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various ethical values such as equity by discriminating against disadvantaged com-
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of mechanism, we formulate pandemic rationing of medical resources as a new ap-
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Ünver: Department of Economics, Boston College, email: unver@bc.edu, Yenmez: Department of Eco-
nomics, Boston College, email: bumin.yenmez@bc.edu.

1

ar
X

iv
:2

00
8.

00
37

4v
2 

 [
ec

on
.T

H
] 

 1
9 

Ja
n 

20
21

mailto:sonmezt@bc.edu
mailto:unver@bc.edu
mailto:bumin.yenmez@bc.edu


1 Introduction

Agencies responsible for public health and emergency preparedness design guidelines

for allocating scarce medical resources in crisis situations. These situations range from

wartime triage medicine to public health emergencies, such as influenza pandemics and

COVID-19. Items in short supply include vaccines, ventilators, and anti-viral treatments.

How to implement a rationing system for medical resources during a crisis presents

a complicated question rife with ethical concerns. Rationing guidelines typically start

by articulating several different ethical principles. These principles include equity, which

is fair distribution of benefits and burdens; utilitarianism, which is maximizing welfare;

reciprocity, which is respecting contributions others have made in the past; instrumental

valuation, which is respecting contributions others could make in the future; solidarity,

which is fellowship with other members of society; non-discrimination, which is requir-

ing that certain individual characteristics such as gender, race, and age play no role

allocation. Guidelines also emphasize procedural values, such as accountability, reason-

ableness, and transparency (see, e.g., Emanuel et al. (2020), Prehn and Vawter (2008),

Truog, Mitchell, and Daley (2020), and WHO (2007)).

After articulating these ethical principles, guidelines describe how to operationalize

them with an allocation mechanism. The most common approach is a priority system, in

which patients are placed into a single priority order, and allocation is in order of priority.

For example, 2018 US Centers for Disease Control Vaccine Allocation guideline place

patients into one of four tiers based on their role in (1) providing homeland and national

security, (2) providing health care and community support services, (3) maintaining

critical infrastructure, and (4) being a member of the general population (CDC, 2018). In

some cases priority orders come from an objective scoring method, resulting in a priority

point system. This is common for rationing of ICU beds and ventilators. Piscitello et al.

(2020) reports that 19 states have priority point systems based on the Sequential Organ

Failure Assessments (SOFA) score, which measures the severity of organ dysfunction.1

The COVID-19 pandemic has spurred renewed interest in medical rationing guide-

lines and has revealed several important limitations of the existing allocation mechanisms.

Whether it is about rationing of ventilators, antiviral drugs or vaccines, a common theme

in many debates is that existing guidelines and allocation mechanisms have given up on

1The European Society of Intensive Care Medicine devised the SOFA score at a consensus meeting
in October 1994 in Paris, France (Vincent et al., 1996). Each of six organ systems – lungs, liver, brain,
kidneys, blood clotting, and blood pressure – is independently assigned a score of 1 to 4. The SOFA
score sums these six scores, and sicker patients are assigned higher scores. While not initially designed as
a prognostic score, subsequent research supports ts use for that end (Jones, Trzeciak, and Kline, 2009).
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certain values. For example, advocates for disadvantaged groups criticize priority point

systems which use the SOFA score. They argue that these criteria are discriminatory for

they fail to acknowledge pre-existing discrimination in access to health care (Schmidt,

2020). Similarly, disabilities’ advocates argue that rationing plans based solely on survival

probabilities because they are inherently discriminatory for certain types of disabled pa-

tients. Some even reject a detailed triage protocol in favor of random selection (Ne’eman,

2020).

In this paper, we argue that several shortcomings of the existing guidelines are a

direct consequence of restricting allocation mechanisms to priority systems. A priority

system’s single priority order for all units impedes its ability to represent a variety of

ethical considerations. We propose an alternative way to accommodate multiple ethical

principles through a reserve system. In a reserve system, units are divided into multiple

categories, with each representing an ethical value or a balance of different ethical val-

ues. Rather than relying on a single priority order for allocation of all units, a distinct

priority order for each category prioritizes individuals for units in that category. This

heterogeneity allows a rationing system to accommodate desired ethical values without

needing to aggregate them into a single metric or into a strict lexicographic hierarchy.

The flexibility of a reserve system over a priority system can help reach compro-

mises in several debates. For example, many argue that disadvantaged groups or under-

represented minorities should be given priority access for a COVID-19 vaccine. This is

a significant departure from the recommended priority tiers in the 2018 CDC Vaccine

allocation guideline. Others question whether prioritizing these groups would erode pub-

lic trust in vaccination. For more on this debate, see Ducharme (2020), McCaughey

(2020), and Twohey (2020). While there is no middle ground for compromise under a

priority system, a compromise can be reached through a reserve system by giving disad-

vantaged communities preferential treatment for a fraction of vaccines. Indeed, after the

dissemination of the first draft of this paper, our proposed approach has been embraced

by several groups in bioethics, and it is already adopted in several jurisdictions, as we

further describe in Section 5.

After proposing the use of a reserve system for medical rationing, our paper develops

a general theory of reserve systems. Since reserve systems exist in other settings such

as affirmative action and immigration visa allocation, our formal results are relevant

beyond our main application of medical rationing. To focus on our main application,

we formulate the model in terms of medical rationing and establish connections to these

other applications after developing the model.
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In the model, there are a number of identical medical units to be allocated to a set of

patients. These units can be ICU beds, ventilators, anti-virals, vaccines, or other scarce

vital items. There is a set of reserve categories and units are attached to a given category.

An allocation is a matching of patients either to a reserve category if the patient receives

a unit or the empty set if she does not. Under our formulation, units are placed into one

of a set of reserve categories, each with a distinct priority order of patients.

Our formal results explore the foundations of reserve systems. We specify three basic

principles any system has to satisfy. First, patients should only receive units for which

they are qualified. Second, no unit from any reserve category should stay idle as long as

there is an eligible patient for that category. Finally, for each category, units should be

allocated based on the priority order of individuals in the category. We see these principles

as minimal requirements, which can be justified on both normative and positive grounds.

In many real-life applications of reserve systems, outcomes are described though a

specification of the cutoff individual at each category , i.e., the lowest priority individual

who has gained admission through each category.2 The vector of cutoff individuals iden-

tify the budget set for each individual in the sense that each individual can see through

which (if any) category she can receive a unit. Motivated by this observation, we next

formalize the notion of a cutoff equilibrium, a notion akin to a competitive equilibrium.

A cutoff equilibrium is a vector of cutoff individuals together with a matching, where

each patient is matched with a category in her budget set, and any category that has not

filled its quota has a cutoff of ∅ (the counterpart of a price of zero in our model). Our

first result rationalizes the prevalence of the use of cutoffs in real-life applications and

the plausibility of our three axioms: A matching satisfies these three properties if and

only if it is supported at a cutoff equilibrium.

Although this result provides a full characterization of matchings that satisfy our

three properties, it leaves open the question of how to find matchings supported at

cutoff equilibria. Just like computing all competitive equilibria often presents challenges

except in special cases, so does the computation of all cutoff equilibria. Our second

main result is that matchings that are supported at cutoff equilibria can be computed

by constructing a hypothetical two-sided matching market where each patient has strict

preferences between categories. This construction is hypothetical because in the original

problem the patient only cares about obtaining a resource and is therefore indifferent

between all units. We show that a matching satisfies our three properties if and only

if it can be computed as the outcome of the deferred acceptance algorithm (Gale and

2See Figure A1 in Section E of the Supplementary Material for examples.
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Shapley, 1962) for this hypothetical market.

Our link to a hypothetical two-sided matching market provides a great deal of flex-

ibility to compute outcomes by changing the way patients rank categories under these

artificial preferences. This flexibility has an important drawback: unless there is a sys-

tematic way to construct preferences, practitioners may not value the ability to construct

artificial preferences at this level of generality. For instance, it may be difficult to ex-

plain if a patient i is considered first for an unreserved category and then for an essential

personnel category, whereas another patient j with similar characteristics is considered

for these categories in the reverse order. We therefore focus on an subclass of matchings,

known as sequential reserve matchings, in which reserve categories are processed in se-

quence in a particular order. The set of sequential reserve matchings is a refinement of

the set of cutoff matchings. Within this class, we then demonstrate that the earlier a

category is processed, the higher is the maximum cutoff. Intuitively this means that the

earlier a category is processed the more competitive it becomes.

We next turn to a special environment where there is a baseline priority order. This

special environment, which is the focus of much of the earlier literature on reserve systems,

is widespread in real-life applications where the baseline order may depend on scores on

standardized exams, results of random lotteries, or time of application. For medical

rationing, the baseline order may depend on an objective measure of expected health

outcome such as the SOFA score.

There is an unreserved category in which all patients are beneficiaries and the priority

order is the same as the baseline. Any other category is a preferential treatment category,

with a set of beneficiaries, and all beneficiaries of a category are prioritized over patients

who are not, but otherwise their relative priority order is the same as the baseline. If each

patient is a beneficiary of at most one preferential treatment category, and there are not

more than five categories, every beneficiary of the preferential treatment category who

is matched when a category c is processed earlier is also matched when it is processed

later. This result substantially generalizes earlier results on reserve processing to several

categories, while also showing the limit of obtaining sharp formal results for more than

five categories.

Finally, we turn to a possible shortcoming of sequential reserve systems in environ-

ments where reserves are “hard” in the sense that they are exclusive to the beneficiaries

of the reserve category: In these environments, some of the sequential reserve matchings

can be Pareto dominated by others. This shortcoming is a direct consequence of the me-

chanical allocation of patients into reserve categories under sequential reserve matching
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when they clear the cutoffs for multiple categories. We therefore introduce an additional

principle requiring a “smart” allocation of reserves in these situations, maximizing the

accommodation of intended beneficiaries of reserves. This property together with non-

wastefulness imply Pareto efficiency. We conclude our theoretical analysis by introducing

a class of algorithms that produce “smart” reserve matchings with the desired proper-

ties. This class has two extremal members implementing the “minimum guarantee” and

“over-and-above” policies on reserve systems, the two primary types of reserve systems

in practice.

The rest of paper organized as follows. Section 2 presents some additional background

on widespread use of priority systems for emergency rationing of medical resources and

identifies several shortcomings of these systems. Section 3 presents our formal model of

reserve systems, states our main two characterization results, and introduces sequential

reserve matchings. Our model in this section is more general than any other paper on

reserve systems in the literature, and our technical contributions here are conceptual.

Section 4 specializes the model to one with a baseline priority order, develops compar-

ative static results, and formulates and studies smart reserve matchings. It also relates

our findings to earlier literature on reserve systems. In contrast to Section 3 where our

analysis is general and results are conceptual, Section 4 is where we make deeper tech-

nical contributions to the earlier literature on reserve systems. Section 5 reviews the

preliminary impact of the first version of our paper on policy and practice of pandemic

medical resource allocation as well as its interdisciplinary academic impact. The paper

concludes in Section 6. All proofs are relegated to the Appendix except the long and

brute-force proof of Proposition 3 which is relegated to the Supplementary Material.

2 Priority Systems for Pandemic Rationing

2.1 Background on Priority Systems

The most common allocation mechanism for medical rationing is a priority system

in which units are allocated to patients based on a single priority order. This priority

order captures the ethical values guiding the allocation of the scarce medical resource. In

some applications, most notably for allocation of ventilators and ICU beds, the underlying

priority order is obtained through a monotonic scoring function. Such a refinement of a

priority system is called a priority point system. Under this system, each ethical value

is represented with a monotonic function. Values are then integrated with an additive

formula, which produces an aggregate point score for each patient. The claims of patients

over medical resources are determined based on their point scores, where a lower score
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may be associated with a higher claim or a lower claim depending on the application.

Often a priority score is coarsened into tiers, and all patients in the same tier have the

same claim. Tie-breaking within a tier is typically based on clinical criteria or lotteries.

A single-principle point system is a priority point system based on only one ethical

value. The 2015 New York State Ventilator Guideline is a prominent example. In the

system, as a first step certain patients are deemed ineligible. The remaining patients are

ordered based on estimated mortality risk, which is re-evaluated every 48 hours (Zucker

et al., 2015). Mortality risk is measured by the SOFA score which places patients into

priority tiers. In cases of excess demand among members of a given priority tier, New

York and other proposals recommend random allocation – a lottery – among equal-

priority patients (Emanuel et al., 2020; Zucker et al., 2015).

Several bioethicists and clinicians criticize single-principle priority point systems solely

based on SOFA for ignoring multiple ethical values. These critics emphasize the need

to integrate a variety of ethical values and advocate for a multi-principle approach, see,

e.g., White, Katz, Luce, and Lo (2009) and Daugherty-Biddison et al. (2017). White,

Katz, Luce, and Lo (2009) describe a multi-principle priority point system where several

ethical values are placed on a numerical scale and summed up across ethical values to

arrive at a single number. Variants of the system shown in Table 1 are widespread the

leading multi-principle priority point system for ventilators.3

3Pu Kamp, Devine, and Griffin (2020) reports that several hundred hospitals around the country
have adopted this system.
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Table 1 shows how the ethical values of saving the most lives, saving the most years

of life, and the life-cycle principle are integrated through an additive formula. As an

example, consider a hypothetical patient with a SOFA score of seven. She obtains two

points based on the ethical value of saving the most lives. If the patient has no chronic

diseases or comorbidities and is between 61-74 years old, she obtains four more points

based on the other two ethical values yielding a total of six. A patient with a lower total

point score has a higher priority for the resource than a patient with a higher total point

score.4 More than half of US states use either a single- or multiple-principle priority

point system (Whyte, 2020).

2.2 Challenges with Priority Systems

While practical, priority systems have a number of important limitations. A priority

system may fail to integrate different ethical values because of incommensurability.5 For

example, the ethical values of saving the most lives and the life-cycle principle in Table

1 are incommensurable values, making it hard to interpret the role of these values under

the priority point system in Table 1. In addition, various ethical values have implications

on group composition, and a priority system lacks the flexibility to accommodate these

considerations. In many cases, these challenges have led to the exclusion of some of ethical

values all together. We elaborate on several of these points next, focusing on several

debates on rationing of ventilators and ICU beds. Since virtually all states with guidelines

recommend priority point systems, we present the shortcomings of these mechanisms.

Many of these shortcomings are shared by priority systems in general.

2.2.1 Failure to Represent the Desired Ethical Values

A priority point system requires that ethical values be mapped to a single linear

order. However, there are some ethical principles where the claims of patients cannot

be represented with a monotonic function. One example is group-based policies, such

as those related to regions or gender. For example, the European Union has proposed

balanced participation of women and men in political and public decision making by

requiring that at least 40% of public offices are held by women and at least 40% are held

by men (Dittmar, 2018; Rankin, 2020). For medical rationing, it is possible that a future

pandemic is so devastating that it threatens a significant portion of the human race.

In such a hypothetical crisis, a principle based on survival of the species may suggest a

4Most protocols specifies a tie-breaker between patients with identical total points, although the
South Carolina protocol fails to provide one.

5In ethics, two values are incommensurable when they do not share a common standard of measure-
ment.

8



similar constraint. A guideline may recommend to allocate at least 40% of vital resources

to female patients and at least 40% to male patients. Clearly, considerations based on

group composition cannot be represented with a function that relies only on individual

attributes. Similarly, a priority point system cannot accommodate a guideline that wishes

to allocate resources to disabled citizens in proportion to their representation in society.

When constructing priority points and incorporating multiple ethical values, a priority

point system norms or scales different and potentially incommensurable ethical principles

into one dimension. These challenges are like the usual ones associated with aggregating

social alternatives into a single ordering based on multiple inputs – a situation which

involves “comparing apples to oranges.” The debate on how rationing guidelines should

compare claims of children versus adults illustrates this issue. Massachusetts guidelines

state that indicators that feed into scores for adults are not reliable for children (Bate-

man et al., 2020). They explain that “scoring systems that are meaningful for adult

critical care patients do not apply to pediatric patients or newborns.” As a result, the

Massachusetts guidelines use a different scoring system for children. However, their point

system then uses a single priority point system to evaluate all patients together. This

decision ends up comparing the point scores of children with those of adults.

Third, the fact that all resources are ordered using a single uniform priority order can

result in the exclusion of certain ethical values. An example of this phenomenon appears

in the debate about prioritizing essential personnel. Many groups argue that essential

personnel, and especially frontline healthcare workers, should receive priority allocation

of scarce resources under triage scenarios. This view is also strongly endorsed by medical

ethicists based on the backward-looking principle of reciprocity and the forward-looking

principle of instrumental value (Emanuel et al., 2020). Nevertheless, states such as

Minnesota and New York had to give up on this consideration, largely due to concerns

about the extreme scenarios where no units may remain for the rest of the society. The

Minnesota Pandemic Working group reasons that (Vawter et al., 2010):

... it is possible that they [key workers] would use most, if not all, of the short

supply of ventilators; other groups systematically would be deprived access.

The New York State Task Force recognized the need to provide “insurance” for frontline

health workers, but ultimately decided against such a priority (Zucker et al., 2015):

Expanding the category of privilege to include all the workers listed above may

mean that only health care workers obtain access to ventilators in certain commu-

nities. This approach may leave no ventilators for community members, including

9



children; this alternative was unacceptable to the Task Force.

For both states, the committees abandoned the ethical values of reciprocity and instru-

mental value because of the limitation of priority systems. In a priority system, providing

preferential access to any group for any portion of the resources means giving preferential

treatment for all of them.

Fourth, a single priority order struggles to integrate the principle of non-exclusion.

This principle is the idea that every patient, no matter his or her circumstances, should

have some hope of obtaining a life-saving resource. In the March 2020 Alabama rationing

plan, individuals with severe or profound mental disabilities were considered “unlikely

candidates for ventilator support.”6 Washington state guidelines recommend that hospi-

tal patients with “loss of reserves in energy, physical ability, cognition and general health”

be switched to outpatient or palliative care (Fink, 2020). In a priority system coupled

with excess demand for available resources by the higher-priority groups – even without

any explicit exclusion of certain types of individuals – there will be some patients in a

lower-priority group who would never be treated during a shortage.

2.2.2 Implementation Issues in Existing Guidelines

These conceptual challenges with a priority point system are reflected in actual design

challenges in several guidelines. We describe three examples.

Massachusetts Crisis Standards of Care guidance for the COVID-19 pandemic was

developed in April 2020 by a committee consisting of medical experts and ethicists (DPH,

2020). The guidelines provided an adaption of the system described in Table 1 without

the life-cycle consideration. However, after precisely spelling out the priority order with

a table of numbers for each dimension, the document states:

Individuals who perform tasks that are vital to the public health response, includ-

ing all those whose work directly to support the provision of care to others, should

be given heightened priority.

This clause provides no further description on how heightened priority is to be imple-

mented. This lack of transparency contrasts with the level of precision regarding other

ethical principles, and may reflect their inability to arrive at consensus given the under-

lying priority point system.

Crisis standards of care guidelines initially developed in Pittsburgh use a similar

adaptation of the system described in Table 1. They offer a vague description of tie-

breakers:
6After widespread backlash, this plan was withdrawn on April 9, 2020.
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In the event that there are ties in priority scores between patients, life-cycle

considerations will be used as a tiebreaker, with priority going to younger patients,

who have had less opportunity to live through life’s stages. In addition, individuals

who perform tasks that are vital to the public health response – specifically, those

whose work directly supports the provision of acute care to others – will also be

given heightened priority (e.g., as a tiebreaker between identical priority scores)

In their adaptation of Table 1, the designers saw saving the most lives as more justified

than either the life-cycle principle or the instrumental value principle. However, the

guidelines did not choose between these two latter ethical values in the event of tie-

breaking.

The third example is from Arizona’s June 6, 2020 update to their allocation framework

(DHS, 2020). This document also offers a table prioritizing patients based on SOFA scores

and whether a patient is expected to live or die within one or five years despite successful

treatment of illness. It then warns that “a situation could arise where limited resources

are needed by two or more patients with the same triage priority scores” in which case

“additional factors may be considered as priorities.” Among the list of additional factors

are whether patients are pediatric patients, first responders or health care workers, single

caretakers for minors or dependent adults, pregnant, or have not had an opportunity to

experience life stages. There is no further detail on how multiple tie-breakers would be

implemented.

