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Abstract

This paper studies housing markets in the presence of constraints on the
number of agents involved in exchanges. We search for mechanisms satis-
fying effective endowments-swapping-proofness, which requires that no pair of
agents can gain by “individually rational” swapping their endowments be-
fore the mechanism is applied. Our first main result is that when preferences
are strict and feasibility constraints are imposed, no mechanism satisfies both
individual rationality and effective endowments-swapping-proofness. To avoid
this negative result, we consider two well-known restricted domains: com-
mon ranking preferences and single-dipped preferences. When each agent
has common ranking preferences, there exists a pairwise exchange mech-
anism that satisfies individual rationality and effective endowments-swapping-
proofness in the three-agent case; however, in the case with four or more
agents, we again obtain a negative result. We further establish that the top
trading cycles mechanism is the only pairwise exchange mechanism satis-
fying individual rationality and effective endowments-swapping-proofness when
preferences are single-dipped.
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1 Introduction

1.1 Motivation and outline

We study the Shapley and Scarf (1974) housing exchange economy, where each
agent is endowed with a heterogeneous indivisible object (house) and has strict
preferences over a set of objects. A “mechanism” reallocates the objects under
the condition that each agent consumes one and only one object. Applications of
this model are diverse: kidney exchange (Roth, Sönmez, and Ünver (2004)), on-
campus housing (Abdulkadiroğlu and Sömmez (1999)), school choice (Abdulka-
diroğlu and Sömmez (2003)), and airport landing slot assignments (Schummer
and Vohra (2013)).

It is well-known that the top trading cycles mechanism (TTC) selects the unique
core allocation via the famous Gale’s TTC algorithm (Roth and Postlewaite (1977)).1

Ma (1994) shows that TTC is the only mechanism that is efficient (a chosen assign-
ment cannot be changed in a manner that no agent is worse off, and some agent
is better off), individually rational (no agent is worse off after the reallocation), and
strategy-proof (no agent ever benefits from misrepresenting his preferences). Fol-
lowing Ma’s study, TTC has been widely characterized by other axioms: “Maskin
monotonicity” (Takamiya (2001)), “anonymity” (Miyagawa (2002)), “no-envy”
(Hashimoto and Saito (2015)), a weak form of efficiency (Ekici (2021)), and so
forth.2

Fujinaka and Wakayama (2018) study this problem from another perspec-
tive. They propose a new form of manipulation via endowments, endowments-
swapping-proofness. This axiom requires that no pair of agents can both strictly
benefit from exchanging their endowments before entering the mechanism.3 Such
manipulation by swapping their endowments is theoretically interesting and is

1See Section 3 for a definition of the TTC algorithm.
2Some studies have recently generalized TTC to the mentioned various popular applica-

tions. These generalized versions of TTC play a central role in these applications and have been
characterized in several studies (e.g., Pápai (2000); Svensson and Larsson (2005); Sönmez and
Ünver (2010); Dur (2013); Ekici (2013); Morrill (2013); Bade (2014); Tang and Zhang (2016); Pycia
and Ünver (2017)).

3Endowments-swapping-proofness applies only to two-agent coalitions. Postlewaite (1979) and
Moulin (1995) have already considered the version of endowments-swapping-proofness that involves
all subsets of agents. However, the mechanism designer can ignore manipulations by large coali-
tions because such strategic cooperation is difficult for large coalitions. Thus, this coalitional
version of endowments-swapping-proofness is too strong a requirement. Conversely, collusion by
two agents is relatively easy, and thus endowments-swapping-proofness is appealing if any pairs can
form.
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also interesting in real life. For example, in the context of kidney exchange, two
patients may have an incentive to swap their donors using legal loopholes (i.e.,
fake marriages and fake adoptions) to obtain higher-quality kidneys. Fujinaka
and Wakayama (2018) provide an alternative characterization of TTC in terms of
endowments-swapping-proofness: TTC is the only mechanism that satisfies individ-
ual rationality, strategy-proofness, and endowments-swapping-proofness.

Endowments-swapping-proofness does not require that the swapping before im-
plementing the mechanism is “individually rational.” That is, one agent might
temporarily receive an object that is strictly worse than his endowment. If so, he
may be reluctant to swap his endowment with that of another agent before par-
ticipating in the mechanism. This motivates us to weaken endowments-swapping-
proofness to require only that individually rational pre-swapping is not benefi-
cial. We call this weaker, natural axiom effective endowments-swapping-proofness.4

Interestingly, Fujinaka and Wakayama’s (2018) characterization still holds even
if endowments-swapping-proofness is weakened to effective endowments-swapping-
proofness.

