S)| −min{q, |S|}
∣∣ = |C∗(S)| − q = |A ∩ S| − q

because in this case C∗(S) = A ∩ S holds by the definition of a quasi-q-acceptant choice

function. When min{q, |S|} weakly exceeds |C∗(S)|, we have∣∣|C∗(S)| −min{q, |S|}
∣∣ = min{q, |S|} − |C∗(S)| = min{q − |C∗(S)|, |R ∩ S|}.

To see the second part of this equation, note that when |S| ≤ q, |T ∩S| ≤ q− |A∩S| holds,
and thus a quasi-q-acceptant choice function should satisfy C∗(S) = (A ∪ T ) ∩ S. Then, we

obtain

α(q, C∗) = max
S⊆S

∣∣|C∗(S)| −min{q, |S|}
∣∣ = max

{
|A| − q,min{|R|, q}

}
,

since the maximum of
∣∣|C∗(S)| −min{q, |S|}

∣∣ across all S ⊆ S is achieved when S = A or

S = R. Given that A and R are taken as fixed, no choice function C in C⪰
1 (I, A,R) can

achieve a strictly lower value of α(q, C) than α(q, C∗). Thus, min
C∈C⪰

1 (I,A,R)
α(q, C) is given

by max
{
|A| − q,min{|R|, q}

}
.

Appendix A.6 Proof of Lemma 3

Since Ik(⪰) ∩ I≥2 ̸= ∅ holds and the Algorithm proceeds to Step k + 1, we must have

min{σI(k), σT (k)} ≥ σB(k). If Il(⪰)∩I≥2 = ∅ holds for all l ∈ {k+1, . . . , K}, the proof is
done because of σB(k) = σ∗. Then, suppose that Il(⪰)∩I≥2 ̸= ∅ for some l ∈ {k+1, . . . , K}
and let k1 be the smallest such integer. By definitions, we have σT (k1) = σB(k). Then,

min{σI(k), σT (k), σB(k)} = σB(k) = σT (k1) ≥ min{σI(k1), σ
T (k1), σ

B(k1)} holds.

If the Algorithm terminates at Step k1, min{σI(k1), σ
T (k1), σ

B(k1)} = σ∗ holds. Other-

wise, by the same logic as above, there exists k2 ∈ {k1 + 1, . . . , K} such that

min{σI(k1), σ
T (k1), σ

B(k1)} ≥ min{σI(k2), σ
T (k2), σ

B(k2)}. By repeating this argument, we

obtain min{σI(k), σT (k), σB(k)} ≥ σ∗ since there are finite steps in the Algorithm.
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Appendix A.7 Proof of Lemma 4

Since the Algorithm terminates at Step k ∈ {1, . . . , K − 1}, Ik(⪰) ∩ I≥2 ̸= ∅ and σ∗ =

min{σI(k), σT (k)} hold. Define (A1, R1) as

A1 :=

A(k) ∪
(
∪I∈π1(Ik(⪰)∩I≥2,A(k),R(k)) I

)
if σ∗ = σI(k),

AT (k) if σ∗ = σT (k),

R1 :=

R(k) ∪
(
∪I∈π2(Ik(⪰)∩I≥2,A(k),R(k)) I

)
if σ∗ = σI(k),

R(k) ∪
(
∪I∈Ik(⪰)∩I≥2

I
)

if σ∗ = σT (k).

Define (A2, R2) as

A2 := A(k) ∪
(
∪I∈Ik(⪰)∩I≥2

I
)
,

R2 := RB(k).

By definitions, (A1, R1) achieves max
{
|A1| − q,min{|R1|, q}

}
= min{σI(k), σT (k)}, and

(A2, R2) achieves max
{
|A2|−q,min{|R2|, q}

}
= σB(k). We also have A1 ⊆ A2 and R1 ⊇ R2.

Since the Algorithm terminates in this step, we should have

max
{
|A1| − q,min{|R1|, q}

}
< max

{
|A2| − q,min{|R2|, q}

}
.