Beyond these specific updates to guidelines during the COVID-19 pandemic, there

are also concerns that incomplete descriptions have rendered such guidelines ineffective

in other settings. During the 2004 shortage of the influenza vaccine, Schoch-Spana,

Fitzgerald, Kramer, and Force (2005) state that CDC guidelines were too general and

broad. Specifically,

Local providers thus faced gaps in the local supply of inactivated vaccine as well

as the absence of a priori prioritization standards relevant to initial and evolving

local conditions. Practitioners and local and state health authorities throughout

the U.S. faced a similar predicament.

Despite these vagaries, some state departments of health penalized clinicians if protocols

are not followed. For example, Lee (2004) describes that the Massachusetts threatened

a fine or prison time for whoever violates the CDC order on distribution during the 2004

flu-shot shortage. The requirement to follow an incompletely specified system places

clinicians in a difficult position.
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2.3 Reserve Systems

Many of the challenges presented in Section 2.2 stem from one simple but limiting

feature of a priority point system: it relies on a single priority ranking of patients that is

identical for all units. A reserve system eliminates this feature of the mechanism because

it allows for heterogeneity of patient claims over different units.

A reserve system has three main parameters. They are:

1. a division of all units into multiple segments referred to as reserve categories ,7

2. number of units in each of these categories, and

3. specification of a priority order of the patients in each of these categories.

If reserve categories are processed sequentially, as in the case in several real-life applica-

tions of reserve systems, processing order of reserve categories can also be an additional

parameter. For some (or all) of the reserve categories, there can also be exclusion criteria,

based on the nature of the medical resource that is being rationed along with the patient’s

clinical assessment. The priority order of patients for each category also incorporates this

information. Reserve categories can differ either based on the groups to receive higher

priority or the combination of ethical principles to be invoked. The main idea is to use

the associated priority order – which embeds ethical principles – when allocating units

in each reserve category. Importantly, the priority order need not be the same between

reserve categories.

3 A General Theory of Reserve Systems

Reserve systems are common in applications where competing interest groups fail to

agree on allocation criteria. If each individual is eligible to receive units only from one

of these categories, then the theory of priority systems directly extend to this most basic

form of reserve systems. However, in most applications at least some of the individuals

are eligible to receive units from multiple categories, thereby resulting in multiplicities in

implementation of these “categorized” priority systems in conjunction.8 In this section,

we develop a general theory of reserve systems, with particular emphasis on the analytical

structure and the distributional implications of this multiplicity.

Our theory is general compared to existing papers on reserve systems because earlier

work makes important assumptions on the structure of priority orders used at various

7This division is for accounting purposes only, and it does not attach a specific unit to a category.
8This multiplicity and its distributional implications are often under-appreciated or misunderstood in

real-life applications (Dur, Kominers, Pathak, and Sönmez (2018) and Pathak, Rees-Jones, and Sönmez
(2020)).
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categories.9 Most notably, it is almost always assumed that priority order at each category

is derived from an underlying baseline priority order, such as those obtained through

standardized exams. In these applications each reserve category c is identified by a

subset of individuals who are simply moved to the top of the baseline priority order for

the category-c priority order.

In contrast, in this section we develop a theory of reserve systems where we impose

no structure on priority orders. Our model allows priority orders at various categories

to be completely independent from each other, although they do not need to be. Since

it may not be possible to capture priorities for all ethical considerations though adjust-

ments of a single baseline priority order, this level of generality is necessary for our main

application.10 To the best of our knowledge reserve systems have not been studied in

this generality before.

3.1 The Primitives

Despite the generality of our model, the terminology is tailored to the main application

of pandemic medical resource rationing. There is a set of patients I and q identical

medical units to allocate. There is a set of reserve categories C. For every category

c ∈ C, rc units are reserved so that
∑

c∈C rc = q. It is important to emphasize that

individual units are not associated with the categories in our model. The phrase “rc

units are reserved” does not mean specific units are set aside for category c. Rather, it

means that for the purposes of accounting, a total of unspecified rc units are attached to

category c.

For every category c ∈ C, there is a linear priority order πc over the set of patients

I and ∅. This priority order represents the relative claims of the patients on units in

category c as well as their eligibility for those units. For every category c ∈ C and patient

i ∈ I, we say that patient i is eligible for category c if

i πc ∅.
9This literature starts with Hafalir, Yenmez, and Yildirim (2013), and includes studies of affirmative

action in school choice (Correa et al., 2019; Dur, Kominers, Pathak, and Sönmez, 2018; Dur, Pathak,
and Sönmez, 2020), college admissions (Aygün and Bo, 2020; Baswana et al., 2019), assignment of
government positions (Sönmez and Yenmez, 2019) and skill diversity in immigration visa allocation
(Pathak, Rees-Jones, and Sönmez, 2020).

10This more general structure is not only needed for our main application of medical resource alloca-
tion, but also in other applications as well. For example in Germany, priority for college seats depend on
applicant waiting time for (up to) 20% of the seats, on their performance in high school leaving exams
for (up to) 20% of the seats, and to college-specific criteria for the rest of the seats (Westkamp (2013)).
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Given priority order πc, we represent its weak order by πc. That is, for any x, y ∈ I∪{∅},

x πc y ⇐⇒ x = y or x πc y.

For our main application of pandemic rationing, πc orders patients based on the balance

of ethical principles guiding the allocation of units in category c.

3.2 The Outcome: A Matching

A matching µ : I → C∪{∅} is a function that maps each patient either to a category

or to ∅ such that |µ−1(c)| ≤ rc for every category c ∈ C. For any patient i ∈ I, µ(i) = ∅
means that the patient does not receive a unit and µ(i) = c ∈ C means that the patient

receives a unit reserved for category c. Let M denote the set of matchings.

Our formulation of the outcome of a reserve system involves a subtle but important

modeling choice. In models where there is a single type of good and each individual has

unit demand, the traditional way to describe the outcome of a reserve system is through

a choice rule, which indicates the set of individuals who are awarded a unit for any set

of applicants. Since each individual is indifferent between all units of the good, this

formulation is often seen sufficient for analysis. However, for our purposes it is not.

One of the primary appeals of the reserve system is its ability to facilitate compro-

mises between various interest groups by allocating scarce resources through multiple

categories. While individuals are indifferent between all units of the scarce good, they

have potentially different claims on units from different categories. And consequently

merely specifying who receives a unit may not always be sufficient. For various analyt-

ical exercises, it is also important to specify through which category individuals receive

their units.11 Hence, we deviate from the prior formulation and let an outcome embed

information about the category.

For any matching µ ∈ M and any subset of patients I ′ ⊆ I, let µ(I ′) denote the set

of patients in I ′ who are matched with a category under matching µ. More formally,

µ(I ′) =
{
i ∈ I ′ : µ(i) ∈ C

}
.

11As an illustration, consider affirmative action in India where a percentage of government jobs are
reserved for historically discriminated against groups such as Scheduled Castes (SC). By the Supreme
Court Case Indra Sawhney 1992 , units reserved for SC cannot be awarded to candidates from other
groups even if there are not sufficiently many applicants from SC. Moreover any member of SC who is
awarded one of these SC-reserve units needs to have lower merit score than any one who receives any
unreserved unit. These legal requirements cannot be verified by simply specifying who receives a unit.
It is also necessary to specify through which category the unit is received.
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These are the patients in I ′ who are matched (or equivalently who are assigned units)

under matching µ.

3.3 Axioms

In real-life applications of our model, it is important to allocate the units to qualified

individuals without wasting any and abiding by the priorities governing the allocation of

these units. We next formulate this idea through three axioms:

Definition 1. A matching µ ∈ M complies with eligibility requirements if, for

any i ∈ I and c ∈ C,

µ(i) = c =⇒ i πc ∅.

Our first axiom formulates the idea that units in any category should be awarded

only to eligible individuals. For most applications of rationing of vital medical resources,

any patient who is eligible for one category can also be eligible for any category. In

those applications, if a patient is ineligible for all categories, then this patient can as

well be dropped from the set of individuals. Hence, compliance with eligibility require-

ment vacuously holds in applications when all individuals are eligible for all categories.

This includes most applications in pandemic resource allocation, although there can be

examples where certain individuals may be eligible for only some of the categories.

Definition 2. A matching µ ∈M is non-wasteful if, for any i ∈ I and c ∈ C,

i πc ∅ and µ(i) = ∅ =⇒
∣∣µ−1(c)∣∣ = rc.

Our second axiom formulates the idea that no unit should go idle for as long as there is

an eligible individual to award it. That is, if a unit remains idle, then there should not be

any unmatched individual who is eligible for the unit. In those applications of rationing

vital resources where each patient is eligible for all units, non-wastefulness corresponds

to either matching all the units or all the patients.

Definition 3. A matching µ ∈M respects priorities if, for any i, i′ ∈ I and c ∈ C,

µ(i) = c and µ(i′) = ∅ =⇒ i πc i
′.

Our last axiom formulates the idea that for each category, the units should be allo-

cated based on the priority order of individuals in this category.

As far as we know, in every real-life application of a reserve system each of these

three axioms is either explicitly or implicitly required. Hence, we see these three axioms
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as a minimal requirement for a reserve system. In the next two sections we present

two characterizations of matchings that satisfy these axioms, one through a notion akin

to competitive equilibria and the second based on the celebrated deferred acceptance

algorithm of Gale and Shapley (1962).

3.4 Cutoff Equilibria

In many real-life applications of reserve systems, the outcome is often publicized

through a system that identifies the lowest priority individual that qualifies for admis-

sion for each category. This representation makes it straightforward to verify that an

allocation was computed following the announced policy because an individual can com-

pare her priority to the announced cutoffs. Often a cardinal representation of the priority

order, such as a merit score or a lottery number, is used to identify these “cutoff” in-

dividuals. (See, for example Figure A1 in Section E in Supplemental Materal.) This

observation motivates the following equilibrium notion.

For any category c ∈ C, a cutoff fc is an element of I ∪{∅} such that fc πc ∅. Cutoffs

in our model play the role of prices for exchange or production economies, where the last

condition corresponds to prices being non-negative in those economies. We refer to a list

of cutoffs f = (fc)c∈C as a cutoff vector. Let F be the set of cutoff vectors.

Given a cutoff vector f ∈ F , for any patient i ∈ I, define the budget set of patient

i at cutoff vector f as

Bi(f) = {c ∈ C : i πc fc} .

A cutoff equilibrium is a pair consisting of a cutoff vector and a matching (f, µ) ∈
F ×M such that

1. For every patient i ∈ I,

(a) µ(i) ∈ Bi(f) ∪ {∅}, and

(b) Bi(f) 6= ∅ =⇒ µ(i) ∈ Bi(f).

2. For every category c ∈ C,

|µ−1(c)| < rc =⇒ fc = ∅.

A cutoff equilibrium is an analogue of a competitive equilibrium for a reserve system. A

cutoff vector-matching pair is a cutoff equilibrium if

1. each patient who has a non-empty budget set is matched with a category in her

budget set, and each patient who has an empty budget set remains unmatched, and

2. each category which has not filled its quota under this matching has cutoff ∅.
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The first condition corresponds to “preference maximization within budget set” and the

second condition corresponds to the “market clearing condition.”

Our first characterization result gives an equivalence between cutoff equilibrium match-

ings and matchings that satisfy our basic axioms.

Theorem 1. For any matching µ ∈ M that complies with eligibility requirements, is

non-wasteful, and respects priorities, there exists a cutoff vector f ∈ F that supports the

pair (f, µ) as a cutoff equilibrium. Conversely, for any cutoff equilibrium (f, µ) ∈ F×M,

matching µ complies with eligibility requirements, is non-wasteful, and respects priorities.

There can be multiple equilibrium cutoff vectors that supports a matching at cutoff

equilibria. Next, we explore the structure of equilibrium cutoff vectors.

For any matching µ ∈M and category c ∈ C, define

f
µ

c =

{
minπc µ

−1(c) if |µ−1(c)| = rc

∅ otherwise
and, (1)

fµ
c

=

{
minπc

{
i ∈ µ(I) : i πc maxπc

(
I \ µ(I)

)
∪ {∅}

}
if maxπc

(
I \ µ(I)

)
∪ {∅} 6= ∅

∅ otherwise
.

(2)

Here,

• f
µ

c identifies

– the lowest πc-priority patient who is matched with category c if all category-c

units are exhausted under µ, and

– ∅ if there are some idle category-c units under µ,

whereas

• fµ
c

identifies

– the lowest πc-priority patient with the property that every weakly higher πc-

priority patient than her is matched under µ if some category-c eligible patient

is unmatched under µ, and

– ∅ if all category-c eligible patients are matched under µ.

Let µ be any matching that respect priorities. By construction,

f
µ

c πc f
µ

c
for any c ∈ C.
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Our next result characterizes the set of cutoff vectors.

Lemma 1. Let µ ∈M be a matching that complies with eligibility requirements, is non-

wasteful, and respects priorities. Then the pair (g, µ) is a cutoff equilibrium if, and only

if,

f
µ

c πc gc πc f
µ

c
for any c ∈ C.

An immediate corollary to Lemma 1 is that for each cutoff equilibrium matching

µ, f
µ

= (f
µ

c )c∈C is a maximum equilibrium cutoff vector and fµ = (fµ
c
)c∈C is a

minimum equilibrium cutoff vector.

Of these equilibrium cutoff vectors, the first one has a clear economic interpretation.

The maximum equilibrium cutoff of a category indicates the selectivity of this particular

category. The higher the maximum cutoff is the more competitive it becomes to receive a

unit through this category. This is also the cutoff that is typically announced in real-life

applications of reserve systems due to its clear interpretation. The interpretation of the

minimum equilibrium cutoff of a category is more about the entire matching than the

category itself, and in some sense it is artificially lower than the maximum equilibrium

cutoff due to individuals who are matched with other categories. All other equilibrium

cutoffs between the two are also artificial in a similar sense. Therefore, for much of our

analysis we focus on the maximum equilibrium cutoff vector.

3.5 Characterization via Deferred Acceptance Algorithm

Although Theorem 1 gives a full characterization of matchings that satisfy our three

axioms, it leaves the question of how to find such a matching open. In this section, we

present a procedure to construct all such matchings utilizing the celebrated deferred-

acceptance algorithm by Gale and Shapley (1962).

Consider the following hypothetical many-to-one matching market. The two sides of

the market are the set of patients I and the set of categories C. Each patient i ∈ I can be

matched with at most one category, whereas each category c ∈ C can be matched with

as many as rc patients. Category c is endowed with the linear order πc that is specified

in the primitives of the original rationing problem.

Observe that in our hypothetical market, all the primitives introduced so far naturally

follows from the primitives of the original problem. The only primitive of the hypothetical

market that is somewhat “artificial” is the next one:

Each patient i ∈ I has a strict preference relation �i over the set C ∪ {∅}, such that,

18



for each patient i ∈ I,

c �i ∅ ⇐⇒ patient i is eligible for category c.

While in the original problem a patient is indifferent between all units (and therefore

all categories as well), in the hypothetical market she has strict preferences between the

categories. This “flexibility” in the construction of the hypothetical market is the basis

of our main characterization.

For each patient i ∈ I, let Pi be the set of all preferences constructed in this way, and

let P = ×i∈IPi.
Given a preference profile �= (�i)i∈I , the individual-proposing deferred-acceptance

algorithm (DA) produces a matching as follows.

Individual Proposing Deferred Acceptance Algorithm (DA)

Step 1: Each patient in I applies to her most preferred category among

categories for which she is eligible. Suppose that I1c is the set of patients

who apply to category c. Category c tentatively assigns applicants with the

highest priority according to πc until all patients in I1c are chosen or all rc

units are allocated, whichever comes first, and permanently rejects the rest.

If there are no rejections, then stop.

Step k: Each patient who was rejected in Step k-1 applies to her next pre-

ferred category among categories for which she is eligible, if such a category

exists. Suppose that Ikc is the union of the set of patients who were tentatively

assigned to category c in Step k-1 and the set of patients who just proposed

to category c. Category c tentatively assigns patients in Ikc with the highest

priority according to πc until all patients in Ikc are chosen or all rc units are

allocated, whichever comes first, and permanently rejects the rest. If there

are no rejections, then stop.

The algorithm terminates when there are no rejections, at which point all

tentative assignments are finalized.

A matching µ ∈ M is called DA-induced if it is the outcome of DA for some

preference profile �∈ P .

We are ready to present our next result:
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Theorem 2. A matching complies with eligibility requirements, is non-wasteful, and it

respects priorities if, and only if, it is DA-induced.

Not only is this result a second characterization of matchings that satisfy our three

basic axioms, it also provides a concrete procedure to calculate all such matchings. Equiv-

alently, Theorem 2 provides us with a procedure to derive all cutoff equilibria. This

latter interpretation of our characterization leads us to a refinement of cutoff equilibrium

matchings explored in our next section.

3.6 Sequential Reserve Matching

An interpretation of the DA-induced matchings is helpful to motivate in focusing a

subset of these matchings. Recall that the hypothetical two-sided matching market con-

structed above relies on an artificial preference profile (�i)i∈I of patients over categories.

What this corresponds to under the DA algorithm is that any patient i is considered for

categories that deem her eligible in sequence, following the ranking of these categories

under her artificial preferences �i. Unless there is a systematic way to construct these

preferences, it may be difficult to motivate adopting this methodology for real-life appli-

cations. For example, if a patient i is considered first for an unreserved category and then

for an essential personnel category, whereas another patient j with similar characteristics

is considered for them in the reverse order, it may be difficult to justify this practice.

That is, while there is a potentially large set of matchings that satisfy our three axioms,

not all are necessarily obtained through an intuitive procedure. This may be a challenge

especially in the context of medical rationing, since procedural fairness is also an impor-

tant ethical consideration in this context. Procedural fairness is the main motivation for

our focus in a subset of these matchings.

In many real-life applications of reserve systems, institutions process reserve categories

sequentially and allocate units associated with each category one at a time using its

category-specific priority order. We next formulate matchings obtained in this way and

relate them to our characterization in Theorem 2.

An order of precedence . is a linear order over the set of categories C. For any two

categories c, c′ ∈ C,
c . c′

means that category-c units are to be allocated before category-c′ units. In this case, we

say category c has higher precedence than category c′. Let ∆ be the set of all orders

of precedence.
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For a given order of precedence . ∈ ∆, the induced sequential reserve matching

ϕ., is a matching that is constructed as follows:

Suppose categories are ordered under . as

c1 . c2 . . . . . c|C|.

Matching ϕ. is found sequentially in |C| steps:

Step 1: Following their priority order under πc1 , the highest priority rc1

category-c1-eligible patients in I are matched with category c1. If there are

less than rc1 eligible patients in I than all of these eligible patients are matched

with category c1. Let I1 be the set of patients matched in Step 1.

Step k: Following their priority order under πck , the highest priority rck
category-ck-eligible patients in I \ ∪k−1k′=1I

k′ are matched with category ck. If

there are less than rck eligible patients in I \∪k−1k′=1I
k′ then all of these eligible

patients are matched with category ck. Let Ik be the set of patients matched

in Step k.

Given an order of precedence . ∈ ∆, the induced sequential reserve matching complies

with eligibility requirements, is non-wasteful, and it respect priorities. Thus, it is DA-

induced by Theorem 2. Indeed it corresponds to a very specific DA-induced matching.

Proposition 1. Fix an order of precedence . ∈ ∆. Let the preference profile �.∈ P be

such that, for each patient i ∈ I and pair of categories c, c′ ∈ C,

c �.i c′ ⇐⇒ c . c′.

Then the sequential reserve matching ϕ. is DA-induced from the preference profile �..

We conclude this section with a comparative static result regarding the maximum

equilibrium cutoff vectors supporting sequential reserve matchings:

Proposition 2. Fix two distinct categories c, c′ ∈ C and a pair of orders of precedence

., .′ ∈ ∆ such that:

• c′ . c,

• c .′ c′, and

• for any ĉ ∈ C and c∗ ∈ C \ {c, c′}

ĉ . c∗ ⇐⇒ ĉ .′ c∗.
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That is, .′ is obtained from . by only changing the order of c with its immediate prede-

cessor c′. Then,

f
ϕ.′
c πc f

ϕ.

c .