We haveR1 ̸= R2 because the only possibility withR1 = R2 would be when min{σI(k), σT (k)} =

σI(k) = σB(k) holds, but this is a contradiction to the supposition that the Algorithm ter-

minated at Step k. Thus, R1 ⊋ R2 holds. If |A2| − q ≤ min{|R2|, q} holds, it would lead to

min{|R1|, q} ≤ max
{
|A1| − q,min{|R1|, q}

}
< max

{
|A2| − q,min{|R2|, q}

}
= min{|R2|, q},

which is a contradiction to |R1| > |R2|. Thus, we should have max
{
|A2|−q,min{|R2|, q}

}
=

|A2| − q.

For an arbitrary step l ∈ {k + 1, . . . , K}, define (A3, R3) as

A3 :=


A(l) ∪

(
∪I∈π1(Il(⪰)∩I≥2,A(l),R(l)) I

)
if σI(l) = min{σI(l), σT (l), σB(l)},

AT (l) if σT (l) = min{σI(l), σT (l), σB(l)},

A(l) ∪
(
∪I∈Il(⪰)∩I≥2

I
)

if σB(l) = min{σI(l), σT (l), σB(l)},

R3 :=


R(l) ∪

(
∪I∈π2(Il(⪰)∩I≥2,A(l),R(l)) I

)
if σI(l) = min{σI(l), σT (l), σB(l)},

R(l) ∪
(
∪I∈Il(⪰)∩I≥2

I
)

if σT (l) = min{σI(l), σT (l), σB(l)},

RB(l) if σB(l) = min{σI(l), σT (l), σB(l)}.

(A3, R3) achieves max
{
|A3| − q,min{|R3|, q}

}
= min{σI(l), σT (l), σB(l)}, and A2 ⊆ A3 and

R2 ⊇ R3 hold by definitions. These lead to max
{
|A3|−q,min{|R3|, q}

}
≥ |A3|−q ≥ |A2|−q.
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Therefore, we obtain

σ∗ < σB(k) ≤ min{σI(l), σT (l), σB(l)}

for all l ∈ {k + 1, . . . , K}.

Appendix A.8 Proof of Proposition 3

Let (A,R) be the set of all pairs of disjoint sets (A,R) ⊆ S2 that satisfy the conditions

(i)-(iii) in Lemma 1. Then by Lemmas 1 and 2, we have

min
C∈C⪰

1 (I)
α(q, C) = min

(A,R)∈(A,R)
min

C∈C⪰
1 (I,A,R)

α(q, C) = min
(A,R)∈(A,R)

max
{
|A| − q,min{|R|, q}

}
. (4)

Let (A′,R′) be the set of all pairs of disjoint sets (A,R) ⊆ S2 that satisfy the conditions

(i)–(iii) in Lemma 1 and the following condition (iv): for any I ′ ∈ I \ I≥2, I
′ ⊆ S \ (A∪R)

if there is no I ∈ I≥2 such that [I ⊆ A and I ′ ≻ I] or [I ⊆ R and I ≻ I ′]. For any

(A,R) ∈ (A,R) and T := S\(A∪R), consider T ′ := T∪{s ∈ S : s ∈ I ′∩(A∪R) for some I ′ ∈
I \I≥2 such that there is no I ∈ I≥2 with [I ⊆ A and I ′ ≻ I] or [I ⊆ R and I ≻ I ′]}, A′ :=

A \ T ′, and R′ := R \ T ′. Then, we have (A′, R′) ∈ (A′,R′), A′ ⊆ A and R′ ⊆ R, which

implies max
{
|A′| − q,min{|R′|, q}

}
≤ max

{
|A| − q,min{|R|, q}

}
. Then, we have

min
(A,R)∈(A,R)

max
{
|A| − q,min{|R|, q}

}
= min

(A,R)∈(A′,R′)
max

{
|A| − q,min{|R|, q}

}
. (5)

Further, since (A′, R′) satisfies conditions (i)–(iv), there must exist k ∈ {1, . . . , K} such

that (A′, R′) is equal to either (AT (k), R(k)∪(∪I∈Ik(⪰)∩I≥2
I)), (A(k)∪(∪I∈Ik(⪰)∩I≥2

I), RB(k)),

or (A(k) ∪ (∪I∈I 1
k (⪰)∩I≥2

I), R(k) ∪ (∪I∈I 2
k (⪰)∩I≥2

I)), where I 1
k (⪰) is some subset of Ik(⪰)

and I 2
k (⪰) = Ik(⪰) \ I 1

k (⪰). In other words, every (A′, R′) ∈ (A′,R′) is examined in the

minimization of the interior solution, the top-corner solution, or the bottom-corner solution

of some step of the Algorithm. This implies

min
(A,R)∈(A′,R′)

max
{
|A| − q,min{|R|, q}

}
= min

k∈{1,...,K}

{
min{σI(k), σT (k), σB(k)}

}
. (6)

Finally, Lemmas 3 and 4 show that mink∈{1,...,K}
{
min{σI(k), σT (k), σB(k)}

}
= σ∗. Com-

bining this with equations (4), (5), and (6), we obtain σ∗ = min
C∈C⪰

1 (I) α(q, C).

Appendix A.9 Proof of Proposition 4

For any choice function C in C⪰
1 (I), by condition (i) of Lemma 1, any indifference class in

I≥2 needs to be included in either the always-accepted set A(C) and the always-rejected set

32



R(C). Then by Lemma 2, the minimum of α(q, C) across all choice functions in C⪰
1 (I) can

be written as

min
C∈C⪰

1 (I)
α(q, C) = min

r∈R(I)
max

{
min{r, q},max{e−r−q, 0}

}
= min

r∈R(I)
max

{
min{r, q}, e−r−q

}
,

where r represents the cardinality of R(C). Note that the second equality is because of

min{r, q} ≥ 0.

To begin, q is always guaranteed as an upper bound of minC∈C(I) α(q, C) since r = e ∈
R(I) achieves max

{
min{r, q}, e− r − q

}
= min{r, q} ≤ q.

When e ≤ q, because of e−q ≤ 0, minC∈C(I) α(q, C) = 0 can be achieved by r = 0 ∈ R(I).
When e ∈ (q, 2q], r > q would lead to the upper bound of q. Thus, let us consider the

case with r ≤ q. In this case, the optimal r is to minimize max{r, e− r− q}, which is to take

r ∈ R(I) as close to e−q
2

as possible. Then, given the constraint that r must be chosen from

the set of integers in R(I), minr∈R(I) max{r, e− r− q} is given by e−q
2

+minr∈R(I)
∣∣ e−q

2
− r

∣∣.
By e ∈ (q, 2q], e−q

2
+minr∈R(I)

∣∣ e−q
2

− r
∣∣ ≤ q always holds and this is indeed optimal across

all r ∈ R(I).
When e ∈ (2q, 3q], minr∈R(I) max{r, e − r − q} is given by e−q

2
+ minr∈R(I)

∣∣ e−q
2

− r
∣∣ in

the same way as above. However, e−q
2

+minr∈R(I)
∣∣ e−q

2
− r

∣∣ may or may not exceed q when

e ∈ (2q, 3q]. Since q is guaranteed as an upper bound, the minimum of α(q, C) is given by

min
{
q, e−q

2
+minr∈R(I)

∣∣ e−q
2

− r
∣∣}.

When e > 3q, e−q
2

+ minr∈R(I)
∣∣ e−q

2
− r

∣∣ > q always holds, which implies that it is

impossible to take r to make minC∈C(I) α(q, C) lower than q. Therefore, minC∈C(I) α(q, C) is

always q.

Appendix A.10 Proof of Proposition 5

C clearly satisfies ETI for I. First, we show that C satisfies consistency. It suffices to show

that for any S ⊆ S and s ∈ S \ C(S), C(S) = C(S \ {s}). Let l be the last step of the

algorithm when S is considered.

Case 1. s ̸∈ S ∩ I l(S).

Then s ∈ S \ Sl(S). By the definition of I l(S), I l(S) ≻ s. This implies that I t(S) =

I t(S \ {s}) and St(S) = St(S \ {s}) for any t with 1 ≤ t ≤ l. Since Sl(S) = Sl(S \ {s}), l is
also the last step of the algorithm when S \ {s} is considered. Thus, C(S) = C(S \ {s}).