Recall that the maximum equilibrium cutoff for a category is indicative of how se-

lective the category is. Therefore, the earlier a category is processed under a sequential

reserve matching the more selective it becomes by Proposition 2. This result is intuitive

because the earlier a category is processed, the larger is the set of patients who compete

for these units in a setwise inclusion sense.

4 Reserve Systems under a Baseline Priority Order

In many real-life applications of reserve systems, there is a baseline priority order π

of individuals. Starting with Hafalir, Yenmez, and Yildirim (2013), the earlier market

design literature on reserve systems exclusively considered this environment. This pri-

ority order may depend on scores in a standardized exam, a random lottery, or arrival

time of application. In our main application of pandemic resource allocation, it may

depend on SOFA scores described in Section 2.1. This baseline priority order is used to

construct the priority order for each of the reserve categories, although each category

except one gives preferential treatment to a specific subset of individuals. For example,

in our main application these could be essential personnel or persons from disadvantaged

communities. In this section, we focus on this subclass of reserve systems and present

an analysis of reserve matching on this class. In contrast to Section 3 where our analysis

is more general than earlier literature and contributions are more conceptual than tech-

nical, analysis in this section represents our deeper technical contributions in relation to

earlier literature.

To formulate this subclass of reserve systems, we designate a beneficiary group

Ic ⊆ I for each category c ∈ C. It is assumed that all patients in its beneficiary group

are eligible for a category. That is, for any c ∈ C and i ∈ Ic,

i πc ∅.

There is an all-inclusive category u ∈ C, called the unreserved category, which has

all patients as its set of beneficiaries and endowed with the baseline priority order. That

is,

Iu = I and πu = π.

Any other category c ∈ C \ {u}, referred to as a preferential treatment category,
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has a more exclusive set Ic ⊂ I of beneficiaries and it is endowed with a priority order

πc with the following structure: for any pair of patients i, i′ ∈ I,

i ∈ Ic and i′ ∈ I \ Ic =⇒ i πc i
′,

i, i′ ∈ Ic and i π i′ =⇒ i πc i
′, and

i, i′ ∈ I \ Ic and i π i′ =⇒ i πc i
′.

Under πc, beneficiaries of category c are prioritized over patients who are not, but oth-

erwise their relative priority order is induced by the baseline priority order π.

Let Ig, referred to as the set of general-community patients, be the set of patients

who are each a beneficiary of the unreserved category only:

Ig = I \ ∪c∈C\{u}Ic.

In particular two types of such problems have widespread applications.

We say that a priority profile (πc)c∈C has soft reserves if, for any category c ∈ C and

any patient i ∈ I,

i πc ∅.

Under a soft reserve system all individuals are eligible for all categories. This is the case,

for example, in our main application of pandemic resource allocation.

We say that a priority profile (πc)c∈C has hard reserves if, for any preferential

treatment category c ∈ C \ {u},
1. i πc ∅ for any of its beneficiaries i ∈ Ic, whereas

2. ∅ πc i for any patient i ∈ I \ Ic who is not a beneficiary.

Under a hard reserve system, only the beneficiaries of a preferred treatment category are

eligible for units in this category. This is the case, for example, in H-1B visa allocation

in the US.

4.1 Comparative Statics

Allocation rules based on sequential reserve matching are used in a wide range of

practical applications. While an aspect that is often ignored in practical applications, it

is important to pay attention to the choice of the order of precedence in these problems,

for it has potentially significant distributional implications. In this subsection we focus

on sequential reserve matching under soft reserves, as this case likely is the relevant case
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for our main application of pandemic rationing.12

We already know from Proposition 2 that the later a category is processed, the less

competitive it becomes. A natural follow up question is whether this also means that the

beneficiaries of this category necessarily benefits from this comparative static exercise.

The answer would be of course straightforward, if each patient was a beneficiary of a

single category. But this is not the case in our model, because even if each patient

is a beneficiary of at most one preferential treatment category, they are also each a

beneficiary of the unreserved category. Indeed, even if that was not the case, unless

the reserves are hard non-beneficiaries may still be matched with units from preferential

treatment categories. So the answer to this question is not an immediate implication

of Proposition 2. Under some assumptions such as when there is only one preferential

treatment category (Dur, Kominers, Pathak, and Sönmez, 2018), this question is already

answered in the affirmative. However, as we present in the next example, this is not

always the case.

Example 1. Suppose there are q = 6 medical units to be allocated in total. There are six

categories: the unreserved category u and five preferential treatment categories c, c′, c∗, ĉ, c̃

and each category has a single unit capacity.

Suppose there are seven patients. All patients are beneficiaries of the unreserved

category u:

Iu = {i1, i2, i3, i4, i5, i6, i7}.

The beneficiaries of preferential treatment categories c, c∗, and c̃ are given as

Ic = {i1, i3, i6}, Ic∗ = {i2, i5}, Ic̃ = {i4, i7},

while there are no beneficiaries of preferential treatment categories c′ and ĉ: Ic′ = ∅ and

Iĉ = ∅. There are also no general-community patients: Ig = ∅. Suppose π, the baseline

priority order of patients, is given as

i1 π i2 π i3 π i4 π i5 π i6 π i7.

Also assume that all patients are eligible for all preferential treatment categories besides

the unreserved category u.

We consider two sequential reserve matchings based on the following two orders of

12The case of hard reserves is much simpler to analyze, and it offers more general results. See Theorem
2 in an earlier version of this paper Pathak, Sönmez, Ünver, and Yenmez (2020).
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precedence:

. : c′ . c . c∗ . ĉ . c̃ . u,

and

.′ : c .′ c′ .′ c∗ .′ ĉ .′ c̃ .′ u.

In the following table, we demonstrate the construction of the two induced sequential

reserve matchings by processing their mechanics in parallel:

Order of Precedence . Order of Precedence .′

Step Category Patient Category Patient

1 c′ i1 c i1

2 c i3 c′ i2

3 c∗ i2 c∗ i5

4 ĉ i4 ĉ i3

5 c̃ i7 c̃ i4

6 u i5 u i6

Thus the two sequential reserve matchings match the patients

ϕ. = {i1, i2, i3, i4, i5, i7} and ϕ.′ = {i1, i2, i3, i4, i5, i6}.

In this problem category-c′ and ĉ units are treated as if they are of unreserved category u,

as these two categories do not have any beneficiaries in the problem. We use the baseline

priority order π to match them.

Under the first order of precedence ., the highest π-priority patient i1, who is also

a category-c beneficiary, receives the first unit, which is reserved for category c′. As a

result, i3, who is the next category-c beneficiary, receives the only category-c unit. In the

end, units associated with categories c∗ and c̃ are matched with their highest and lowest

priority beneficiaries i2 and i7, respectively. The highest priority beneficiary of c̃, patient

i4, receives the category-ĉ unit, which is processed like the unreserved category and before

c̃. Hence, the lowest priority beneficiary of category c, i6 remains unmatched as the last

unit, which is reserved for the unreserved category, goes to i5. Thus,

ϕ.(Ic) = {i1, i3}

is the set of matched category-c beneficiaries.

Under the second order of precedence .′ that switches the order of c and c′, the se-

lectivity of category c increases as it is processed earlier: the highest priority category-c
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patient i1 receives its unit instead of i3. This leads to the units associated with cate-

gories c∗ and c̃ being matched with their lowest and highest priority beneficiaries i5 and

i4, respectively – this is a switch of roles for these categories with respect to .. This is

because the highest-priority beneficiary of c∗, patient i2, is now matched with category c′,

which is processed like the unreserved category before c∗. This enables the lowest priority

beneficiary of category c, patient i6, to be matched with the unreserved category as she is

prioritized higher than i7 under the baseline priority order. Hence,

ϕ.′(Ic) = {i1, i3, i6}

is the set of matched category-c beneficiaries.

Thus,

ϕ.(Ic) ( ϕ.′(Ic)

although category c is processed earlier under .′ than under ..

Example 1 shows that earlier positive comparative static results in the literature fail

to extend in our more general model. Also observe that our negative example holds

even though each patient is a beneficiary of at most one preferential treatment category.

Nevertheless, a positive result holds for our main application of soft reserves provided

that there are at most five categories and each patient is a beneficiary of at most one

preferential treatment category. 13

Proposition 3. Assuming (i) there are at most five categories, and (ii) each patient is a

beneficiary of at most one preferential treatment category, consider a soft reserve system

induced by a baseline priority order. Fix a preferential treatment category c ∈ C \ {u},
another category c′ ∈ C \ {c}, and a pair of orders of precedence ., .′ ∈ ∆ such that:

• c′ . c,

• c .′ c′, and

• for any ĉ ∈ C and c∗ ∈ C \ {c, c′},

ĉ . c∗ ⇐⇒ ĉ .′ c∗.

13Since the result fails to hold when there are six or more categories, a proof that relies on general
arguments does not exist for this result. Hence the proof of this result relies on a brute-force case
analysis. We present this (long) proof in Section B of the Supplementary Material. A much shorter
proof is available for at most four categories in an earlier version of this paper Pathak, Sönmez, Ünver,
and Yenmez (2020). A proof is presented for at most five categories for the sake of completeness.
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That is, .′ is obtained from . by only changing the order of c with its immediate prede-

cessor c′. Then,

ϕ.′(Ic) ⊆ ϕ.(Ic).

4.2 Smart Reserve Matching

Although virtually all practical applications of reserve systems are implemented through

sequential reserve matching, this class of mechanisms may suffer from an important short-

coming: they may lead to Pareto inefficient outcomes, due to myopic processing of re-

serves. The following example illustrates both how this may happen, and also motivates

a possible refinement based on smart processing of reserves.

Example 2. Consider a hard reserve system induced by baseline priority order π. There

are two patients I = {i1, i2} who are priority ordered as

i1 π i2

under the baseline priority order π. There are two categories; an unreserved category u

with an all-inclusive beneficiary set of I = {i1, i2}, and a preferential treatment category c

with a beneficiary set Ic = {i1} of a single preferential treatment patient. Both categories

have a capacity of one unit each (i.e., rc = ru = 1). Since the reserves are hard, the

resulting category-specific priority orders are given as follows:

i1 πu i2 πu ∅ and i1 πc ∅ πc i2.

Consider the sequential reserve matching ϕ. induced by the order of precedence ., where

u . c.

Under matching ϕ., first patient i1 is matched with the unreserved category u and sub-

sequently the category-c unit is left idle since no remaining patient is eligible for this

preferential treatment category. Therefore,

ϕ. =

(
i1 i2

u ∅

)
,

resulting in the set of matched patients ϕ.(I) = {i1}.
Next consider the sequential reserve matching ϕ.′ induced by the order of precedence
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.′, where

c .′ u.

Under matching ϕ.′, first patient i1 is matched with the preferential treatment category c

and subsequently patient i2 is matched with the unreserved category u. Therefore,

ϕ.′ =

(
i1 i2

c u

)
,

resulting in the set of matched patients ϕ.′(I) = {i1, i2}. Since ϕ.(I) ( ϕ.′(I), matching

ϕ. is Pareto dominated by matching ϕ.′.

Observe that Example 2 also illustrates that the cause of Pareto inefficiency is the

myopic allocation of categories under sequential reserve matchings. Under matching ϕ.,

the more flexible unreserved unit is allocated to patient i1 who is the only beneficiary of

category-c. This results in a suboptimal utilizations of reserves, which can be avoided

with the concept of “smart reserve matching” we introduce below.

To this end, we first introduce a new axiom, which together with non-wastefulness

imply Pareto efficiency.

Definition 4. A matching µ ∈M is maximal in beneficiary assignment if

µ ∈ arg max
ν∈M

∣∣∣∣∣∣
⋃

c∈C\{u}

(
ν−1(c) ∩ Ic

) ∣∣∣∣∣∣ .
This axiom simply requires that the reserves should be maximally assigned to target

beneficiaries to the extent it is feasible. It precludes the myopic assignment of categories

to patients since the desirability of a matching depends on the structure of the matching

as a whole rather than the individual assignments it prescribes for each category.

It is worth noting that the inefficiency observed in Example 2 is specific to the case of

hard reserves and cannot happen for soft reserves, as in our main application of pandemic

rationing. Nonetheless, maximality in beneficiary assignment is a desirable axiom in

general including for soft reserves because sub-optimal utilization of reserves may receive

heightened scrutiny. For example, consider a scenario with two preferential treatment

categories, essential personnel and disadvantaged, each with one unit of reserve. Suppose

patient A is both essential personnel and disadvantaged, patient B is disadvantaged,

and there are several other patients who are neither. One possible way to use these

reserves is to assign patient A to the disadvantaged reserve, leaving no other preferential
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treatment patients available for the essential personnel reserve. In this case, the essential

personnel reserve would be opened up to patients who are neither essential personnel

nor disadvantaged. This could in turn mean only one of the reserves is assigned to

members of the target beneficiary groups. This outcome could be seen problematic since

an alternative, which assigns patient A to the essential personnel reserve (instead of the

disadvantaged reserve) and patient B to the disadvantaged reserve, accommodates both

reserves. By imposing maximality in beneficiary assignment, we avoid this shortcoming

through a “smart” utilization of reserves.

Building on this insight, we next present an algorithm that generates smart cutoff

matchings:

Smart Reserve Matching Algorithm

Fix a parameter n ∈ {0, 1, . . . , ru} that represents the number of unreserved

units to be processed in the beginning of the algorithm.14 The remaining

unreserved units are to be processed at the end of the algorithm.

Fix a baseline priority order π, and for the ease of description relabel patients

so that

i1 π i2 π . . . π i|I|.

Proceed in two steps.

Step 1: Iteratively construct two sequences of patient sets Ju0 ⊆ Ju1 ⊆ . . . ⊆
Ju|I|, which determine patients to be matched with the unreserved category

u in this step, and J0 ⊆ J1 ⊆ . . . ⊆ J|I|, which determine the patients to

be matched with preferential treatment categories in C \ {u} that they are

beneficiaries of, and a sequence of sets of matchingsM0 ⊇M1 ⊇ . . . ⊇M|I|

in |I| substeps.

Define Step 1.(k) for any k ∈ {1, 2, . . . , |I|} as follows:

If k = 1, let

Ju0 = ∅, J0 = ∅,

and M0 be the set of all matchings that are maximal in beneficiary assign-

ment; that is

M0 = arg max
ν∈M

∣∣ ∪c∈C\{u} (ν−1(c) ∩ Ic)
∣∣.

14For n = 0, this algorithm is equivalent to the horizontal envelope algorithm in Sönmez and Yenmez
(2020).
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If k > 1, then sets of patients Juk−1 and Jk−1 and set of matchings Mk−1 are

constructed in the previous substep, Step 1.(k − 1).

Step 1.(k): Process patient ik. Three cases are possible:

• If |Juk−1| < n and there exists a matching in Mk−1 that

matches patient ik with the unreserved category u, then define

Juk = Juk−1∪{ik}, Jk = Jk−1, and Mk =
{
µ ∈Mk−1 : µ(ik) = u

}
.

• Otherwise, if there exists a matching in Mk−1 that matches

patient ik with a preferential treatment category c ∈ C \ {u}
that she is a beneficiary of, that is ik ∈ Ic, then define

Juk = Juk−1, Jk = Jk−1 ∪ {ik}, and

Mk =
{
µ ∈Mk−1 : µ(ik) 6∈ {∅, u} and ik ∈ Iµ(ik)

}
.

• Otherwise, define

Juk = Juk−1, Jk = Jk−1, and Mk =Mk−1.

Step 2: For any matching µ ∈M|I|, construct a matching σ ∈M as follows:

• Assign µ(i) to every patient i ∈ J|I| ∪ Ju|I|.
• One at a time iteratively assign the remaining units to the remaining

highest priority patient in I \ (Ju|I| ∪ J|I|) who is eligible for the category

of the assigned unit in the following order:

1. the remaining units of the preferential treatment categories in an

arbitrary order, and

2. the remaining units of the unreserved category u.

Every matching σ constructed in this manner is referred to as a smart reserve

matching induced by assigning n unreserved units subsequently at the beginning of the

algorithm. Let Mn
S be the set of all reserve matchings for a given n.

We have the following result about the sets of patients matched under smart reserve

matchings:
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Lemma 2. Consider either a soft reserve system or a hard reserve system induced by a

baseline priority order π. For any n ∈ {0, 1, . . . , ru} and any two smart reserve matchings

σ, ν ∈Mn
S,

σ−1(u) = ν−1(u), and ∪c∈C\{u} (σ−1(c) ∩ Ic) = ∪c∈C\{u}(ν−1(c) ∩ Ic),

and moreover,

σ(I) = ν(I).

Lemma 2 states that every smart reserve matching for a given n matches the same

set of patients with the unreserved category u, the same set of patients with preferential

treatment categories in C \{u} that they are beneficiaries of, and the same set of patients

overall.

In a soft reserve system or a hard reserve system, for a given n, we denote the set

patients matched in every smart reserve matching with n unreserved units processed first

as InS .15 By Lemma 2, for any σ ∈Mn
S,

InS = σ(I).

Our second result on smart reserve matchings is as follows:

Proposition 4. Consider either a soft reserve system or a hard reserve system induced

by a baseline priority order π. For any n ∈ {0, 1, . . . , ru}, any smart reserve matching

in Mn
S complies with eligibility requirements, is non-wasteful, respects priorities, and is

maximal in beneficiary assignment.

The choice of parameter n is not without a consequence. In particular, matchings

produced by the algorithm with the lowest parameter n = 0 and the highest parameter

n = ru both have distinctive distributional consequences.

Theorem 3. Consider either a soft reserve system or a hard reserve system induced by a

baseline priority order π. Let σru ∈Mru
S be a smart reserve matching when all unreserved

units are assigned first (i.e., n = ru) and σ0 ∈ M0
S be a smart reserve matching when

all unreserved units are assigned last (i.e., n = 0). Then, for any cutoff equilibrium

matching µ ∈M that is maximal in beneficiary assignment,

f
σru
u π f

µ

u π f
σ0
u .

15We describe a polynomial-time algorithm to construct InS and a smart reserve matching in Section
C of the Supplemental Material.
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Theorem 3 states that among all maximum equilibrium cutoff vectors that support

maximal matchings in beneficiary assignment, the selectivity of the unreserved category

is

• the most competitive for smart reserve matchings with n = ru, that is, when all

unreserved category units are assigned in the beginning of the algorithm, and

• the least competitive for smart reserve matchings with n = 0, that is, when all

unreserved category units are assigned at the end of the algorithm.

Theorem 3 is silent about the qualifications of maximum equilibrium cutoffs of prefer-

ential treatment categories supporting smart reserve matchings. While keeping the max-

imality in beneficiary assignment, the patients who are matched with preferential treat-

ment categories are uniquely determined under the two extreme smart reserve matchings

(and for any given n), respectively. However, there can be multiple ways of assigning

these patients to different preferential treatment categories. Thus, the maximum equi-

librium cutoffs of preferential treatment categories are not uniquely determined for these

matchings.

4.3 Related Theoretical Literature

Our study of reserve systems contributes to literature in matching market design

focused on distributional issues. Our main results of Theorems 1-3 as well as Propositions

1 and 2 have no antecedents in the literature. In contrast, Propositions 3 and 4 extend

previously known ideas to our model.

While Theorem 1 is novel and our paper is the first one to formally introduce the

notion of cutoff equilibrium for reserve systems, the use of this notion is widespread in

real-life applications of reserve systems. In particular, the outcomes of reserve systems

are often announced together with the cutoffs that support them. Examples include

admission to exam high schools in Chicago (Dur, Pathak, and Sönmez, 2020), assign-

ment of government positions in India (Sönmez and Yenmez, 2019) college admissions

in Brazil (Aygün and Bo, 2020), and H-1B visa allocation in the US for years 2006-2008

(Pathak, Rees-Jones, and Sönmez, 2020). For the first three of these applications the

cutoffs are given in terms of exam or merit scores, whereas for the last application the

cutoffs are given in terms of the date of visa application receipt. While the concept of

cutoff equilibrium for reserve systems is novel to our paper, cutoffs are used in simpler

matching environments in the absence of distributional considerations (see, e.g., Balinski

and Sönmez (1999) and Azevedo and Leshno (2016)).