Case 2. s ∈ S ∩ I l(S).

I l−1(S) ≻ s implies I t(S) = I t(S \ {s}) and St(S) = St(S \ {s}) for any t with

1 ≤ t < l. Since S \ C(S) ̸= ∅, either (i) |Sl−1(S)| + maxI∈I≥2:Il−1(S)≻I |I| > q̄ or (ii)
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|Sl−1(S)| + maxI∈I≥2:Il−1(S)≻I |I| ≤ q̄ and |Sl(S)| ≥ q holds. In case (i), |Sl−1(S \ {s})| +
maxI∈I≥2:Il−1(S\{s})≻I |I| > q̄ holds since I l−1(S) = I l−1(S \{s}) and Sl−1(S) = Sl−1(S \{s}).
Thus, C(S) = Sl−1(S) = Sl−1(S \ {s}) = C(S \ {s}). Consider case (ii). s ∈ S \ C(S)

implies I l(S) ̸∈ I. Thus, there exists s∗ ∈ S such that C(S) = {s′ ∈ S : s′ ⪰ s∗} and

|{s′ ∈ S : s′ ⪰ s∗}| = q. s ∈ S \ C(S) implies s∗ ≻ s, which implies |{s′ ∈ S : s′ ⪰ s∗}| =
|{s′ ∈ S \ {s} : s′ ⪰ s∗}| = q. Thus, C(S) = C(S \ {s}).

Next, we show that C satisfies substitutability: for any S ⊆ S and s ∈ S, C(S) \ {s} ⊆
C(S \ {s}). If s ∈ S \ C(S), then C(S) \ {s} ⊆ C(S \ {s}) by consistency. Suppose that

s ∈ C(S) and s ∈ I l(S): i.e., s is chosen at Step l when S is considered. Let l∗ be the last step

of the algorithm when S is considered. It suffices to show (C(S) \ {s})∩ I l(S) ⊆ C(S \ {s})
and C(S) ∩ I t(S) ⊆ C(S \ {s}) for any t with 1 ≤ t ≤ l∗ and t ̸= l.

For any t with t < l, we have I t(S) = I t(S \ {s}) and St(S) = St(S \ {s}). Thus,

C(S)∩I t(S) ⊆ C(S\{s}). For I l(S), if C(S)∩I l(S) = {s}, then clearly (C(S)\{s})∩I l(S) =
∅ ⊆ C(S \ {s}). Suppose C(S) ∩ I l(S) ⊋ {s}. By C(S) ∩ I l(S) ̸= ∅, we have |Sl−1(S)| < q

and |Sl−1(S)| + maxI∈I≥2:Il−1(S)≻I |I| ≤ q̄. Since Sl−1(S) = Sl−1(S \ {s}) and I l−1(S) =

I l−1(S \ {s}), we have |Sl−1(S \ {s})| and |Sl−1(S \ {s})| + maxI∈I≥2:Il−1(S\{s})≻I |I| ≤ q̄.

Thus, C(S \ {s})∩ I l(S \ {s}) ̸= ∅. C(S)∩ I l(S) ⊋ {s} implies (S \ {s})∩ I l(S) ̸= ∅. Thus,
I l(S) = I l(S \{s}). If I l(S) ∈ I, then (C(S)\{s})∩I l(S) ⊆ C(S \{s}). Suppose I l(S) ̸∈ I.
Since |(S \ {s})∩ I l(S \ {s})| = |(S \ {s})∩ I l(S)| < |S ∩ I l(S)| and Sl−1(S) = Sl−1(S \ {s}),
we have (C(S) \ {s}) ∩ I l(S) ⊆ C(S \ {s}).

If Sl(S) = C(S), then the proof is done. Suppose Sl(S) ⊊ C(S). That is, l < l∗

and C(S) ∩ I l+1(S) ̸= ∅. There are two cases to consider. Case 1: (S \ {s}) ∩ I l(S) ̸=
∅. By C(S) ∩ I l+1(S) ̸= ∅, we have |Sl(S)| < q and |Sl(S)| + maxI∈I≥2:Il(S)≻I |I| ≤ q̄.

Since (S \ {s}) ∩ I l(S) ̸= ∅, we have Sl(S) = Sl(S \ {s}) and I l(S) = I l(S \ {s}). Thus,

we have |Sl(S \ {s})| < q and |Sl(S \ {s})| + maxI∈I≥2:Il(S\{s})≻I |I| ≤ q̄. These imply

C(S \ {s}) ∩ I l+1(S) ̸= ∅. If I l+1(S) ∈ I, then C(S) ∩ I l+1(S) ⊆ C(S \ {s}). Suppose

I l+1(S) ̸∈ I. By |Sl(S \{s})| = |Sl(S)\{s}| < |Sl(S)|, we have C(S)∩I l+1(S) ⊆ C(S \{s}).
Case 2: (S \ {s}) ∩ I l(S) = ∅. Since (S \ {s}) ∩ I l(S) = ∅, we have I l+1(S) = I l(S \ {s}).
Now, we have

|Sl−1(S \ {s})|+ max
I∈I≥2:Il−1(S\{s})≻I

|I|

= |Sl−1(S)|+ max
I∈I≥2:Il−1(S)≻I

|I|

≤ q̄.

The first equality follows from Sl−1(S \ {s}) = Sl−1(S) and I l−1(S \ {s}) = I l−1(S). The

34



second inequality follows from s ∈ C(S). Note |Sl−1(S \ {s})| = |Sl−1(S)| < q. These imply

C(S \ {s}) ∩ I l+1(S) ̸= ∅. If I l+1(S) ∈ I, then C(S) ∩ I l+1(S) ⊆ C(S \ {s}). Suppose

I l+1(S) ̸∈ I. By |Sl−1(S \ {s})| = |Sl(S) \ {s}| < |Sl(S)|, C(S) ∩ I l+1(S) ⊆ C(S \ {s}).
If Sl+1(S) = C(S), then the proof is done. Suppose Sl+1(S) ⊊ C(S). That is, l + 1 < l∗

and C(S) ∩ I l+2(S) ̸= ∅. By C(S) ∩ I l+2(S) ̸= ∅, we have |Sl+1(S)| < q and |Sl+1(S)| +
maxI∈I≥2:Il+1(S)≻I |I| ≤ q̄. The latter implies |Sl+1(S)\{s}|+maxI∈I≥2:Il+1(S)≻I |I| ≤ q̄. Note

that either I l+2(S) = I l+2(S\{s}) or I l+2(S) = I l+1(S\{s}) holds. If I l+2(S) = I l+2(S\{s}),
then I l+1(S) = I l+1(S \ {s}) and Sl+1(S) = Sl+1(S \ {s}). Thus, we have |Sl+1(S \ {s})| < q

and |Sl+1(S\{s})|+maxI∈I≥2:Il+1(S\{s})≻I |I| ≤ q̄. These imply C(S\{s})∩I l+2(S\{s}) ̸= ∅.
If I l+2(S) = I l+1(S \ {s}), then I l+1(S) = I l(S \ {s}) and Sl+1(S) = Sl(S \ {s}). Thus,

we have |Sl(S \ {s})| < q and |Sl(S \ {s})| + maxI∈I≥2:Il(S\{s})≻I |I| ≤ q̄. These imply

C(S\{s})∩I l+1(S\{s}) ̸= ∅. That is, C(S\{s})∩I l+2(S) ̸= ∅ in both cases. If I l+2(S) ∈ I,
then C(S)∩ I l+2(S) ⊆ C(S \ {s}). Suppose I l+2(S) ̸∈ I. By |Sl+1(S) \ {s}| < |Sl+1(S)|, we
have C(S) ∩ I l+2(S) ⊆ C(S \ {s}). If l + 2 < l∗, we can apply the same argument for I t(S)

for any t with l + 2 < t ≤ l∗ and obtain C(S) ∩ I t(S) ⊆ C(S \ {s}).