In addition to presenting a characterization of outcomes that satisfy three basic ax-
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ioms, Theorem 2 also provides a procedure to calculate all cutoff matchings. While our

characterization itself is novel, the use of the deferred acceptance algorithm to derive a

specific cutoff matching is not. This technique to obtain cutoff levels for reserve systems

has been employed in various real-life applications, including in school choice algorithms

of Boston Public Schools (Dur, Kominers, Pathak, and Sönmez, 2018) and Chile (Correa

et al., 2019), and college admissions algorithm for Engineering Colleges in India (Baswana

et al., 2019).

Our characterizations in Theorems 1 and 2 use three simple axioms. As such, the

resulting matchings can fail to be Pareto efficient in some applications. This failure has to

do with rather mechanical and inflexible assignment of agents to categories as presented

by Example 2. This can be mitigated by filling reserves in a “smart” way. The class of

smart reserve matching algorithms in Section 4.2 does precisely this and through maximal

utilization of reserves always generates a Pareto efficient matching. The smart reserve

matching algorithm is a generalization of the horizontal envelope algorithm introduced

by Sönmez and Yenmez (2020) under exclusively “minimum guarantee” type reserves.

Moreover, for n = 0 the smart reserve matching algorithm becomes equivalent to the

horizontal envelope algorithm.

Of the two analytical results that extend previously known ideas in the literature,

Proposition 3 extends the comparative static results of Dur, Kominers, Pathak, and

Sönmez (2018), Dur, Pathak, and Sönmez (2020), and Pathak, Rees-Jones, and Sönmez

(2020). What is perhaps more novel is Example 1, which shows that the comparative

static exercise in Proposition 3 fails to hold once there are more than five categories.

Another implication of this situation is that the proof of Proposition 3 is considerably

more involved than its predecessors. Proposition 4, on the other hand, extends the

analysis on horizontal envelope algorithm in Sönmez and Yenmez (2020) to the more

general smart reserve matching algorithm.

In addition to above described papers which directly relate to our analysis, there are

also several others that have examined allocation in the presence of various distributional

constraints such as minimum-guarantee reserves (or lower quotas), upper quotas, and

regional quotas. Some of the most related ones include Abdulkadiroğlu (2005), Biro,

Fleiner, Irving, and Manlove (2010), Kojima (2012), Budish, Che, Kojima, and Milgrom

(2013), Hafalir, Yenmez, and Yildirim (2013), Westkamp (2013), Ehlers, Hafalir, Yenmez,

and Yildirim (2014), Echenique and Yenmez (2015), Kamada and Kojima (2015, 2017,

2018), Bo (2016), Doğan (2016), Kominers and Sönmez (2016), Fragiadakis and Troyan

(2017), Combe (2018), Ehlers and Morrill (2019), and Aygün and Turhan (2020).
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Our paper also introduces the medical rationing into the market design literature.

By considering a real-world resource allocation problem, we contribute to the study of

formal properties of specific allocation processes in the field and the study of alterna-

tive mechanisms. Studies in this vein include those on entry-level labor markets (Roth

and Peranson, 1999), school choice (Abdulkadiroğlu and Sönmez, 2003; Balinski and

Sönmez, 1999), spectrum auctions (Milgrom, 2000), kidney exchange (Roth, Sönmez,

and Ünver, 2004), internet auctions (Edelman, Ostrovsky, and Schwarz, 2007; Varian,

2007), assignment of airport arrival slots (Schummer and Abizada, 2017; Schummer and

Vohra, 2013), refugee resettlement (Andersson, 2019; Delacrétaz, Kominers, and Teytel-

boym, 2019; Jones and Teytelboym, 2017), and teacher assignment (Combe, Tercieux,

and Terrier, 2020).

5 Epilogue: Preliminary Policy & Practice Impact

As far as we know, reserve systems have not been part of pandemic rationing of

medical resources prior to the COVID-19 pandemic. Following the circulation of our

earlier working paper, Pathak, Sönmez, Ünver, and Yenmez (2020), and our subsequent

interaction with various interdisciplinary groups and public health officials, a reserve

system has now been recommended or adopted in a number of settings. We briefly report

on some of these examples. Since these systems are evolving, we provide additional details

at http://www.covid19reservesystem.org.16

5.1 NASEM Framework for Equitable Vaccine Allocation

In July 2020, the U.S. CDC and NIH commissioned the National Academies of Sci-

ences, Engineering, and Medicine (NASEM) to formulate recommendations on the eq-

uitable allocation of COVID-19 vaccines. NASEM’s committee of distinguished experts

solicited public comments on a discussion draft of their Framework for Equitable Allo-

cation of COVID-19 Vaccine in September 2020 (NASEM, 2020a). In written and oral

comments, Professor Harald Schmidt inquired about the mechanism to prioritize mem-

bers of hard-hit communities and described his work explaining how the reserve system

is a promising method (Schmidt, 2020). Around the same time, Persad, Peek, and Em-

manuel (2020) advocated for a reserve system in JAMA. They described a reserve system

as a “categorized priority system,” writing:

16Basic design considerations depending on rationed resource are explained in Section D of the Sup-
plemental Material.
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“Dividing the initial vaccine allotment into priority access categories and using med-

ical criteria to prioritize within each category is a promising approach. For instance,

half of the initial allotment might be prioritized for frontline health workers, a quar-

ter for people working or living in high-risk settings, and the remainder for others.

Within each category, preference could be given to people with high-risk medical

conditions. Such a categorized approach would be preferable to the tiered order-

ing previously used for influenza vaccines, because it ensures that multiple priority

groups will have initial access to vaccines.”

In October 2020, NASEM published their final Framework and recommended a 10

percent reserve for hard-hit areas, where hard-hit is measured by the CDC’s Social Vul-

nerability Index (SVI). Their stated justification emphasized the flexibility of a reserve

system (NASEM, 2020b):

“The committee does not propose an approach in which, within each phase, all

vaccine is first given to people in high SVI areas. Rather the committee proposes

that the SVI be used in two ways. First as previously noted, a reserved 10 percent

portion of the total federal allocation of COVID-19 vaccine may be reserved to target

areas with a high SVI (defined as the top 25 percent of the SVI distribution within

the state).”

NASEM’s recommendations together with those from the CDC’s Advisory Commit-

tee on Immunization Practices were provided to states, who are in charge of vaccine

distribution within state. As of December 2020, Operation Warp Speed has allocated

initial doses of Pfizer and Moderna vaccine to state, tribal, local and territorial pub-

lic health agencies in proportion to their population. At least three states, Tennessee,

Massachusetts, and New Hampshire followed NASEM’s recommendation and announced

their decision to adopt a reserve system for COVID-19 vaccine allocation. In all three

states a fraction of vaccines are reserved for people in high SVI areas, and in Tennessee

an additional fraction is reserved to be allocated equally between all counties. Schmidt et

al. (2020) report that California, Indiana, Louisiana, Michigan, North Dakota, and Ohio

will also integrate the use of SVI or a similar index of disadvantage in their COVID-19

vaccine allocation plans, although these states have not specified whether they will do so

through a reserve system or in an alternative way.

5.2 State Vaccine Allocation Plans Using a Reserve System

In October 2020, Tennessee became the first state that has announced its plan to use

a reserve system for COVID-19 vaccine allocation (Tennessee DH, 2020a). The interim
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plan by the Tennessee Department of Health included the following reserve categories:

• 5% of the State’s allocation of COVID-19 vaccines will be distributed equitably

among all 95 counties.

• 10% of the State’s allocation of COVID-19 vaccines will be reserved by the State

for use in targeted areas with high vulnerability to morbidity and mortality from

the virus.

• 85% of the State’s allocation of COVID-19 vaccines will be distributed among all

95 counties based upon their populations.

Subsequently, the reserve sizes were revised for each specific COVID-19 vaccine in re-

sponse to the differences in various features of these vaccines (Tennessee DH, 2020b).

In December 2020, Massachusetts released their vaccine allocation plan (Massachusetts

DPH, 2020a). The plan describes that 20% of vaccines will be reserved for communities

that have experienced disproportionate COVID-19 burden and high social vulnerability.

The state will use an over-and-above implementation, allocating additional units to hard-

hit areas (Biddinger, 2020). Within community, the allocation is to be based on Phase

prioritization.

In January 2021, New Hampshire also released the state’s vaccine allocation plan

(New Hampshire DHHS, 2021). Under the plan, 10% of vaccines will be reserved for

communities that have experienced disproportionate COVID-19 burden and high social

vulnerability.

5.3 Reserve System for Allocation of Therapeutic Agents

On November 21, 2020, the FDA granted an emergency use authorization (EUA) for

monoclonal antibody treatments (including bamlanivimab, casirivimab and imdevimab).

The Massachusetts Department of Public Health assembled a committee of infectious

disease specialists, emergency physicians, community health center representatives, and

ethicists to advise on equitable public health strategies to allocate the doses delivered

to Massachusetts. A committee member inquired about whether our proposed reserve

system can be used for equitable allocation and if so how it can be operationalized

in practice.17 Their December guideline recommended the use of a reserve system for

within-hospital allocation (Massachusetts DPH, 2020b).

In the system, units are infusion spots to be allocated by hospitals. Since the EUA

requires a short window between a positive COVID-19 test result and administration of

17In addition to providing the committee with conceptual and technical support in their design, our
group also provided the committee with a software. Details can be seen in the following website:
http://www.covid19reservesystem.org.
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therapy, the interval of allocation is set at either once or twice a day. Patients are in

placed into two tiers: (1) patients who are age ≥ 65 and patients aged 18 and older with

BMI ≥ 35, and (2) all other patients eligible under the EUA.

At each interval, there are two serial allocations for infusion spots. The first allocation

of 80% of available doses will be open to all identified patients entered into the allocation

system, known as the “open allocation” (Massachusetts DPH, 2020b). The second allo-

cation of 20% of available doses are available to patients who live in a census tract with

SVI > 50% or in a city or town with a 7-day average COVID-19 incidence rate in the top

quartile as reported in the most recent MA DPH weekly COVID report (“hardest-hit”)

For the open 80%, allocation takes place in order of tier, with lottery tie-breaking within

tier. For the 20% reserve, allocation is first for patients from hardest-hit areas. For these

patients, allocation takes place in order of tier, with lottery tie-breaking within tier. If

units remain in the 20% reserve, then they are allocated to patients who are eligible for

open units in order of tier, with lottery tie-breaking.

6 Conclusion

Because of the anticipated and ongoing shortage of key medical resources during

public health emergencies, several leaders in the medical ethics community have made

important recommendations regarding medical rationing. These recommendations reflect

compromises between several ethical principles – maximizing lives, maximizing life-years,

life-cycle considerations, instrumental values, reciprocity, protecting to the sickest, and

non-exclusion. We have argued that a reserve system offers additional flexibility to

balance competing objectives.

Prior to our paper the theory of reserve systems was limited to the case where all

priorities are derived from a baseline priority order favoring various groups at different

reserve categories. As our conceptual and technical contributions, we

• presented a general theory of reserve systems characterizing a new solution concept,

the cutoff equilibria, via three basic axioms widespread in real-life applications,

• provided a procedure to find all cutoff equilibria,

• analyzed sequential reserve matching procedures, the dominant form of reserve

systems in real-life applications, and

• proposed “smart reserve matching” procedures to overcome some potential short-

comings of these procedures.

Aside from our main motivation of pandemic rationing, our results can be directly

applied to several other resource allocation problems given the broad generality of our
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model. These include immigration visa allocation in the United States (Pathak, Rees-

Jones, and Sönmez, 2020), affirmative action in school choice systems in Boston, Chicago,

New York City and Chile (Correa et al., 2019; Dur, Kominers, Pathak, and Sönmez, 2018;

Dur, Pathak, and Sönmez, 2020), affirmative action for public school and government

positions in India (Aygün and Turhan, 2020; Baswana et al., 2019; Sönmez and Yenmez,

2019) and diversity plans for college admissions in Brazil (Aygün and Bo, 2020). We

leave explorations of these connections to future research.

Within a short period after the circulation of the first version of our paper in April

2020, our proposed reserve system started receiving strong support from various groups in

bioethics, public health, and clinical care medicine. We reported the preliminary policy

impact of our paper in Section 5. We hope that our proposed reserve system we will rarely

be deployed in its pandemic resource allocation applications. However, even if rationing

guidelines are rarely applied, their mere existence reflects a statement of values. Several

aspects of the design, including those related to essential personnel, disadvantaged and

disabled communities, adults and children run the risk of upsetting social harmony. For

example, Fink (2020) describes a risk with poorly designed systems excluding certain

principles: “at the end you have got a society at war with itself. Some people are going

to be told they don’t matter enough.” We have shown that a reserve system provides

policy makers with an additional tool to navigate these complex challenges.
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Delacrétaz, D., S. D. Kominers, and A. Teytelboym (2019). “Matching Mechanisms for

Refugee Resettlement.” Working paper.

DHS, A. (2020). “Covid-19 Addendum: Allocation of Scarce Resources in Acute Care

Facilities.” Arizona Department of Health Services, June 6, Available: http://azpha.

wildapricot.org/resources/covid-19-addendum.pdf. Last accessed: July 4, 2020.

39

https://www.cdc.gov/flu/pandemic-resources/pdf/2018-Influenza-Guidance.pdf
https://www.cdc.gov/flu/pandemic-resources/pdf/2018-Influenza-Guidance.pdf
https://www.law.umaryland.edu/media/SOL/pdfs/Programs/Health-Law/MHECN/ASR%20Framework_Final.pdf
https://www.law.umaryland.edu/media/SOL/pdfs/Programs/Health-Law/MHECN/ASR%20Framework_Final.pdf
http://azpha.wildapricot.org/resources/covid-19-addendum.pdf
http://azpha.wildapricot.org/resources/covid-19-addendum.pdf


Dittmar, P. (2018). “Gender Quotas - Balancing Act Between Efficient Policies and Gap

Fillers.” EU-Logos Athena.
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Appendices for Online Publication

A Proofs

A.1 Proofs of Results in Section 3

Proof of Theorem 1.

Part 1. Suppose matching µ ∈M complies with eligibility requirements, is non-wasteful,

and respects priorities. We construct a cutoff vector f ∈ F as follows: For each category

c ∈ C, define

fc =

{
minπc µ

−1(c) if |µ−1(c)| = rc,

∅ otherwise.

Fix a category c ∈ C. If |µ−1(c)| = rc then fc ∈ µ−1(c) by construction. Since µ complies

with eligibility requirements, then fc πc ∅. On the other hand, if |µ−1(c)| < rc, then

fc = ∅. Therefore, in either case fc πc ∅. We showed that f ∈ F , i.e., it is a well-defined

cutoff vector.

Next, we show that (f, µ) is a cutoff equilibrium. Condition 2 in cutoff equilibrium

definition is immediately satisfied because if for any c ∈ C, |µ−1(c)| < rc, then fc = ∅ by

construction.

We next show that Condition 1 in cutoff equilibrium definition is also satisfied in two

parts. Let i ∈ I.

(a) We show that µ(i) ∈ Bi(f)∪{∅}. If µ(i) = ∅ then we are done. Therefore, suppose

µ(i) = c for some c ∈ C. Two cases are possible:

– If |µ−1(c)| = rc, then fc = minπc µ
−1(c), and hence i πc fc. Thus, c ∈ Bi(f).

– If |µ−1(c)| < rc, then fc = ∅ by construction. Since µ complies with eligibility

requirements, i πc fc = ∅. Thus, µ(i) ∈ Bi(f).

(b) We show that Bi(f) 6= ∅ =⇒ µ(i) ∈ Bi(f). Suppose Bi(f) 6= ∅; but to the contrary

of the claim, suppose that µ(i) 6∈ Bi(f). By Condition 1(a) in the definition of a

cutoff equilibrium, µ(i) = ∅. Let c ∈ Bi(f). Since µ respects priorities, then for

every j ∈ µ−1(c) we have j πc i. If |µ−1(c)| = rc, then by construction, fc ∈ µ−1(c),
and hence, fc πc i, contradicting c ∈ Bi(f). We conclude that |µ−1(c)| < rc. Then

by construction, fc = ∅. Since c ∈ Bi(f), i πc fc = ∅. These two statements

together with µ(i) = ∅ contradict non-wastefulness of µ. Thus, µ(i) ∈ Bi(f).

Hence, we showed that (f, µ) is a cutoff equilibrium.
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Part 2. Conversely, suppose pair (f, µ) ∈ F ×M is a cutoff equilibrium. We will show

that matching µ complies with eligibility requirements, is non-wastefulness, and respects

priorities.

Compliance with eligibility requirements: Consider a patient i ∈ I. Since by Condition

1(a) of cutoff equilibrium definition µ(i) 6= ∅ implies µ(i) ∈ Bi(f), we have i πc fc. Since

the cutoff satisfies fc πc ∅, by transitivity of πc, i πc ∅. Therefore, µ complies with

eligibility requirements.

Non-wastefulness: Let i ∈ I be such that µ(i) = ∅ and i πc ∅ for some c ∈ C. We show

that |µ−1(c)| = rc. Then by Condition 1(a) of the definition of a cutoff equilibrium for

(f, µ), we have Bi(f) = ∅. In particular c /∈ Bi(f). Then fc πc i, implying that fc πc ∅
and hence |µ−1(c)| = rc. Thus, µ is non-wasteful.

Respect of Priorities: Let patient i ∈ I be such that for some category c ∈ C, µ(i) = c

while for some patient j ∈ I, µ(j) = ∅. We show that i πc j, which will conclude

that matching µ respects priorities. By Condition 1(b) of cutoff equilibrium definition,

Bj(f) = ∅. In particular, fc πc j. Since µ(i) = c, by Condition 1(a) of cutoff equilibrium

definition, c ∈ Bi(f), implying that i πc fc. By transitivity of πc, i πc j.

Proof of Lemma 1. We prove the lemma in three claims. Let matching µ ∈ M
comply with eligibility requirement, be non-wasteful, and respect priorities.

Claim 1. f
µ

is the maximum equilibrium cutoff vector supporting µ, i.e., (f
µ
, µ) is a

cutoff equilibrium and for every cutoff equilibrium (f, µ), f
µ

c πc fc for every c ∈ C.

Proof. We prove the claim in two parts.

Part 1.We show that (f
µ
, µ) is a cutoff equilibrium:

We restate the definition of f
µ

given in Equation (1) in the main text: For every

c ∈ C,

f
µ

c =

{
minπc µ

−1(c) if |µ−1(c)| = rc

∅ otherwise
.

By this definition f
µ ∈ F . Moreover, Condition 2 in the definition of a cutoff equilibrium

is trivially satisfied.

We show that Condition 1(a) holds next. Let i ∈ I. If µ(i) = ∅ then Condition 1(a)

is satisfied for i. Suppose µ(i) = c for some c ∈ C. We have i πc minπc µ
−1(c). Moreover

i πc ∅, as µ complies with eligibility requirements. Thus, i πc f
µ

c ∈ {∅,minπc µ
−1(c)}, and

hence, µ(i) ∈ Bi(f
µ
), showing Condition 1(a) is satisfied.
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Finally, we show that Condition 1(b) is satisfied. We prove its contrapositive. Let

i ∈ I be such that µ(i) 6∈ Bi(f
µ
). Thus, µ(i) = ∅ by Condition 1(a). Let c ∈ C. If

|µ−1(c)| < rc, then f
µ

c = ∅ πc i by non-wastefulness of µ. If |µ−1(c)| = rc, then j πc i for

every j ∈ µ−1(c) as µ respects priorities; thus, f
µ

c = minπc µ
−1(c) πc i. In either case, we

have c 6∈ Bi(f
µ
). Thus, we get Bi(f

µ
) = ∅, showing that Condition 1(b) also holds for

(f
µ
, µ), and hence, completing the proof that (f

µ
, µ) is a cutoff equilibrium.

Part 2. Let (f, µ) be a cutoff equilibrium. We prove that f
µ

c πc fc for every c ∈ C:
Suppose, for contradiction, that there exists some category c ∈ C such that fc πc f

µ

c .