Appendix A.11 Proof of Proposition 6

We begin by showing that α(q, C) = α∗ is achieved when choice function C is a (q, q̄)-

generalized receptive choice function with q̄ = q+α∗. First, we show that α(q, C∗) ≤ α∗. By

the definition of a generalized receptive choice function, for any S ⊆ S, |C∗(S)| ≤ q̄. Thus,

|C∗(S)|−q ≤ α∗. We show that for any S ⊆ S, q−|C∗(S)| ≤ α∗ If q−|C∗(S)| ≤ 0, then clearly

q−|C∗(S)| ≤ α∗. Suppose q−|C∗(S)| > 0. By the definition of a generalized receptive choice

function, there exists t such that C∗(S) = St−1(S) and |St−1(S)| +maxI∈I≥2:It−1(S)≻∗I |I| >
q̄. Take any I ′ ∈ argmaxI∈I≥2:It−1(S)≻∗I |I|. Note |C∗(S)| + |I ′| ≥ q̄ + 1. We show that

|I ′| ≤ 2α∗ + 1. Note that either I∗(⪰∗) ≻∗ I ′or I ′ = I∗(⪰∗) holds. If I∗(⪰∗) ≻∗ I ′, then

|I ′| ≤ 2α∗+1 since maxI∈I≥2:I∗(⪰∗)≻∗I

⌊
|I|
2

⌋
≤ α∗ and |I|

2
−
⌊
|I|
2

⌋
∈ {0, 1

2
}. Suppose I ′ = I∗(⪰∗).

If min
{
|I∗(⪰∗)| − q,

⌊
|I∗(⪰∗)|

2

⌋}
= |I∗(⪰∗)| − q, then |I∗(⪰∗)| − q ≤ α∗. Since q̄ = q + α∗,

we have |I∗(⪰∗)| ≤ q̄. However, St−1(S) ∪ I∗(⪰∗) ⊆ I∗(⪰∗) implies |C∗(S)| + |I∗(⪰∗)| ≤ q̄,

which is a contradiction. Thus, min
{
|I∗(⪰∗)| − q,

⌊
|I∗(⪰∗)|

2

⌋}
=

⌊
|I∗(⪰∗)|

2

⌋
, which implies

|I∗(⪰∗)| = |I ′| ≤ 2α∗+1. These facts together imply q−|C∗(S)| ≤ |I ′|− (α∗+1) ≤ α∗. The

first inequality follows from |C∗(S)| + |I ′| ≥ q̄ + 1, and the second inequality follows from

|I ′| ≤ 2α∗ + 1.

Next, we show that there exists S ⊆ S such that |C∗(S)| − q = α∗. If I∗(⪰∗) ∈ I≥2 and

α∗ = |I∗(⪰∗)| − q, then |C∗(I∗(⪰∗))| − q = α∗. Suppose α∗ =
⌊
|I′|
2

⌋
for some I ′ ∈ {I ∈
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I≥2 : I∗(⪰∗) ≻∗ I} ∪ {I∗(⪰∗)}. Then, there exists S ⊆ S such that S ⊆ I ′, I ′ ⊆ S, and

|S| = q +
⌊
|I′|
2

⌋
. Since q +

⌊
|I′|
2

⌋
= q̄, we have C∗(S) = S. Thus, |C∗(S)| − q = α∗.

Now we show Proposition 6. By the construction of ⪰∗, C∗ satisfies ⪰-compatibility.

This fact and Proposition 5 together imply C∗ ∈ C⪰
2 (I). Thus, by α(q, C∗) = α∗, it suffices

to show α(q, C) ≥ α(q, C∗) for any C ∈ C⪰
2 (I). Take any arbitrary C ∈ C⪰

2 (I). Since

the proof is done if
∣∣|C(S)| − q

∣∣ ≥ α(q, C∗), suppose
∣∣|C(S)| − q

∣∣ < α(q, C∗). This implies

α(q, C∗) > 0, and hence either (i) I∗(⪰∗) ∈ I≥2 and α(q, C∗) = min
{
|I∗(⪰∗)|−q,

⌊
|I∗(⪰∗)|

2

⌋}
,

or (ii) α(q, C∗) = max
{⌊

|I|
2

⌋
: I ∈ I≥2, I

∗(⪰∗) ≻∗ I
}
must hold.

[1] When I∗(⪰∗) ∈ I≥2 and α(q, C∗) = min
{
|I∗(⪰∗)| − q,

⌊
|I∗(⪰∗)|

2

⌋}
holds.

First, we have |I∗(⪰∗)| ≥ q+α(q, C∗) because of α(q, C∗) = min
{
|I∗(⪰∗)|−q,

⌊
|I∗(⪰∗)|

2

⌋}
.

Let Ik(⪰) be a class to which I∗(⪰∗) belongs. There are two cases to consider. Case 1:

Ik(⪰) = {I∗(⪰∗)}. Consider C(S). If I∗(⪰∗) ⊆ C(S) holds, then I∗(⪰∗) ⊆ C(S) by Ik(⪰
) = {I∗(⪰∗)} and⪰-compatibility. However, we have |C(S)| ≥ |I∗(⪰∗)| ≥ q+α(q, C∗), which

contradicts with the assumption
∣∣|C(S)| − q

∣∣ < α(q, C∗). Thus, I∗(⪰∗) ⊆ S \ C(S) holds.
Then I∗(⪰∗)∪{s ∈ S : I∗(⪰∗) ≻∗ s} ⊆ S \C(S) by Ik(⪰) = {I∗(⪰∗)} and ⪰-compatibility.

Thus, we have α(q, C) ≥ q − (|I∗(⪰∗)| − |I∗(⪰∗)|). When α(q, C∗) = |I∗(⪰∗)| − q holds,

which implies |I∗(⪰∗)| − q ≤
⌊
|I∗(⪰∗)|

2

⌋
, we have

α(q, C) ≥ q − (|I∗(⪰∗)| − |I∗(⪰∗)|)

= |I∗(⪰∗)| − (|I∗(⪰∗)| − q)

≥ |I∗(⪰∗)| −
⌊
|I∗(⪰∗)|

2

⌋
≥

⌊
|I∗(⪰∗)|

2

⌋
≥ α(q, C∗).

Next, suppose α(q, C∗) =
⌊
|I∗(⪰∗)|

2

⌋
and |I∗(⪰∗)| − q >

⌊
|I∗(⪰∗)|

2

⌋
. Then, there exists S ⊆

I∗(⪰∗)\I∗(⪰∗) such that |S∪I∗(⪰∗)| = q+
⌊
|I∗(⪰∗)|

2

⌋
. In either case of I∗(⪰∗) ⊆ C(S∪I∗(⪰∗))

or I∗(⪰∗) ⊆ (S ∪ I∗(⪰∗)) \ C(S ∪ I∗(⪰∗)), we have α(q, C) ≥
⌊
|I∗(⪰∗)|

2

⌋
= α(q, C∗) by

Ik(⪰) = {I∗(⪰∗)} and ⪰-compatibility.

Case 2: Ik(⪰) ̸= {I∗(⪰∗)}. By S \ I∗(⪰∗) = {s ∈ S : I∗(⪰∗) ≻∗ s}, |I∗(⪰∗)| ≥
q + α(q, C∗) implies |{s ∈ S : I∗(⪰∗) ≻∗ s}| ≤ |S| − q − α(q, C∗). Further, by |C(S)| <
q + α(q, C∗), |{s ∈ S : I∗(⪰∗) ≻∗ s}| < |S \ C(S)| holds. Thus, we have I∗(⪰∗) ∩ (S \
C(S)) ̸= ∅. We show that there exists I ⊆ I∗(⪰∗) ∩ (S \ C(S)) such that |I| ≥ |I∗(⪰∗)|.
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If I∗(⪰∗) ⊆ S \ C(S) holds, then we have I = I∗(⪰∗). Suppose I∗(⪰∗) ⊆ C(S). Then, by