Then |µ−1(c)| = rc as (f, µ) is a cutoff equilibrium and fc πc ∅, which follows from the

fact that f
µ

c πc ∅. Thus, f
µ

c = minπc µ
−1(c) πc ∅ by definition and µ complying with

eligibility requirements. Then for the patient i = f
µ

c , µ(i) = c 6∈ Bi(f) contradicting that

(f, µ) is a cutoff equilibrium. Thus, such a category c does not exist, and hence, f
µ

is

the maximum cutoff equilibrium vector supporting matching µ. �

Claim 2. fµ is the minimum equilibrium cutoff vector supporting µ, i.e., (fµ, µ) is a

cutoff equilibrium and for every cutoff equilibrium (f, µ), fc πc f
µ

c
for every c ∈ C.

Proof. We prove the claim in two parts.

Part 1. We show that (fµ, µ) is a cutoff equilibrium:

We restate fµ using its definition in Equation (2): for every c ∈ C,

fµ
c

=

{
minπc

{
i ∈ µ(I) : i πc xc

}
if xc 6= ∅

∅ otherwise

where xc is defined as

xc = max
πc

(
I \ µ(I)

)
∪ {∅}.

For every c ∈ C, since xc πc ∅, we have minπc
{
i ∈ µ(I) : i πc xc

}
πc ∅, if xc 6= ∅. Hence,

fµ
c
πc ∅ showing that fµ ∈ F .

We show that the conditions in the definition of a cutoff equilibrium are satisfied by

(fµ, µ).

Condition 2. Suppose |µ−1(c)| < rc for some c ∈ C. For any i ∈ I \ µ(I) we have ∅ πc i
by non-wastefulness of µ. Thus, xc = ∅. This implies fµ

c
= ∅ by its definition. Hence,

Condition 2 is satisfied.

Condition 1(a). Let i ∈ I. If µ(i) = ∅ then Condition 1(a) is satisfied for i. Suppose

µ(i) = c for some c ∈ C. We have i πc f
µ

c , since we showed in Claim 1 that (f
µ
, µ) is a
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cutoff equilibrium. Two cases are possible about µ−1(c):

• If |µ−1(c)| < rc: we showed in proving Condition 2 that xc = ∅, thus, f
µ

c = fµ
c

= ∅.
Since i πc ∅, c = µ(i) ∈ Bi(fµ) showing that Condition 1(a) holds for i.

• If |µ−1(c)| = rc: Then f
µ

c = minπc µ
−1(c) πc xc: as otherwise

– if xc ∈ I, then µ(xc) = ∅ (by definition of xc) and yet c ∈ Bxc(f
µ
), a contra-

diction to (f
µ
, µ) being a cutoff equilibrium;

– if xc = ∅, then (i) xc πc f
µ

c ∈ I contradicts f
µ

being a cutoff vector, and (ii)

xc = f
µ

c contradicts |µ−1(c)| = rc. Thus we cannot have xc πc f
µ

c in this case

either.

Thus,

f
µ

c πc min
πc
{i ∈ I : i πc xc} = fµ

c
.

Then

i πc f
µ

c πc f
µ

c
,

implying c = µ(i) ∈ Bi(fµ) and showing that Condition 1(a) holds for i.

Condition 1(b). Let i ∈ I be such that Bi(fµ) 6= ∅. Let c ∈ Bi(fµ).

• if xc = ∅: Then i πc ∅ = fµ
c
. By definition of xc, i ∈ µ(I), i.e., µ(i) 6= ∅.

• if xc 6= ∅: Then i πc f
µ

c
πc xc, which in turn implies that µ(i) 6= ∅ by definition of

fµ
c

and xc.

In either case, by Condition 1(a), µ(i) ∈ Bi(fµ). Thus, Condition 1(b) is satisfied for i.

These conclude proving that (fµ, µ) is a cutoff equilibrium.

Part 2. Let (f, µ) be a cutoff equilibrium. We prove that fc πc f
µ

c
for every c ∈ C:

Suppose to the contrary of the claim fµ
c
πc fc for some c ∈ C. Now, fµ

c
is a patient,

because fc πc ∅ by the definition of a cutoff vector. By definition of fµ
c
, xc 6= ∅ and fµ

c
πc

xc. We cannot have xc πc fc, as otherwise, we have c ∈ Bxc(f); however, by definition

of xc, µ(xc) = ∅, contradicting (f, µ) is a cutoff equilibrium. Thus fc πc xc. Since xc

is eligible for c, fc ∈ I. Furthermore, fc ∈ µ(I), since c ∈ Bfc(f) and (f, µ) is a cutoff

equilibrium. Therefore, fc ∈ {j ∈ µ(I) : j πc xc}. Since fµ
c

= minπc{j ∈ µ(I) : j πc xc},
we have fc πc f

µ

c
, contradicting fµ

c
πc fc. Therefore, such a category c cannot exist, and

hence, fµ is the minimum equilibrium cutoff vector supporting µ. �

Claim 3. For any given two cutoff equilibria (f, µ) and (g, µ) such that fc πc gc for every

c ∈ C, the pair (h, µ) is also a cutoff equilibrium where h ∈ F satisfies for every c ∈ C,
fc πc hc πc gc.

Proof. We can obtain cutoff vector h from g after a sequence of repeated applications
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of the following operation: Change the cutoffs of one of the categories c ∈ C of an input

vector f ′ ∈ F so that its cutoff increases by one patient and gets closer to hc than f ′c. We

start with f ′ = g to the sequence. We show that each iteration of this operation results

with a new equilibrium cutoff vector g′ supporting µ and we use this g′ as the input of

the next iteration of the operation. Since the outcome vector gets closer to h at each

step, the last cutoff vector of the sequence is h by finiteness of the patient set, and thus,

(h, µ) is a cutoff equilibrium:

Suppose c′ ∈ C is such that hc′ πc′ gc′ . We prove that for cutoff vector g′ ∈ F such

that g′c = gc for every c ∈ C \ {c′} and g′c′ = minπc′{i ∈ I : i πc′ gc′}, (g′, µ) is a cutoff

equilibrium. It is straightforward to show that g′ ∈ F . Observe also that Bi(g′) = Bi(g)

for every i ∈ I \ {j} where j = gc′ . Three cases are possible regarding j:

• If j 6∈ I: j = ∅.
• If j ∈ I and µ(j) = c′: Category c′ ∈ Bj(f) as (f, µ) is a cutoff equilibrium.

However, fc′ πc′ hc′ πc′ j = gc′ , contradicting that c′ ∈ Bj(f). Therefore, this case

cannot happen.

• If j ∈ I and µ(j) 6= c′: Observe that µ(j) 6= ∅, as c′ ∈ Bj(g) and (g, µ) is a cutoff

equilibrium. Moreover, we have µ(j) ∈ Bj(g), in turn together with µ(j) 6= c′

implying that µ(j) ∈ Bj(g′) as g′µ(j) = gµ(j).

These and the fact that (g, µ) is a cutoff equilibrium (specifically its Condition 1(b))

show that µ(i) ∈ Bi(g′) for every i ∈ I such that Bi(g′) 6= ∅, proving Condition 1(b)

holds in the definition of cutoff equilibrium for (g′, µ).

Since (g, µ) is a cutoff equilibrium (specifically Conditions 1(a) and 1(b) of the defi-

nition) imply that for every i ∈ I, µ(i) = ∅ ⇐⇒ Bi(g) = ∅. Therefore, we have µ(i) = ∅
for every i ∈ I such that Bi(g′) = ∅, because Bi(g′) ⊆ Bi(g) = ∅, where the set inclusion

follows from the fact that the cutoffs have weakly increased for each category under g′.

This and Condition 1(b) that we showed above imply that for all i ∈ I, µ(i) ∈ Bi(g′)∪{∅}.
Thus, Condition 1(a) in the definition of a cutoff equilibrium is also satisfied by (g′, µ).

We show Condition 2 is also satisfied proving that for every c ∈ C, g′c = ∅ if |µ−1(c)| <
rc to conclude that (g′, µ) is a cutoff equilibrium. Suppose |µ−1(c)| < rc for some c ∈ C.
If c 6= c′, then g′c = gc = ∅, where the latter equality follows from (g, µ) being a cutoff

equilibrium (specifically its Condition 2). If c = c′, fc′ = ∅ πc′ gc′ , where the first

equality follows from (f, µ) being a cutoff equilibrium (specifically its Condition 2). This

contradicts. g ∈ F . So c 6= c′, completing the proof. �
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Proof of Theorem 2.

Sufficiency : We first prove that any DA-induced matching complies with eligibility

requirements, is non-wasteful, and respects priorities. Let �∈ P be a preference profile

of patients over categories and ∅. Suppose µ ∈ M is DA-induced from this preference

profile.

Compliance with eligibility requirements: Suppose that µ(i) = c for some c ∈ C. Then i

must apply to c in a step of the DA algorithm, and hence, c �i ∅. By construction of �i,
this means i πc ∅. Therefore, matching µ complies with eligibility requirements.

Non-wastefulness: Suppose that i πc ∅ and µ(i) = ∅ for some category c ∈ C and patient

i ∈ I. By construction of �i, c �i ∅ because i is eligible for c. As patient i is unmatched

in µ, she applies to c in some step of the DA algorithm. However, c rejects i at this or a

later step. This means, c should have been holding at least rc offers from eligible patients

at this step. From this step on, c always holds rc offers and eventually all of its units are

assigned: |µ−1(c)| = rc. Hence, matching µ is non-wasteful.

Respecting priorities: Suppose that µ(i) = c and µ(i′) = ∅ for two patients i, i′ ∈ I and a

category c ∈ C. For every category c′ ∈ C, πc′ is used to choose eligible patients at every

step of the DA algorithm. Therefore, µ(i) = c implies i πc ∅. Since µ(i′) = ∅, then it

must be either because ∅ πc i′ or because i πc i
′. In the first case, we get i πc i

′ as well

because πc is transitive. Therefore, matching µ respects priorities.

Necessity: We now prove that any matching µ ∈ M with the three stated properties

is DA-induced from some preference profile. We construct a candidate preference profile

�∈ P as follows:

• Consider a patient i ∈ µ−1(c) where c ∈ C. Since µ complies with eligibility

requirements, i must be eligible for category c. Let i rank category c first in �i.
The rest of the ranking in �i is arbitrary as long as all eligible categories are ranked

above the empty set.

• Consider an unmatched patient i ∈ µ−1(∅). Let i rank categories in any order in

�i such that only eligible categories are ranked above the empty set.

We now show that µ is DA-induced from preference profile �. In the induced DA

algorithm under �, for every category c′ ∈ C, patients in µ−1(c′) apply to category c′

first. Every unmatched patient j ∈ µ−1(∅) applies to her first-ranked eligible category

according to �j, if there is any. Suppose c ∈ C is this category. Since µ respects

priorities, j has a lower priority than any patient in µ−1(c), who also applied to c in Step

1. Furthermore, since µ is non-wasteful, |µ−1(c)| = rc (as there are unmatched eligible
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patients for this category, for example j). Therefore, all unmatched patients in µ are

rejected at the first step of the DA algorithm. Moreover, for every category c′ ∈ C, all

patients in µ−1(c′) are tentatively accepted by category c′ at the end of Step 1.

Each unmatched patient in j ∈ µ−1(∅) continues to apply according to �j to the

other categories at which she is eligible. Since µ respects priorities and is non-wasteful,

she is rejected from all categories for which she is eligible one at a time, because each of

these categories c ∈ C continues to tentatively hold patients µ−1(c) from Step 1 who all

have higher priority than j according to πc, as µ respects priorities. Moreover, by non-

wastefulness of µ, |µ−1(c)| = rc, as there are unmatched eligible patients (for example j)

under µ.

As a result, when the algorithm stops, the outcome is such that, for every category

c′ ∈ C, all patients in µ−1(c′) are matched with c′. Moreover, every patient in µ−1(∅)
remains unmatched at the end. Therefore, µ is DA-induced from the constructed patient

preferences �.

Proof of Proposition 1. Let . ∈ ∆ be a precedence order and ϕ. be the associated

sequential reserve matching. We show that ϕ. is DA-induced from preference profile

�.= (�.i )i∈I .
For every patient i ∈ I, consider another strict preference relation �′i such that all

categories are ranked above the empty set and, furthermore, for any c, c′ ∈ C,

c �′i c′ ⇐⇒ c . c′.

Note that the relative ranking of two categories for which i is eligible is the same

between �.i and �′i.
We use an equivalent version of the DA algorithm as the one given in the text.

Consider a Step k: Each patient i who is not tentatively accepted currently by a category

applies to the best category that has not rejected her yet according to �′i. Suppose that

Ikc is the union of the set of patients who were tentatively assigned to category c in Step

k − 1 and the set of patients who just proposed to category c. Category c tentatively

assigns eligible patients in Ikc with the highest priority according to πc until all patients

in Ikc are chosen or all rc units are allocated, whichever comes first, and permanently

rejects the rest.

Since for any category c ∈ C and any patient i ∈ I who is ineligible for category c,

∅ πc c, the outcome of the DA algorithm when the preference profile is �. and �′= (�′i)i∈I
are the same.
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Furthermore, when the preference profile is �′, the DA algorithm works exactly like

the sequential reserve procedure that is used to construct ϕ.. We show this by induction.

Suppose . orders categories as c1 . c2 . . . . . c|C|. As the inductive assumption, for k > 0,

suppose for categories c1, . . . , ck−1, the tentative matches at the end of Step k − 1 and

final matches at the end under the DA algorithm from �′ are identical to their matches

in sequential reserve matching ϕ..

We next consider Step k of the DA algorithm from �′. Only patients who are rejected

from category ck−1 apply in Step k of the DA algorithm and they all apply to category ck.

Then ck uses its priority order πck to tentatively accept the rck highest-priority eligible

applicants (and if there are less than rck eligible applicants, all eligible applicants), and

rejects the rest. Observe that since every patient who is not tentatively accepted by

a category c1, . . . , ck−1 applied to this category in Step k, none of these patients will

ever apply to it again; and by the inductive assumption no patient who is tentatively

accepted in categories c1, . . . , ck−1 will ever be rejected, and thus, they will never apply

to ck, either. Thus, the tentative acceptances by ck will become permanent at the end

of the DA algorithm. Moreover, this step is identical to Step k of the sequential reserve

procedure under precedence order . and the same patients are matched with category ck

in ϕ.. This ends the induction.

Therefore, we conclude that ϕ. is DA-induced from patient preference profile �..

Proof of Proposition 2. Let J., J.
′ ⊆ I be the sets of patients remaining just before

category c is processed under the sequential reserve matching procedure induced by . and

.′, respectively. Since c is processed earlier under .′ and every other category preceding

c and c′ under . and .′ are ordered in the same manner order, J. ⊆ J.
′
. Two cases are

possible:

1. If |ϕ−1.′ (c)| < rc: Then J. ⊆ J.
′

implies |ϕ−1. (c)| < rc. Therefore, by Equation (1),

f
ϕ.′
c = ∅ = f

ϕ.

c .

2. If |ϕ−1.′ (c)| = rc: Then J. ⊆ J.
′

implies,

f
ϕ.′
c = min

πc
ϕ−1.′ (c) πc min

πc
ϕ−1. (c),

where the first equality follows by Equation (1). By the same equation, f
ϕ.

c ∈
{∅,minπc ϕ

−1
. (c)} and by the definition of a cutoff vector, f

ϕ.′
c πc ∅. Thus,

f
ϕ.′
c πc f

ϕ.

c .
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A.2 Proofs of Lemma 2, Proposition 4, and Theorem 3

Proof of Lemma 2. By the definition of the smart reserve matching algorithm induced

by assigning n unreserved units subsequently at the beginning, in Step 1.(k) for every

k ∈ {0, 1, . . . , |I|}, and for every every matching µ ∈Mk,

• µ(i) = u for every i ∈ Juk , and

• µ(i) 6∈ {u, ∅} and i ∈ Iµ(i) for every i ∈ Jk.
We show that for any i ∈ I \ (Ju|I| ∪ J|I|) there is no matching µ ∈M|I| such that µ(i) 6∈
{u, ∅} and i ∈ Iµ(i). Suppose contrary to the claim that such a patient i and matching µ

exist. Patient i is processed in some Step 1.(k). We have i /∈ Juk ∪ Jk ⊆ Ju|I| ∪ J|I|. We

have µ ∈ Mk−1 as Mk−1 ⊇ M|I|. Then |Juk−1| = n, as otherwise we can always match

i with u even if we cannot match her with a preferential treatment category that she is

a beneficiary of when she is processed under a matching that is maximal in beneficiary

assignment, contradicting i /∈ Ju|I| ∪ J|I|. But then as µ(i) 6∈ {u, ∅} and i ∈ Iµ(i), we have

µ ∈Mk and i ∈ Jk, contradicting again i /∈ Ju|I| ∪ J|I|.
Thus, in Step 2 no patient is matched with a preferential treatment categories that

she is a beneficiary of. These prove ∪c∈C\{u}(σ−1(c)∩ Ic) is the same set regardless of the

matching σ ∈Mn
S we choose.

To prove that σ−1(u) is the same for every σ ∈ Mn
S, we consider two cases (for Step

2):

• If we have a soft reserve system: Then all patients are eligible for the remaining

max{0, q − |Ju|I| ∪ J|I||} units. Since we assign the patients in I \ (Ju|I| ∪ J|I|) based

on priority according to π to the remaining units, we have σ(I) is the same patient

set regardless of the matching σ ∈ Mn
S we choose. Since the remaining ru − n

unreserved units are assigned to the lowest priority patients that are matched in

any σ ∈Mn
S, if any, and µ−1(u) is a fixed set regardless of which matching µ ∈M|I|

we choose (as we proved above), then σ−1(u) is the same set regardless of which

σ ∈Mn
S we choose.

• If we have a hard reserve system: Then in Step 2 no patient is matched with a unit

of a category that she is not a beneficiary of. Thus, the ru−n remaining unmatched

units are assigned to the highest π-priority patients in I \(Ju|I|∪J|I|). This concludes

proving that each of σ(I) and σ−1(u) is the same patient set regardless of which

σ ∈Mn
S we choose.
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Proof of Proposition 4. For any n ∈ {0, 1, . . . , ru}, we prove that every smart

reserve matching in Mn
S complies with eligibility requirements, is non-wasteful, respects

priorities, and is maximal in beneficiary assignment.

Compliance with eligibility requirements: By construction, no patient is ever matched

with a category for which she is not eligible during the procedure.

Non-wastefulness: Suppose to the contrary of the claim that there exists some σ ∈ Mn
S

that is wasteful. Thus, there exists some category c ∈ C and a patient i ∈ I such that

σ(i) = ∅, i πc ∅, and |µ−1(c)| < rc. Then in Step 2 patient i or another patient should

have been matched with c as we assign all remaining units to eligible patients, which is

a contradiction.

Respect for Priorities: Let σ ∈ Mn
S be a smart reserve matching. Suppose patients

i, j ∈ I are such that i π j and σ(i) = ∅. We need to show either (i) σ(j) = ∅ or (ii)

i 6∈ Iσ(j) and j ∈ Iσ(j), which is equivalent to j πσ(j) i. Suppose σ(j) 6= ∅. Suppose to

the contrary that i ∈ Iσ(j) and j ∈ Iσ(j). Consider the smart reserve matching procedure

with n. Two cases are possible: j ∈ Ju|I| ∪ J|I| or not. We show that either case leads to

a contradiction, showing that σ respects priorities.

• If j ∈ Ju|I| ∪ J|I|: Consider the matching σ̂ obtained from σ as follows: σ̂(i) = σ(j),

σ̂(j) = ∅, and σ̂(i′) = σ(i′) for every i′ ∈ I \ {i, j}. Since i, j ∈ Iσ(j), and we match

i instead of j with σ(j), σ̂ is a matching that is maximal in beneficiary assignment

as well. Since i π j, i is processed before j in Step 1. Let i be processed in some

Step 1.(k). Since σ(i) = ∅, i 6∈ Jk ∪ Juk . Then σ̂ ∈ Mk−1 as σ ∈ Mk−1. Two cases

are possible:

– if σ(j) = u: As j is matched with an unreserved unit in Step 1, then an unre-

served unit is still to be allocated in the procedure when i is to be processed

in Step 1.(k) before j. We try to match i with an unreserved unit first. Since

σ̂ ∈Mk−1 and σ̂(i) = u this implies i ∈ Juk . This contradicts i 6∈ Juk ∪ Jk.
– if σ(j) 6= u: Then when i is to be processed in Step 1.(k), we are trying to

match her (i) if it is possible, with unreserved category u first and if not, with

a preferential treatment category that she is a beneficiary of, or (ii) directly

with a preferential treatment category that she is a beneficiary of without

sacrificing the maximality in beneficiary assignment. However, as σ(i) = ∅
we failed in doing either. Since i ∈ Iσ̂(i) and σ̂(i) 6= u, at least there exists a

matching inMk−1 that would match i with a preferential treatment category

that she is a beneficiary of. Hence, this contradicts i 6∈ Juk ∪ Jk.
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• If j 6∈ Ju|I| ∪ J|I|: Therefore, j is matched in Step 2 of the smart reserve matching

algorithm with n unreserved units processed first. Since we match patients in Step

2 either with the preferential treatment categories that they are eligible but not

beneficiary of or with the unreserved category u, and we assumed j ∈ Iσ(j) then

σ(j) = u. Since i is also available when j is matched, and i π j, patient i or another

patient who has higher π-priority than j should have been matched instead of j,

which is a contradiction.

Maximality in Beneficiary Assignment: By construction Mn
S ⊆ M0, which is the set

of matchings that are maximal in beneficiary assignment in the smart reserve matching

procedure with n.

The following lemma and concepts from graph theory will be useful in our next proof.

We state the lemma as follows:

Lemma 3 (Mendelsohn and Dulmage Theorem, 1958). Let Mb be the set of matchings

that match patients with only preferential treatment categories that they are beneficiaries

of and otherwise leave them unmatched. If there is a matching in Mb that matches

patients in some J ⊆ I and there is another matching ν ∈ Mb then there exists a

matching inMb that matches all patients in J and at least |ν−1(c)| units of each category

c ∈ C \ {u}.

See for example page 266 of Schrijver (2003) for a proof of this result.

Let us define I∅ = ∅ for notational convenience.

We define a beneficiary alternating path from µ to ν for two matchings in

µ, ν ∈M as a non-empty list A = (i1, . . . , im) of patients such that

[
i1 6∈ Iµ(i1) or µ(i1) = u

]
&

[
i1 ∈ Iν(i1) and ν(i1) 6= u

]
,[

im ∈ Iµ(im) and µ(im) = ν(im−1)
]

&
[
im ∈ Iν(im) and ν(im) 6= u

]
for every m ∈ {2, 3, . . . ,m− 1},[

im ∈ Iµ(im) and µ(im) = ν(im−1)
]

&
[
im 6∈ Iν(im) or ν(im) = u

]
.

A beneficiary alternating path begins with a patient i1 who is not matched with a pref-

erential treatment category that she is a beneficiary of under µ and ends with a patient

im who is not matched with a preferential treatment category that she is a beneficiary of

under ν. Everybody else in the path is matched under both matchings with a preferential

treatment category that she is a beneficiary of. We state the following observation, which

directly follows from the finiteness of categories and patients.
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Observation 1. If µ and ν ∈ M are two matchings such that for every c ∈ C \ {u},
|µ−1(c) ∩ Ic| = |ν−1(c) ∩ Ic| and there exists some i ∈

(
∪c∈C\{u} ν−1(c) ∩ Ic

)
\
(
∪c∈C\{u}

µ−1(c) ∩ Ic
)
, then there exists a beneficiary alternating path from µ to ν beginning with

patient i.

We are ready to prove our last theorem:

Proof of Theorem 3. By Proposition 4 and Theorem 1, any σ0 ∈M0
S and σru ∈Mru

S

are cutoff equilibrium matchings. Let µ ∈ M be any other cutoff equilibrium matching

that is maximal in beneficiary assignment.

We extend the definitions of our concepts to smaller economies: given any I∗ ⊆ I and

r∗ = (r∗c )c∈C such that r∗c ≤ rc for every c ∈ C, all properties and algorithms are redefined

for this smaller economy (I∗, r∗) by taking the restriction of the baseline priority order π

on I∗, and denoted using the argument (I∗, r∗) at the end of the notation. For example

M(I∗, r∗) denotes the set of matchings for (I∗, r∗).

Proof of f
σru
u π f

µ

u:

We prove the following claim first.

Claim 1. For any set of patients I∗ ⊆ I and any capacity vector r∗ ≤ r, suppose

matching ν ∈ M(I∗, r∗) is maximal in beneficiary assignment for (I∗, r∗). Let σ ∈
Mr∗u

S (I∗, r∗) be a smart reserve matching with all unreserved units processed first. Then

|σ−1(u)| ≥ |ν−1(u)|.

Moreover, according to the baseline priority order π, for any k ∈
{

1, . . . ,
∣∣ν−1(u) \

σ−1(u)
∣∣}, let jk be the kth highest priority patient in σ−1(u) \ ν−1(u) and j′k be the

kth highest priority patient in ν−1(u) \ σ−1(u), then

jk π j
′
k.

Proof. Suppose to the contrary of the first statement |σ−1(u)| < |ν−1(u)|. Since both

σ and ν are maximal in beneficiary assignment for (I∗, r∗), then the exists some patient

i ∈ (∪c∈Cν−1(c) ∩ Ic) \ (∪c∈Cσ−1(c) ∩ Ic). This patient is not committed to be matched

in Step 1 of the smart reserve matching algorithm with all unreserved units first, despite

the fact that there exists at least one available unreserved unit when she was processed,

which is a contradiction. Thus, |σ−1(u)| ≥ |ν−1(u)|.
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For the rest of the proof, we use induction on the cardinality of I∗ and on the mag-

nitude of vector of category capacity vector r∗:

• For the base case when I∗ = ∅ and r∗c = 0 for every c ∈ C, the claim holds trivially.

• As the inductive assumption, suppose that for all capacity vectors of categories

bounded above by vector r∗ and all subsets of I bounded above by cardinality k∗,

the claim holds.

• Consider a set of patients I∗ ⊆ I such that |I∗| = k∗ and capacity vector of

categories r∗ = (r∗c )c∈C. Let σ ∈ Mr∗u
S (I∗, r∗) be a smart reserve matching for

(I∗, r∗) with all unreserved units processed first and ν ∈ M(I∗, r∗) be maximal in

beneficiary assignment for (I∗, r∗). If σ−1(u) ⊇ ν−1(u) then the claim for (I∗, r∗) is

trivially true. Thus, suppose not. Then, there exists j ∈ ν−1(u)\σ−1(u). Moreover,

let j be the highest π-priority patient in ν−1(u) \ σ−1(u). We have two cases that

we consider separately:

Case 1. There is no patient i ∈ I∗ such that i π j and i ∈ σ−1(u) \ ν−1(u):

We show that this case leads to a contradiction, and hence, it cannot hold.

When j is processed in Step 1 of the smart reserve matching algorithm with

all unreserved units processed first, since σ(j) 6= u, either

(i) all units of the unreserved category are assigned under σ to patients with

higher π-priority than j, or

(ii) some unreserved category units are still available when j is processed.

Observe that (i) cannot hold, because it contradicts Case 1. Thus, (ii) holds.

Since j is the highest π-priority patient in ν−1(u) \ σ−1(u) and since we are

in Case 1, for every i ∈ I∗ such that i π j, we have

ν(i) = u ⇐⇒ σ(i) = u. (3)

We construct a new matching ν̂ ∈ M(I∗, r∗) from ν and fix a patient i ∈ I∗

as follows. We check whether there exists a patient i ∈ I∗ such that

i π j, σ(i) 6= u, and i 6∈ Iν(i), (4)

(a) If such a patient i does not exist, then let ν̂ = ν and i = j.

(b) If such a patient i exists, then let her be the highest π-priority patient

with the property in Equation 4.

We show that i ∈ Iσ(i). Consider the smart reserve matching algorithm.

Since ν(j) = u and i π j, just before i is processed in Step 1, there is
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still at least one unreserved unit available by Equation 3. Since we are

processing all unreserved units first and since σ(i) 6= u, it should be the

case that we had to match i with a preferential treatment category that

she is a beneficiary of. Thus, i ∈ Iσ(i).
We create a new matching for (I∗, r∗) from ν, which we refer to as ν̂,

such that ν̂ matches every patient in I∗ exactly as under ν except that

ν̂ leaves patient j unmatched and matches i with category u instead.

Since ν is maximal in beneficiary assignment for (I∗, r∗), so is ν̂.

So far, we have for every i′ ∈ I∗ such that i′ π i,

1. σ(i′) = u ⇐⇒ ν(i′) = u (by Equation 3 and i π j),

2. σ(i′) ∈ Iσ(i′) (an unreserved unit is available before i is processed in Step

1 of the smart reserve matching algorithm with all unreserved units pro-

cessed first; thus, every patient processed before i is matched if possible,

with u, and if not possible, with a preferential treatment category that

she is a beneficiary of under the restriction of maximality in beneficiary

assignment), and

3. ν̂(i′) ∈ Iν̂(i′) (by definition of i as the highest π-priority patient satisfying

Equation 4).

We also have ν̂(i) = u and σ(i) 6= u.

Patient i is processed in some Step 1.(k) in the smart reserve matching al-

gorithm with all unreserved units processed first. As σ(i) 6= u we have

i /∈ Juk (I∗, r∗). On the other hand, since σ ∈ Mk−1(I
∗, r∗), by Statements

1, 2, and 3 above, we have ν̂ ∈ Mk−1(I
∗, r∗) as well and it matches i with u,

contradicting i /∈ Juk (I∗, r∗). Therefore, Case 1 (ii) cannot hold either.

Case 2. There is some i ∈ σ−1(u) \ ν−1(u) such that i π j:

Construct a matching σ̂ from σ that it leaves every patient who is matched

in Step 2 of the smart reserve matching algorithm with all unreserved units

processed first: for every i∗ ∈ I∗, σ̂(i∗) = σ(i∗) if i∗ ∈ Iσ(i∗) and σ̂(i∗) = ∅
otherwise. Clearly σ̂ ∈ M(I∗, r∗) and is maximal in beneficiary assignment

for (I∗, r∗), since σ is. By Lemma 3, there exists a matching ν̃ ∈Mb(I∗, r∗)18

such that under ν̃ all patients in ∪c∈C\{u}ν̃−1(c) ∩ Ic are matched with the

preferential treatment categories in C \ {u} that they are beneficiaries of, and

for every c ∈ C \{u}, |ν̃−1(c)∩ Ic| = |σ̂−1(c)∩ Ic| (equality follows rather than

18As defined in the hypothesis of the lemma, ν̃ ∈ Mb(I∗, r∗) means that for every i∗ ∈ I∗ and c ∈ C,
i∗ ∈ ν̃−1(c) implies c 6= u and i∗ ∈ Ic.
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≥ as dictated by the lemma, because σ̂ is maximal in beneficiary assignment

for (I∗, r∗)). For every i∗ ∈ I∗, we have ν(i∗) = u =⇒ ν̃(i∗) = ∅ as

ν̂ ∈ Mb(I∗, r∗). We modify ν̃ to obtain ν̂: For every i∗ ∈ ν−1(u), we set

ν̂(i∗) = u and for every i∗ ∈ I∗ \ ν−1(u), we set ν̂(i∗) = ν̃(i∗). Clearly,

ν̂ ∈ M(I∗, r∗) and is maximal in beneficiary assignment for (I∗, r∗), since ν

is. We will work with σ̂ and ν̂ instead of σ and ν from now on.

Recall that σ̂(i) = u and ν̂(i) 6= u. Two cases are possible: i ∈ Iν̂(i) or

ν̂(i) = ∅.
1. If i ∈ Iν̂(i): Then by Observation 1, there exists a beneficiary alternating

path A from σ̂ to ν̂ beginning with i and ending with some i′ ∈ I∗ such

that (i) σ̂(i′) ∈ Iσ̂(i′) and σ̂(i′) 6= u, and (ii) ν̂(i′) = u or ν̂(i′) = ∅.
By the existence of the beneficiary alternating path, it is possible to

match either i or i′ with a preferential treatment category that she is

a beneficiary of and match the other one with u without changing the

type of match of any other patient i∗ ∈ I∗ \ {i, i′} has, i.e., either i∗ is

matched with a preferential treatment category under both matchings

or not. Yet, when i is processed in Step 1 of the smart reserve matching

algorithm with all unreserved units processed first, we chose i to be

matched with u and i′ with a preferential treatment category. This

means

i π i′.

Let ĉ 6= u be the category that i is matched with under ν̂.

If σ̂(i′) 6= u, then modify ν̂ by assigning an unreserved unit to i′ instead

of j: ν̂(j) = ∅ and ν̂(i′) = u. Otherwise, do not modify ν̂ any further.

Consider the smaller economy (I ′, r′) such that I ′ = I∗ \ {i, i′} and for

every c ∈ C, r′c = r∗c − 1 if c ∈ {ĉ, u} and r′c = r∗c , otherwise.

We show that a smart reserve matching σ′ ∈ Mr′u
S (I ′, r′) can be ob-

tained from the original smart reserve matching σ ∈ Mr∗u
S (I∗, r∗) and

ν̂. Consider the beneficiary alternating path A we discovered above

starting with patient i and ending with patient i′ from σ̂ to ν̂: Suppose

A = (i, i2, . . . , im−1, i
′). Define

σ′(i∗) = σ(i∗) for every i∗ ∈ I ′ \ {i2, . . . , im−1} and

σ′(i∗) = ν̂(i∗) for every i∗ ∈ {i2, . . . , im−1}.
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Observe that σ′ ∈M(I ′, r′). The existence of σ′ shows that it is feasible

to match every patient in Ju|I∗|(I
∗, r∗) \ {i} with u and it is feasible to

match every patient in J|I∗|(I
∗, r∗) \ {i′} with a preferential treatment

category that she is a beneficiary of in (I ′, r′). Thus, the smart reserve

matching algorithm with all unreserved units processed first proceeds

exactly in the same manner as it does for (I∗, r∗) with the exception

that it skips patients i and i′ in the smaller economy (I ′, r′). Hence,

σ′ ∈Mr′u
S (I ′, r′).

Let the restriction of matching ν̂ to (I ′, r′) be ν ′. Observe that ν ′ is a

matching for (I ′, r′). Moreover, it is maximal in beneficiary assignment

for (I ′, r′), since ν̂ is maximal in beneficiary assignment for (I∗, r∗).

Now one of the two following cases holds for ν:

(a) If ν(i′) 6= u: Recall that while ν(j) = u, we updated ν̂ so that

ν̂(i′) = u and ν̂(j) = ∅. Thus, ν ′(j) = ∅ as well. Since i π j, this

together with the inductive assumption that the claim holds for

(I ′, r′) imply that the claim also holds for (I∗, r∗), completing the

induction.

(b) If ν(i′) = u: Since i π i′, this together with the inductive assump-

tion that the claim holds for (I ′, r′) imply that the claim also holds

for (I∗, r∗), completing the induction.

2. If ν̂(i) = ∅: Recall that ν̂(j) = u. We modify ν̂ further that ν̂(i) = u

and ν̂(j) = ∅. Consider the smaller economy (I ′, r′) where I ′ = I∗ \ {i},
r′u = r∗u − 1, and r′c = r∗c for every c ∈ C \ {u}.
Let σ′ and ν ′ be the restrictions of σ and ν̂ to (I ′, r′), respectively.

Since, σ(i) = ν̂(i) = u both σ′ and ν ′ are matchings for (I ′, r′). Since the

capacity of category u is decreased by one, σ′ is a smart reserve matching

with all unreserved units processed first for (I ′, r′). To see this observe

that the algorithm proceeds as it does for (I∗, r∗) with the exception

that it skips i. Matching ν ′ is maximal in beneficiary assignment for

(I ′, r′). Therefore, by the inductive assumption, the claim holds for

(I ′, r′). This together with the fact that i π j imply the claim holds for

(I∗, r∗), completing the induction. �
If |µ−1(u)| < ru then f

σru
u π f

µ

u = ∅. On the other hand, if |µ−1(u)| = ru, Claim 1

implies that f
σru
u = minπ σ

−1
ru (u) π f

µ

u = minπ µ
−1(u).
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Proof of f
µ

u π f
σ0
u :

We prove the following claim first.

Claim 2. For any set of patients I∗ ⊆ I and any capacity vector r∗ ≤ r, suppose

ν ∈ M(I∗, r∗) is a matching that is maximal in beneficiary assignment for (I∗, r∗). Let

σ ∈M0
S(I∗, r∗) be a smart reserve matching with all unreserved units processed last,

J = ∪c∈C\{u}(σ−1(c) ∩ Ic), and J ′ = ∪c∈C\{u}(ν−1(c) ∩ Ic).

According to the baseline priority order π, for any k ∈ {1, . . . , |J ′ \ J |}, let jk be the kth

highest priority patient in J \ J ′ and j′k be the kth highest priority patient in J ′ \ J , then

jk π j
′
k.

Proof.19 We use induction on the cardinality of I∗ and on the magnitude of vector of

capacities of categories r∗:

• For the base case when I∗ = ∅ and r∗c = 0 for every c ∈ C, the claim holds trivially.

• In the inductive step, suppose for every capacity of categories bounded above by

vector r∗ and subsets of patients in I bounded above by cardinality k∗ the claim

holds.

• Consider set of patients I∗ ⊆ I such that |I∗| = k∗ and capacity vector for categories

r∗ = (r∗c )c∈C. If J \ J ′ = ∅ then the claim holds trivially. Suppose J \ J ′ 6= ∅. Let

i ∈ J \ J ′ be the highest priority patient in J \ J ′ according to π.

We have |J | = |J ′| by maximality of σ and ν in beneficiary assignment for I∗. Thus,

|J \ J ′| = |J ′ \ J |, which implies J ′ \ J 6= ∅.
By Lemma, 3 there exists a matching ν̂ ∈ Mb(I∗, r∗) that matches patients only

with preferential treatment categories that they are beneficiaries of such that ν̂

matches patients in J ′ and |σ−1(c) ∩ Ic| units reserved for every preferential treat-

ment category c ∈ C \ {u}.20 Since both ν and σ are maximal in beneficiary

assignment for (I∗, r∗), then only patients in J ′ should be matched under ν̂ and no

other patients (as otherwise ν would not be maximal in beneficiary assignment for

(I∗, r∗)).

19This claim’s proof is similar to the proof of Proposition 1 Part 2 in Sönmez and Yenmez (2020).
20Although both σ and ν may be matching some patients with categories that they are not beneficiaries

of or with the unreserved category, we can simply leave those patients unmatched in σ and ν and apply
Lemma 3 to see such a matching ν̂ exists.
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Since ν̂(i) = ∅, i ∈ Iσ(i), and σ(i) 6= u, by Observation 1, there exists a beneficiary

alternating path A starting with i from ν̂ to σ and ending with a patient i′ ∈ Iν̂(i′)
(and ν̂(i′) 6= u by its construction), and yet i′ /∈ Iσ(i) or σ(i′) = u.

Existence of the beneficiary alternating path shows that it is possible to match i or

i′ (but not both) with preferential treatment categories that they are beneficiaries

of without affecting anybody else’s status as committed or uncommitted in Step 1

of the smart reserve matching algorithm with all unreserved units processed last.

Since σ matches i with a preferential treatment category that she is a beneficiary

of at the cost of patient i′, we have

i π i′.

Next consider the smaller economy (I ′, r′) in which we remove (i) i and i′ and set

I ′ = I∗ \ {i, i′}, (ii) one of the units associated with preferential treatment category

ĉ = ν̂(i′) and set r′ĉ = r∗ĉ − 1, and (iii) keep the capacity of every other category

c ∈ C \ {ĉ} the same and set r′c = r∗c .