I∗(⪰∗) ∩ (S \ C(S)) ̸= ∅ and ⪰-compatibility, there exists I ⊆ I∗(⪰∗) ∩ (S \ C(S)) such

that I ∼ I∗(⪰∗). By the construction of ⪰∗, we have |I| ≥ |I∗(⪰∗)| and I ∈ I≥2. By

|C(S)| > q − α(q, C∗) ≥ q −
⌊
|I∗(⪰∗)|

2

⌋
≥ q −

⌊
|I|
2

⌋
, we have |C(S)| + |I| > q +

⌊
|I|
2

⌋
. Then,

there exists S ⊆ S such that S ⊆ C(S)∪I, I ⊆ S, and |S| = q+
⌊
|I|
2

⌋
. By the substitutability

of C, S∩C(S) ⊆ C(S) holds, and hence by ETI for I, C(S) must be equal to either S∩C(S)
or S itself. Since the size of these two sets are |S ∩C(S)| = q−

⌈
|I|
2

⌉
and |S| = q +

⌊
|I|
2

⌋
, in

either case, we have α(q, C) ≥
∣∣|C(S)| − q

∣∣ ≥ ⌊
|I|
2

⌋
≥

⌊
|I∗(⪰∗)|

2

⌋
≥ α(q, C∗).26

[2] When α(q, C∗) = maxI∈I≥2:I∗(⪰∗)≻∗I

⌊
|I|
2

⌋
holds.

Let I ′ ∈ I≥2 be such that
⌊
|I′|
2

⌋
= maxI∈I≥2:I∗(⪰∗)≻∗I

⌊
|I|
2

⌋
. There are two cases to

consider. Case 1: I∗(⪰∗) ≻ I ′. There exists S ⊆ I∗(⪰∗) such that |S∪I ′| = q+
⌊
|I′|
2

⌋
. Either

I ′ ⊆ C(S∪I ′) or I ′ ⊆ (S∪I ′)\C(S∪I ′) holds by ETI for I and I ′ ∈ I≥2. Thus, in either case,

we have α(q, C) ≥
⌊
|I′|
2

⌋
= α(q, C∗) by ⪰-compatibility. Case 2: I∗(⪰∗) ∼ I ′. Note that

|I ′| >
⌊
|I′|
2

⌋
= α(q, C∗). By |I∗(⪰∗)| ≥ q and I∗(⪰∗) ≻∗ I ′, we have |I ′| > q + α(q, C∗). By

S \ I ′ = {s ∈ S : I ′ ≻∗ s}, |I ′| > q+α(q, C∗) implies |{s ∈ S : I ′ ≻∗ s}| < |S|− q−α(q, C∗).

Further, by |C(S)| < q + α(q, C∗), |{s ∈ S : I ′ ≻∗ s}| < |S \ C(S)| holds. Thus, we have

I ′ ∩ (S \ C(S)) ̸= ∅. We show that there exists I ⊆ I ′ ∩ (S \ C(S)) such that |I| ≥ |I ′|. If

I ′ ⊆ S \C(S) holds, then we have I = I ′. Suppose I ′ ⊆ C(S). Then, by I ′ ∩ (S \C(S)) ̸= ∅
and ⪰-compatibility, there exists I ⊆ I ′ ∩ (S \ C(S)) such that I ∼ I ′. By the construction

of ⪰∗, we have |I| ≥ |I ′| and I ∈ I≥2. By |C(S)| > q − α(q, C∗) ≥ q −
⌊
|I′|
2

⌋
≥ q −

⌊
|I|
2

⌋
,

we have |C(S)| + |I| > q +
⌊
|I|
2

⌋
. Then, there exists S ⊆ S such that S ⊆ C(S) ∪ I,

I ⊆ S, and |S| = q +
⌊
|I|
2

⌋
. By the substitutability of C, S ∩ C(S) ⊆ C(S) holds, and

hence by ETI for I, C(S) must be equal to either S ∩ C(S) or S itself. Since the size

of these two sets are |S ∩ C(S)| = q −
⌈
|I|
2

⌉
and |S| = q +

⌊
|I|
2

⌋
, in either case, we have

α(q, C) ≥
∣∣|C(S)| − q

∣∣ ≥ ⌊
|I|
2

⌋
≥

⌊
|I′|
2

⌋
≥ α(q, C∗).

26⌈x⌉ is the smallest integer that is greater than or equal to x.
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