Let ν ′ be the restriction of ν̂ to (I ′, r′). As ν̂(i) = ∅, ν̂(i′) = ĉ 6= u such that i ∈ Iĉ
and the capacity of ĉ is reduced by 1 in the smaller economy, ν ′ ∈ M(I ′, r′), and

furthermore, it is maximal in beneficiary assignment for (I ′, r′).

We form a matching σ′ ∈ M(I ′, r′) by modifying σ and ν̂ using the beneficiary

alternating path A we found before. Recall thatA is the beneficiary alternating path

from ν̂ to σ beginning with i and ending with i′. Suppose A = (i, i2, . . . , im−1, i
′).

Define

σ′(i∗) = σ(i∗) for every i∗ ∈ I ′ \ {i2, . . . , im−1} and

σ′(i∗) = ν̂(i∗) for every i∗ ∈ {i2, . . . , im−1}.

Observe that σ′ ∈M(I ′, r′). The existence of σ′ shows that it is possible to match

every patient in J|I∗|(I
∗, r∗) \ {i} with a preferential treatment category that she

is a beneficiary of in (I ′, r′). Thus, the smart reserve matching algorithm with all

unreserved units processed last proceeds as it does for (I∗, r∗) with the exception

that it skips patients i and i′. Therefore, σ′ ∈M0
S(I ′, r′).

By the inductive assumption, the claim holds for σ′ and ν ′ for (I ′, r′). This com-

pletes the induction, as we already showed i π i′. �
Thus, we showed that at the end of Step 1 of the smart matching algorithm with all

unreserved units processed last, weakly lower priority patients have remained uncommit-
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ted in J∗ = I \ J|I| = I \ ∪c∈C\{u}(σ−10 (c) ∩ Ic) than in Ĵ = I \ ∪c∈C\{u}(µ−1(c) ∩ Ic).
Two cases are possible:

• If we have a soft reserves system: As both σ0 and µ are maximal in beneficiary

assignment, an equal number of units are assigned to the highest π-priority patients

in Ĵ (by Step 2 of the smart reserve matching algorithm) and J∗ (as by Theorem 1, µ

respects priorities and is non-wasteful). Under σ0, the unreserved units are assigned

last in order in Step 2 of the algorithm. On the other hand, the remainder of µ, i.e.,

the units assigned to the non-beneficiaries of preferential treatment categories and

beneficiaries of u, can be constructed by assigning the rest of the units sequentially

to the highest priority patients in J∗ one by one when unreserved units are not

necessarily processed last.

Therefore, if |µ−1(u)| < ru then |σ−10 (u)| < ru, in turn implying f
µ

u = f
σ0
u = ∅. If

|µ−1(u)| = ru then |σ−10 (u)| ≤ ru and f
µ

u = minπ µ
−1(u) π f

σ0
u ∈ {∅,minπ σ

−1
0 (u)}.

• If we have a hard reserves system: The proof is identical as the above case with

the exception that now only unreserved units are assigned as both σ0 and µ comply

with eligibility requirements.
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Supplemental Material

B Proof of Proposition 3 in Section 4

In this subsection, we first show some lemmas that we will use in the proof of Propo-

sition 3.

Fix a soft reserve system induced by the baseline priority order π. Suppose each

patient is a beneficiary of at most one preferential treatment category.

First, we introduce some concepts.

We introduce function τ : I → (C \ {u}) ∪ {∅} to denote the preferential treatment

category that a patient is beneficiary of, if there is such a category. That is, for any

patient i ∈ I, if i ∈ Ic for some c ∈ C \ {u}, then τ(i) = c, and if i ∈ Ig, i.e., i is a

general-community patient, then τ(i) = ∅.
For a category c∗ ∈ C, a set of patients Ĩ ⊆ I, and a patient i ∈ Ĩ, let rank(i; Ĩ , πc∗)

denote the rank of i among patients in Ĩ according to πc∗ .

We consider incomplete orders of precedence. For a given subset of categories C∗ ⊆ C,
we define an order of precedence on C∗ as a linear order on C∗. Let ∆(C∗) be the set

of orders of precedence on C∗.
We extend the definition of sequential reserve matchings to cover incomplete prece-

dence orders and match a subset of patients Ĩ ⊆ I as follows: A sequential reserve

matching induced by . ∈ ∆(C∗) over Ĩ is the outcome of the sequential reserve proce-

dure which processes only the categories in C∗ in the order of . to match only the patients

in Ĩ and leaves all categories in C \ C∗ unmatched and patients in I \ Ĩ unmatched. Let

ϕĨ. denote this matching.

Lemma S.4. Suppose that Ĩ ⊆ I, c ∈ C \ {u}, and ., .′ ∈ ∆({u, c}) are such that

• . is given as u . c,

• .′ is given as c .′ u,

• I(2) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(2) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(2) \ I ′(2)| = |I ′(2) \ I(2)|,
2. I ′(2) \ I(2) ⊆ Ĩc,

3. I(2) \ I ′(2) ⊆ Ĩ \ Ĩc,
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4. if i ∈ I(2) \ I ′(2) and i′ ∈ I ′(2), then i π i′, and

5. if i′ ∈ I ′(2) \ I(2) and i ∈ I(2) ∩ Ic, then i′ π i.

Proof of Lemma S.4. The first statement in Lemma S.4 holds because under soft

reserves every patient is eligible for every category, which implies that |µ(Ĩ)| = |µ′(Ĩ)|.
As a result, |µ(Ĩ)\µ′(Ĩ)| = |µ′(Ĩ)\µ(Ĩ)|, which is equivalent to |I ′(2)\I(2)| = |I(2)\I ′(2)|
since µ(Ĩ) \ µ′(Ĩ) = I ′(2) \ I(2) and µ′(Ĩ) \ µ(Ĩ) = I(2) \ I ′(2).

The second statement in Lemma S.4 holds because if i ∈ µ−1(u), then rank(i; Ĩ , π) ≤
ru. Therefore, i ∈ µ′(Ĩ). Furthermore, every i ∈ µ−1(c) is a category-c patient since there

exists j ∈ Ĩc such that j /∈ µ(Ĩ). As a result, we get

Ĩc ⊇ µ−1(c) ⊇ µ(Ĩ) \ µ′(Ĩ) = I ′(2) \ I(2).

To prove the third statement in Lemma S.4, suppose for contradiction that there

exists i ∈ I(2) \ I ′(2) such that i ∈ Ĩc. Therefore, i ∈ µ′(Ĩ) \ µ(Ĩ) = I(2) \ I ′(2). By the

first statement in Lemma S.4, |I ′(2) \ I(2)| = |I(2) \ I ′(2)| ≥ 1 because I(2) \ I ′(2) has at

least one patient. By the second statement in Lemma S.4, I ′(2) \ I(2) ⊆ Ĩc. Therefore,

there exists i′ ∈ I ′(2) \ I(2) = µ(Ĩ) \ µ′(Ĩ) such that i′ ∈ Ĩc. Since i ∈ µ′(Ĩ), i′ /∈ µ′(Ĩ),

and τ(i) = τ(i′), we get

i π i′.

Likewise, i′ ∈ µ(Ĩ), i /∈ µ(Ĩ), and τ(i) = τ(i′) imply

i′ π i.

The two displayed relations above contradict each other.

The fourth statement in Lemma S.4 is true because for every i ∈ I(2) \ I ′(2) =

µ′(Ĩ) \ µ(Ĩ) we know that i /∈ Ĩc by the third statement in Lemma S.4. Since µ(Ĩc) ( Ĩc,

there are at least rc patients in Ĩc. Therefore, µ′−1(c) ⊆ Ĩc, which implies that i ∈ µ′−1(u).

Since i′ ∈ I ′(2) is equivalent to i′ /∈ µ′(Ĩ), we get i π i′.

The fifth statement in Lemma S.4 follows from i, i′ ∈ Ĩc, i′ ∈ µ(Ĩ), and i /∈ µ(Ĩ).

Lemma S.5. Suppose that c, c′ ∈ C \ {u} are different categories. Let Ĩ ⊆ I and ., .′ ∈
∆({c, c′}) be such that

• . is given as c′ . c,

• .′ is given as c .′ c′,

• I(2) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(2) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and
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• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(2) \ I ′(2)| = |I ′(2) \ I(2)|,
2. I ′(2) \ I(2) ⊆ Ĩc,

3. I(2) \ I ′(2) ⊆ Ĩ \ Ĩc,
4. if i ∈ I(2) \ I ′(2) and i′ ∈ I ′(2), then i π i′, and

5. if i′ ∈ I ′(2) \ I(2) and i ∈ I(2) ∩ Ĩc, then i′ π i.

Proof of Lemma S.5. If |Ĩc′ | ≥ rc′ , then µ(Ĩ) = µ′(Ĩ) and, therefore, I(2) = I ′(2).

Then all the statements in Lemma S.5 hold trivially. Suppose that |Ĩc′ | < rc′ for the rest

of the proof.

The first statement in Lemma S.5 follows as in the proof of the first statement in

Lemma S.4.

The second statement in Lemma S.5 holds because if i ∈ µ−1(c′) and i ∈ Ĩc′ , then

i ∈ µ′(Ĩ) since |Ĩc′| < rc′ . If i ∈ µ−1(c′) and i /∈ Ĩc′ , then rank(i; Ĩ \ Ĩc′ , π) ≤ rc′ − |Ĩc′ |. As

a result i ∈ µ′(Ĩ). These two statements imply that µ−1(c′) ⊆ µ′(Ĩ). Furthermore, every

i ∈ µ−1(c) is a category-c patient since there exists i ∈ Ĩc such that i /∈ µ(Ĩ). As a result,

we get that

I ′(2) \ I(2) = µ(Ĩ) \ µ′(Ĩ) = µ−1(c) \ µ′(Ĩ) ⊆ µ−1(c) ⊆ Ĩc.

The proof of the third statement in Lemma S.5 is the same as the proof of the third

statement in Lemma S.4.

The fourth statement in Lemma S.5 is true because for every i ∈ I(2) \ I ′(2) =

µ′(Ĩ) \ µ(Ĩ) we know that i /∈ Ĩc by the third statement in Lemma S.5. Moreover,

µ′−1(c) ⊆ Ĩc, as there exists j ∈ Ĩc such that j 6∈ µ(Ĩ), which implies that there are

at least rc category-c patients. This implies i ∈ µ′−1(c′). Furthermore, i /∈ Ĩc′ because

Ĩc′ ⊆ µ(Ĩ), which follows from |Ĩc′| < rc′ . Consider i′ ∈ I ′(2). Then i′ /∈ µ′(Ĩ), which

implies that i π i′ because µ′(i) = c′, τ(i) 6= c′, and µ′(i′) = ∅.
The proof of the fifth statement in Lemma S.5 is the same as the proof of the fifth

statement in Lemma S.4.

Lemma S.6. Suppose that c ∈ C \ {u} and c′, c∗ ∈ C \ {c} are different categories. Let

Ĩ ⊆ I and ., .′ ∈ ∆({c, c′, c∗}) be such that

• . is given as c′ . c . c∗,

• .′ is given as c .′ c′ .′ c∗,
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• I(3) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(3) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(3) \ I ′(3)| = |I ′(3) \ I(3)|,
2. I ′(3) \ I(3) ⊆ Ĩc,

3. I(3) \ I ′(3) ⊆ Ĩ \ Ĩc, and

4. If i′ ∈ I ′(3) \ I(3) and i ∈ I(3) ∩ Ĩc, then i′ π i.

Proof of Lemma S.6. The first statement in Lemma S.6 follows as in the proof of

the first statement in Lemma S.4. Likewise, the fourth statement in Lemma S.6 follows

as in the proof of the fifth statement in Lemma S.4.

To show the other two statements, we use Lemma S.4 and Lemma S.5. Let .̂, .̂′ ∈
∆({c, c′}) be such that

.̂ : c′ .̂ c and .̂′ : c .̂′ c′.

Let I(2) = Ĩ \ ϕĨ.̂(Ĩ) and I ′(2) = Ĩ \ ϕĨ
.̂′

(Ĩ). Then I(3) = I(2) \ µ−1(c∗) and I ′(3) =

I ′(2) \ µ′−1(c∗).
For both precedence orders . and .′ under the sequential reserve matching procedure,

consider the beginning of the third step, at which category c∗ is processed. For ., the set

of available patients is I(2). For .′, the set of available patients is I ′(2). If I(2) = I ′(2),

then all the statements hold trivially because in this case we get I(3) = I ′(3). Therefore,

assume that I(2) 6= I ′(2). For every precedence order, rc∗ patients with the highest

priority with respect to πc∗ are chosen.

We consider each patient chosen under . and .′ for category c∗ one at a time in

sequence with respect to the priority order πc∗ . For both precedence orders there are rc∗

patients matched with c∗ because µ(Ĩc) ( Ĩc. Let ik be the kth patient chosen under .

for c∗ and i′k be the kth patient chosen under .′ for c∗ where k = 1, . . . , rc∗ . Let Jk be

the set of patients available when we process . for the kth patient and J ′k be the set of

patients available when we process .′ for the kth patient where k = 1, . . . , rc∗ . For k = 1,

Jk = I(2) and J ′k = I ′(2). By definition, Jk+1 = Jk \ {ik} and J ′k+1 = J ′k \ {i′k}. We show

that

(a) J ′k \ Jk ⊆ Ĩc,

(b) Jk \ J ′k ⊆ Ĩ \ Ĩc, and

(c) if i ∈ Jk \ J ′k and i′ ∈ (Jk ∩ J ′k) \ Ĩc∗ , then i πc∗ i
′.
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by mathematical induction on k. These three claims trivially hold for k = 1 by Statements

2, 3, and 4 in Claims 1 and 2.

Fix k. In the inductive step, assume that Statements (a), (b), and (c) hold for

k. Consider k + 1. If Jk+1 = J ′k+1, then the statements trivially hold. Assume that

Jk+1 6= J ′k+1 which implies that J` 6= J ′` for ` = 1, . . . , k. There are four cases depending

on which sets ik and i′k belong to. We consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) =
(
(Jk \ J ′k) \ {ik}

)
∪ {i′k}.

By Statement (a) of the inductive assumption for k, J ′k+1 \ Jk+1 = J ′k \ Jk ⊆ Ĩc.

Therefore, Statement (a) holds for k + 1.

As J ′k 6= Jk and |Jk| = |J ′k| because of the soft-reserves condition, J ′k \ Jk has at least

one category-c patient. Moreover, this patient has higher priority with respect to πc∗

than any other category-c patient in J ′k ∩ Jk because the former is chosen under . while

the later is not chosen under .. Therefore, i′k cannot be a category-c patient. As a result,

Jk+1 \ J ′k+1 ⊆ Ĩ \ Ĩc, so Statement (b) holds for k + 1.

To show Statement (c) for k + 1, observe that Jk+1 \ J ′k+1 = ((Jk \ J ′k) \ {ik}) ∪ {i′k}
and Jk+1 ∩ J ′k+1 = (Jk ∩ J ′k) \ {i′k}). Therefore, Statement (c) for k + 1 follows from

Statement (c) for k and the fact that i′k πc∗ i for any i ∈ Jk+1 ∩ J ′k+1.

Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

Therefore, J ′k+1 \ Jk+1 ⊆ Ĩc and Jk+1 \ J ′k+1 ⊆ Ĩ \ Ĩc by Statements (a) and (b) for k,

respectively, implying Statements (a) and (b) for k + 1.

To show Statement (c) for k + 1, observe that Jk+1 \ J ′k+1 = (Jk \ J ′k) \ {ik} and

Jk+1 ∩ J ′k+1 = Jk ∩ J ′k. Therefore, Statement (c) for k + 1 follows from Statement (c) for

k trivially.
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Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

Therefore, Statements (a) and (b) for k+ 1 follows from the respective statements for k.

To show Statement (c) for k+ 1, observe that Jk+1 \J ′k+1 = Jk \J ′k and Jk+1∩J ′k+1 =

(Jk ∩ J ′k) \ {ik}. Therefore, Statement (c) for k + 1 follows from Statement (c) for k

trivially.

Case 4: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k \ Jk. We argue that this case is not possible. Since

i′k ∈ J ′k \Jk, i′k must be a category-c patient by Statement (a) for k. If c∗ = u, then every

patient in Jk \ J ′k has a higher priority with respect to π than every patient in Jk ∩ J ′k,
which cannot happen since ik ∈ Jk ∩ J ′k. Therefore, c∗ 6= u. Since i′k is a category-c

patient, there must not be a category-c∗ patient in J ′k. By Statement (c) for k, we know

that every patient in Jk \ J ′k has a higher priority with respect to πc∗ than every patient

in (Jk ∩ J ′k) \ Ic∗ = Jk ∩ J ′k. This is a contradiction to ik ∈ Jk ∩ J ′k. Therefore, Case 4 is

not possible.

Since I(3) = Jrc∗ and I ′(3) = J ′rc∗ , Statements 2 and 3 in Lemma S.6 follow from

Statements (a) and (b) above, respectively.

Lemma S.7. Suppose that c ∈ C \ {u} and c′, c∗, c̃ ∈ C \ {c} are different categories. Let

Ĩ ⊆ I and ., .′ ∈ ∆({c, c′, c∗, c̃}) be such that

• . is given as c′ . c . c∗ . c̃,

• .′ is given as c .′ c′ .′ c∗ .′ c̃,

• I(4) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(4) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(4) \ I ′(4)| = |I ′(4) \ I(4)|,
2. I(4) \ I ′(4) ⊆ Ĩ \ Ĩc,
3. if i′ ∈ I ′(4) \ I(4), i′ /∈ Ĩc, and i ∈ I(4), then i′ π i, and

4. if i′ ∈ I ′(4) \ I(4), i′ ∈ Ĩc, and i ∈ I(4) ∩ Ĩc, then i′ π i.

Proof of Lemma S.7. The first statement in Lemma S.7 follows as in the proof of

the first statement in Lemma S.4. Likewise, the fourth statement in Lemma S.7 follows
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as in the proof of the fifth statement in Lemma S.4.

To prove the other two statements, we use Lemma S.6. Let .̂, .̂′ ∈ ∆({c, c′, c∗}) be

such that

.̂ : c′ .̂ c .̂ c∗ and .̂′ : c .̂′ c′ .̂′ c∗.

Let I(3) = Ĩ \ ϕĨ.̂(Ĩ) and I ′(3) = Ĩ \ ϕĨ
.̂′

(Ĩ). Then I(4) = I(3) \ µ−1(c̃) and I ′(4) =

I ′(3) \ µ′−1(c̃).
For both precedence orders . and .′ under the sequential reserve matching procedure,

consider the beginning of the fourth step, at which category c̃ is processed. For ., the set

of available patients is I(3). For .′, the set of available patients is I ′(3). If I(3) = I ′(3),

then I(4) = I ′(4) which implies all the statements in Lemma S.7. Therefore, assume

that I(3) 6= I ′(3). For every precedence order, rc̃ patients with the highest priority with

respect to πc̃ are chosen.

We consider each patient chosen under . and .′ for category c̃ one at a time in sequence

with respect to the priority order πc̃. Since µ(Ĩc) ( Ĩc, rc̃ patients are matched with c̃

under both precedence orders. Let ik be the kth patient chosen under . for c̃ and i′k be

the kth patient chosen under .′ for c̃ where k = 1, . . . , rc̃. Let Jk be the set of patients

available when we process . for the kth patient and J ′k be the set of patients available

when we process .′ for the kth patient where k = 1, . . . , rc̃. For k = 1, Jk = I(3) and

J ′k = I ′(3). By definition, Jk+1 = Jk \ {ik} and J ′k+1 = J ′k \ {i′k}.
We show that

(a) Jk \ J ′k ⊆ Ĩ \ Ĩc,
(b) if c̃ = u, i′ ∈ J ′k \ Jk, τ(i′) 6= c, and i ∈ Jk, then i′ π i,

(c) if c̃ 6= u, i′ ∈ J ′k \ Jk, τ(i′) 6= c, and i ∈ Jk, then (Jk ∪ J ′k) ∩ Ic̃ = ∅ and i′ π i

(d) if c̃ 6= u, then (J ′k \ Jk) ∩ Ic̃ = ∅.
by mathematical induction on k. These three claims trivially hold for k = 1 by Statements

2 and 3 in Lemma S.6.

Fix k. In the inductive step, assume that Statements (a), (b), (c), and (d) hold for

k. Consider k + 1. If Jk+1 = J ′k+1, then the statements trivially hold. Assume that

Jk+1 6= J ′k+1 which implies that J` 6= J ′` for ` = 1, . . . , k. There are four cases depending

on which sets ik and i′k belong to. We consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. When |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| ≥ 1, i′k ∈ J ′k \ Jk
by Statements (b) and (c) for k. Therefore, |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| = 0. Furthermore,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk
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and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = ((Jk \ J ′k) \ {ik}) ∪ {i′k}.

Since |J ′k| = |Jk| and J ′k 6= Jk, we get |J ′k \ Jk| ≥ 1. Therefore, J ′k \ Jk has at least

one category-c patient because |{i′ ∈ J ′k \ Jk : τ(i′) 6= c}| = 0. Moreover, this patient has

higher priority with respect to πc̃ than any other category-c patient in J ′k ∩ Jk because

the former patient is chosen under . and the latter is not, so i′k cannot be category c.

Therefore, Statement (a) for k+ 1 follows from Statement (a) for k. Statements (b) and

(c) trivially hold for k + 1 as well because

{i′ ∈ J ′k+1 \ Jk+1 : τ(i′) 6= c} = {i′ ∈ J ′k \ Jk : τ(i′) 6= c} = ∅.

Statement (d) for k + 1 follows from Statement (d) for k.

Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

Since Jk+1 \ J ′k+1 ⊆ Jk \ J ′k, Statement (a) for k + 1 follows from Statement (a) for k.

Likewise, Statements (b), (c), and (d) for k+1 follow from the corresponding statements

for k because J ′k+1 \ Jk+1 ⊆ J ′k \ Jk, J ′k+1 ∪ Jk+1 ⊆ J ′k ∪ Jk, and Jk+1 ⊆ Jk.

Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

In this case, Statements (a), (b), (c), and (d) for k + 1 follow from their respective

statements for k.

Case 4: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k \ Jk. In this case,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = ((J ′k \ Jk) \ {i′k}) ∪ {ik}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.
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Statement (a) for k + 1 follows from Statement (a) for k trivially.

Statement (b) for k + 1 follows from ik π i for any i ∈ Jk+1 and also from Statement

(b) for k.

To show Statement (d) for k + 1, suppose that c̃ 6= u. Then by Statement (d) for k,

J ′k \ Jk does not have a category-c̃ patient. Since i′k ∈ J ′k \ Jk, this implies that there are

no category-c̃ patients in J ′k. Therefore, ik does not have category c̃. We conclude that

J ′k+1 \ Jk+1 = ((J ′k \ Jk) \ {i′k}) ∪ {ik} does not have a category c̃ patient, which is the

Statement (d) for k + 1.

To show Statement (c) for k + 1, suppose that c̃ 6= u, i′ ∈ J ′k+1 \ Jk+1, τ(i′) 6= c,

and i ∈ Jk+1. If i′ 6= ik, then i′ ∈ J ′k \ Jk since J ′k+1 \ Jk+1 = ((J ′k \ Jk) \ {i′k}) ∪ {ik}
and Statement (c) for k + 1 follows from Statement (c) for k because i ∈ Jk+1 ⊆ Jk.

Otherwise, suppose that i′ = ik. By Statement (d) for k+ 1, i′ does not have category c̃,

which implies that there are no category-c̃ patients in Jk; this in turn implies there are

no category-c̃ patients in Jk+1 since Jk+1 ⊆ Jk. Furthermore, by Statement (d) for k+ 1,

there are no category-c̃ patients in J ′k+1 \Jk+1. We conclude that there are no category-c̃

patients in J ′k+1 ∪ Jk+1. Finally, i′ πc̃ i for any i ∈ Jk+1 = Jk \ {i′} and since there are no

category-c̃ patients in J ′k+1 ∪ Jk+1 we get i′ π i.

Since I(4) = Jrc̃ and I ′(4) = J ′rc̃ , Statement 2 in Lemma S.7 follows from Statement

(a) and Statement 3 in Lemma S.7 follows from Statements (b) and (c).

Lemma S.8. Suppose that c ∈ C \ {u} and c′, c∗, c̃, ĉ ∈ C \ {c} are different categories.

Let Ĩ ⊆ I and ., .′ ∈ ∆({c, c′, c∗, c̃, ĉ}) be such that

• . be such that c′ . c . c∗ . c̃ . ĉ,

• .′ be such that c .′ c′ .′ c∗ .′ c̃ .′ ĉ,

• I(5) = Ĩ \ µ(Ĩ) where µ = ϕĨ.,

• I ′(5) = Ĩ \ µ′(Ĩ) where µ′ = ϕĨ.′, and

• µ(Ĩc) ( Ĩc.

Then the following results hold:

1. |I(5) \ I ′(5)| = |I ′(5) \ I(5)| and

2. I(5) \ I ′(5) ⊆ Ĩ \ Ĩc.

Proof. The first statement in Lemma S.8 follows as in the proof of the first statement

in Lemma S.4.

To prove the second statement, we use Lemma S.7. Let .̂, .̂′ ∈ ∆({c, c′, c∗, c̃}) be such

that

.̂ : c′ .̂ c .̂ c∗ .̂ c̃ and .̂′ : c .̂′ c′ .̂′ c∗ .̂ c̃.

S.9



Let I(4) = Ĩ \ ϕĨ.̂(Ĩ) and I ′(4) = Ĩ \ ϕĨ
.̂′

(Ĩ). Then I(5) = I(4) \ µ−1(c̃) and I ′(5) =

I ′(4) \ µ′−1(c̃).
For both precedence orders . and .′ under the sequential reserve matching procedure,

consider the beginning of the fifth step, at which category ĉ is processed. For ., the set

of available patients is I(4). For .′, the set of available patients is I ′(4). If I(4) = I ′(4),

then we get I(5) = I ′(5), which implies all the statements. Therefore, assume that

I(4) 6= I ′(4). For every precedence order, rĉ patients with the highest priority with

respect to πĉ are chosen.

We consider each patient chosen under . and .′ for category ĉ one at a time in sequence

with respect to the priority order πĉ. Since µ(Ĩc) ( Ĩc, rĉ patients are matched with ĉ

under both precedence orders. Let ik be the kth patient chosen under . for ĉ and i′k be

the kth patient chosen under .′ for ĉ where k = 1, . . . , rĉ. Let Jk be the set of patients

available when we process . for the kth patient and J ′k be the set of patients available

when we process .′ for the kth patient where k = 1, . . . , rĉ. For k = 1, Jk = I(4) and

J ′k = I ′(4). By definition, Jk+1 = Jk \ {ik} and J ′k+1 = J ′k \ {i′k}.

We show that

(a) Jk \ J ′k ⊆ Ĩ \ Ĩc and

(b) if i′ ∈ J ′k \ Jk and i ∈ Jk ∩ Ĩc, then i′ πĉ i

by mathematical induction on k. These results trivially hold for k = 1 by Statements 2,

3, and 4 in Lemma S.7.

Fix k. In the inductive step, assume that Statements (a) and (b) hold for k. Consider

k+1. If Jk+1 = J ′k+1, then the statements trivially hold. Assume that Jk+1 6= J ′k+1 which

implies that J` 6= J ′` for ` = 1, . . . , k. There are four cases depending on which sets ik

and i′k belong to. We consider each case separately.

Case 1: ik ∈ Jk \ J ′k and i′k ∈ J ′k ∩ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) =
(
(Jk \ J ′k) \ {ik}

)
∪ {i′k}.

If i′k ∈ Ĩc, then we get a contradiction to Statement (b) for k. Therefore, i′k /∈ Ĩc, which

implies that Statement (a) holds for k+1 by Statement (a) for k and the second displayed

equation. Statement (b) for k + 1 follows trivially from Statement (b) for k, the first

displayed equation, and Jk ⊇ Jk+1.
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Case 2: ik ∈ Jk \ J ′k and i′k ∈ J ′k \ Jk. Then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = (J ′k \ Jk) \ {i′k}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = (Jk \ J ′k) \ {ik}.

In this case, Statements (a) and (b) for k + 1 follow trivially from the corresponding

statements for k.

Case 3: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k ∩ Jk. In this case, ik = i′k, then

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = J ′k \ Jk

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

In this case, Statements (a) and (b) for k + 1 follow trivially from the corresponding

statement for k.

Case 4: ik ∈ Jk ∩ J ′k and i′k ∈ J ′k \ Jk. In this case,

J ′k+1 \ Jk+1 = (J ′k \ {i′k}) \ (Jk \ {ik}) = ((J ′k \ Jk) \ {i′k}) ∪ {ik}

and

Jk+1 \ J ′k+1 = (Jk \ {ik}) \ (J ′k \ {i′k}) = Jk \ J ′k.

Then Statement (a) for k + 1 follows from Statement (a) for k. Furthermore, ik πĉ i for

any i ∈ Jk+1, which together with Statement (b) for k imply Statement (b) for k + 1.

Since I(5) = Jrĉ and I ′(5) = J ′rĉ , Statement 2 in Lemma S.8 follows from Statement

(a).

Proof of Proposition 3. Let |C| ≤ 5. Let C∗ = {c∗ ∈ C : c∗ . c′} be the set of

categories processed before c′ under . and before c under .′. The orders of categories

in C∗ are the same with respect to . and .′. Thus, just before category c′ is processed

under . and c is processed under .′, the same patients are matched in both sequential

reserve matching procedures. Let Ĩ be the set of patients that are available at this point

in either procedure.

Let .̂ be the incomplete precedence order on C \ C∗ that processes categories in the

same order as in .. Likewise, let .̂′ be the incomplete precedence order on C \ C∗ that
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processes categories in the same order as in .′.

If ϕĨ.̂(Ĩc) = Ĩc then the result is proven. Therefore, assume that ϕĨ.̂(Ĩc) ( Ĩc in the

rest of the proof. Let k = |C \ C∗| be the number of remaining categories.

• If k = 2, then by Lemmas S.4 and S.5, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 3, then by Lemma S.6, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 4, then by Lemma S.7, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

• If k = 5, then by Lemma S.8, we obtain ϕĨ
.̂′

(Ĩc) ⊆ ϕĨ.̂(Ĩc).

These imply that

ϕ.′(Ic) ⊆ ϕ.(Ic)

completing the proof.

C A Polynomial Time Method for Smart Reserve

Matching Procedure

Consider the following algorithm for any n:

Step 0. Find a matching that is maximal and complies with eligibility requirements by

temporarily deeming that a patient i ∈ I is eligible for a category c ∈ C \ {u}
if and only if i ∈ Ic, and no patient is eligible for unreserved category u. This

is known as a bipartite maximum cardinality matching problem in graph theory

and many augmenting alternating path algorithms (such as those by Hopcroft and

Karp, 1973; Karzanov, 1973) can solve it in polynomial time. The solution finds the

maximum number of patients who can be matched with a preferential treatment

category that they are a beneficiaries of. Denote the number of patients matched

by this matching as nb.

Step 1. Let Ju0 = ∅, J0 = ∅. Fix parameters κ � ε > 0 such that ε < 1 and κ > |I|. For

k = 1, . . . , |I| we repeat the following substep given Juk−1, Jk−1:

Step 1.(k). Suppose ik is the patient who is prioritized kth in I according to π.

i. if |Juk−1| < n continue with (i.A) and otherwise continue with (ii).

A. Temporarily deem all patients in Juk−1 ∪ {ik} eligible only for cat-

egory u and all other patients eligible only for the categories in

C \ {u} that they are beneficiaries of.

B. for every pair (i, x) ∈ I × C ∪ {∅} define a weight Wi,x ∈ R as

follows:
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• If x ∈ C and i is temporarily eligible for x as explained in

(i.A),

– if i ∈ Juk−1 ∪ Jk−1, then define Wi,x := κ,

– otherwise, define Wi,x := ε.

• If x ∈ C and i is not temporarily eligible for x as explained

in (i.A), define Wi,x := −ε.
• If x = ∅, define Wi,x := 0.

C. Solve the following assignment problem to find a matching

σ ∈ arg max
µ∈M

∑
i∈I

Wi,µ(i)

using a polynomial algorithm such as the Hungarian algorithm

(Kuhn, 1955).

D. If |σ(I)| = nb + |Juk−1|+ 1 then define

Juk := Juk−1 ∪ {ik} and Jk := Jk−1,

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.
E. Otherwise, go to (ii).

ii. Repeat (i) with the exception that ik is temporarily deemed eligible only

for the categories in C\{u} that she is a beneficiary of in Part (ii.A). Parts

(ii.B) and (ii.C) are the same as Parts (i.B) and (i.C), respectively, with

the exception that weights are constructed with respect to the eligibility

construction in (ii.A). Parts (ii.D) and (ii.E) are as follows:

D. If |σ(I)| = nb + |Juk−1| and σ(i) 6= ∅ for all i ∈ Jk−1 ∪ {ik}, then

define

Juk := Juk−1 and Jk := Jk−1 ∪ {ik},

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.
E. Otherwise,

Juk := Juk−1 and Jk := Jk−1,

and go to Step 1.(k + 1) if k < |I| and Step 2 if k = |I|.
Step 2. (a) Find a matching σ as follows:

i. Temporarily deem all patients in Ju|I| eligible only for category u, all

patients in J|I| eligible only for the categories in C \ {u} that they are
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beneficiaries of, and all other patients ineligible for all categories.

ii. Find a maximal matching σ among all matchings that comply with

the temporary eligibility requirements defined in (i) using a polynomial

augmenting alternating paths algorithm (for example see Hopcroft and

Karp, 1973; Karzanov, 1973).

(b) Modify σ as follows:

One at a time assign the remaining units unmatched in σ to the remaining

highest priority patient in I \ (Ju|I|∪J|I|) who is eligible for the category of the

assigned unit in the real problem in the following order:

i. the remaining units of the preferential treatment categories in C \ {u}
in an arbitrary order, and

ii. the remaining units of the unreserved category u.

Step 3. Define

InS := σ(I).

Matching σ is a smart reserve matching with n unreserved category units processed

first.

The difference between this algorithm and the procedure we gave in the text is that

we do not have to construct the matching sets Mk in every Step 1(k), as this is an NP-

complete problem to solve. Instead, we solve appropriately constructed polynomial-time

optimization problems in |I| in each step to see whether desired matching exists in each

step. As there are polynomial number of steps in |I|, the resulting algorithm becomes

polynomial.

D Resource-Dependent Design Considerations

In this section, we offer some thoughts about how to implement a reserve system

might depend on the resource that is rationed. In Sections 3 and 4, we model pandemic

rationing as a one-shot static reserve system. Several vital resources, however, must

be rationed during a pandemic as patients in need present. Hence, it is important to

formulate how our static model can be operationalized in an application where patient

arrival and allocation are both dynamic. The adequate formulation depends on the

specific characteristics of the rationed resource. Most notably, answers to the following

two questions factor in the implementation details:

1. Is the resource fully consumed upon allocation or is it durable, utilized over a period,

and can it be re-allocated?
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2. Is there immediate urgency for allocation?

Since most guidelines are on rationing of vaccines, ventilators, ICU beds, and anti-viral

drugs or treatments, we focus our discussion on these four cases.

D.1 Vaccine Allocation

A unit of a vaccine is consumed upon allocation and reallocation of the unit is not

possible. Moreover, there is no immediate urgency to allocate a vaccine. Hence, a large

number of units can be allocated simultaneously. Therefore, vaccine allocation is an

application of our model where our proposed reserve system can be implemented on a

static basis as vaccines become available.

This is, however, not the only reasonable way a reserve system can be operationalized

for vaccine allocation. In the United States, there is a tradition of distributing influenza

vaccines at local pharmacies or healthcare providers on a first-come-first-serve basis. This

practice can be interpreted as a single-category special case of a reserve system where

the priorities are based on the time of arrival. This practice can easily be extended

to any sequential reserve matching system with multiple categories where the baseline

priorities are determined by the time of arrival. Under this dynamic implementation of

a reserve system, as a patient arrives to a healthcare provider she is allocated a vaccine

as long as there is availability in a category for which she is a beneficiary. If there are

multiple such categories, the patient is assigned a unit from the category that has the

highest precedence under the sequential reserve matching. While many have criticized

first-come-first-serve allocation because of biases it induces based on access to health care

(e.g., Kinlaw and Levine (2007)), reserve categories can be designed to mitigate these

biases, even if priority is first-come-first-serve within each category. For example, there

can be a reserve category for patients from rural areas. There is an important precedent

for using a reserve system in this dynamic form. Between 2005-2008, H-1B immigration

visas in the US were allocated through a reserve system with general and advanced-degree

reserve categories where priority for each category was based on the application arrival

time (Pathak, Rees-Jones, and Sönmez, 2020).

D.2 Ventilator/ICU Bed Allocation

Since the relevant characteristics of ventilators and ICU beds are identical in relation

to our model, the implementation of reserve systems for these resources will be similar.

Therefore, we present the details of their implementation together. For simplicity in this

subsection, we refer the resource in short supply as a ventilator.
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A ventilator is durable and can be reassigned once its use by its former occupant

is completed. Moreover, there is always urgency in allocation of this vital resource.

These two features make direct static implementation of a reserve system impractical;

implementation always has to be dynamic. One important observation on ventilator

allocation is key to formulate the implementation: since a ventilator is durable and

assigned to a patient for a period, it can be interpreted as a good which is allocated at

each instant. During the course of using a ventilator, a patient’s clinical situation and

her priority for one or more categories may change. Therefore, with the arrival of each

new patient, the allocation of all units has to be reevaluated. As such, the following

additional ethical and legal consideration has an important bearing on the design of a

reserve system:

3. Can a patient be removed from a ventilator once she is assigned?

There is widespread debate on this issue in the United States. Piscitello et al. (2020)

describes 25 states with protocols that discuss the ethical basis of re-assigning ventilators.

As of June 2020, the majority of guidelines support ventilator withdrawal. If a ventilator

can be withdrawn, the design is simpler (and effectively identical to static implementation

with each new arrival). While patient data needs to be updated through the duration of

ventilator use, no fundamental adjustment is needed for the design of the main parameters

of the reserve system. Of course in this scenario, it is possible that the category of the

unit occupied by the patient may change over time. For example, a patient may initially

be assigned a unit from the general category even though she has sufficiently high priority

for multiple categories such as the general category and essential personnel category. At

a later time, she may only have high enough priority for the latter category. In this case,

the patient will continue using the ventilator although for accounting purposes she will

start consuming a unit from a different category.

If a ventilator cannot be withdrawn, a reserve system can still be applied with a

grandfathering structure to reflect the property rights of patients who are already as-

signed. In this case, the priority system has to give highest priority to occupants of the

units from any category for as long as they can hold these units despite a change in their

clinical situation or arrival of patients who otherwise would have higher priority for these

units.

D.3 Anti-viral Drugs or Treatments

For anti-virals drugs and treatments, the vital resource is consumed upon allocation

(as in vaccine allocation) but there is typically urgency and allocation decisions will
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need to be made as patients arrive (as in ventilator allocation). One possible dynamic

implementation is based on first-come-first-serve arrival within reserve categories. This

would be akin to the dynamic allocation scenario for ventilators with a baseline priority

structure that depends on patient arrival time as described in Section D.1. Alternatively,

drug assignment can be batched within pre-specified time-windows. Drugs can then be

assigned based on expectations of the number of patients in each category over this time

window. Since drugs would be administered by a clinician, the relationship between a

reserve system and cutoffs can be particularly valuable. A clinician can simply assign

the treatment to a patient if she clears the cutoff for any reserve for which she is eligible.

In fact, after the first version of our paper was circulated, some of the authors assisted

with the design of the system used at the University of Pittsburgh Medical Center to

allocate the anti-viral drug remdesivir in May 2020 with this implementation. The sys-

tem had special provisions for hardest hit and essential personnel and used lotteries for

prioritization (see White et al. (2020) for more details on this system.)
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E Cutoffs in Real-life Applications

 
 
 

Figure A1.  Examples of Cutoffs in Reserve Systems from Chicago’s Affirmative Action System in 2020  
and Indian Civil Service Assignment in 2012 
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