As mentioned, many studies have examined desirable mechanisms in the
standard Shapley and Scarf model. However, this model ignores some important
aspects of reality, which prevent direct application of the results of this model to
real-life problems. One aspect is the constraint on the size of exchanges among
agents. For example, in the context of kidney exchange, it is well-known that
exchanges involving many donor and patient pairs are infeasible due to the pres-
ence of logistic constraints (e.g., the limited number of doctors and rooms in
which kidney transplants are performed).5 Therefore, this paper seeks to find
effectively endowments-swapping-proof mechanisms in the Shapley and Scarf model
with feasibility constraints.

We first establish an impossibility result on the domain of strict preferences:
the presence of feasible constraints makes it impossible to construct a mechanism
satisfying individual rationality and effective endowments-swapping-proofness (Theo-
rem 3).

We subsequently examine whether this negative result can be avoided on
smaller domains. To analyze this issue, we restrict attention to pairwise ex-
changes and consider “common ranking” preferences, which is first proposed

4Fujinaka and Wakayama (2018) call this axiom “weak endowments-swapping-proofness.”
5As another example, Nicolò and Rodorı́guez-Álvarez (2013a) notice that, in the case of hol-

iday house swaps, legal constraints may prevent exchanges of a larger size than pairwise ex-
changes.
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by Nicolò and Rodorı́guez-Álvarez (2017). An agent has common ranking pref-
erences if his ranking of “acceptable” objects coincides with the predetermined
common ranking of the objects. In the context of kidney exchange, this domain
of preferences is considered natural if each patient prefers kidneys from com-
patible younger donors to those from older donors. We then show that, on the
domain of common ranking preferences, the natural priority mechanism is the
only pairwise exchange mechanism that satisfies both individual rationality and
effective endowments-swapping-proofness when there are three agents (Theorem 4).6

However, in general, the above mentioned impossibility result persists; that is, no
pairwise exchange mechanism is individually rational and effectively endowments-
swapping-proof when there are at least four agents (Theorem 5).

We also consider another well-known restricted domain, called “single-dipped”
preferences. An agent has single-dipped preferences (with respect to a fixed order
of objects) if he has a unique worst object and on each side of this object accord-
ing to the order, his welfare is strictly increasing away from this object. Interest-
ingly, even when feasible exchanges are restricted to pairwise exchanges, TTC is
well-defined on that domain because the size of each cycle formed via the TTC
algorithm is either one or two (Proposition 2). This is primarily because there are
only two types of agents’ best objects when preferences are single-dipped. Con-
sequently, unlike the domain of common ranking preferences, we obtain a possi-
bility result on the domain of single-dipped preferences: TTC is the only pairwise
exchange mechanism that satisfies individual rationality and effective endowments-
swapping-proofness (Theorem 7).7

1.2 Related literature

Feasibility constraints A typical real-life example where the presence of fea-
sibility constraints becomes a serious concern in our model is living-donor kid-
ney transplantation. Roth et al. (2005) are the first to address the issue of fea-

6The natural priority mechanism allocates objects via an algorithm that prioritizes agents that
own objects with lower index numbers. In the algorithm, we start with a set of individually ratio-
nal pairwise assignments, and each agent sequentially refines the set of assignments to his best
assignments according to priority ordering. See Section 5.1 for a formal definition of this mecha-
nism.

7This possibility result no longer holds when each agent has more general single-dipped pref-
erences, called “single-dipped preferences on a tree.” In fact, individual rationality and effective
endowments-swapping-proofness are incompatible on this extended domain when only pairwise ex-
changes are allowed. For a more detailed discussion of the mechanisms on the domain of single-
dipped preferences on a tree, see Appendix A.
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sibility constraints in the context of kidney exchange and propose efficient and
strategy-proof pairwise exchange mechanisms. Unlike our study, they consider
dichotomous preferences, where all compatible kidneys (i.e., acceptable objects)
are homogenous for each patient. Some follow-up papers (e.g., Hatfield (2005),
Ünver (2010), Yılmaz (2011)) also share this view.

A disadvantage of the assumption of dichotomous preferences is that it does
not reflect recent medical findings that some factors, such as the age and health
status of the donor, body size, or kidney weight, affect the expected survival of
the graft (e.g., Øien et al. (2007), Giral et al. (2010)). Based on these medical
findings, Nicolò and Rodorı́guez-Álvarez (2012; 2013a) and Balbuzanov (2020)
consider another model in which feasibility constraints are imposed. However,
compatible kidneys are heterogeneous and each agent has strict preferences.8

This paper follows their approach. Nicolò and Rodorı́guez-Álvarez (2012) pro-
vide an impossibility result in that setting: no mechanism satisfies individual ra-
tionality, efficiency, and strategy-proofness. Nicolò and Rodorı́guez-Álvarez (2013a)
show that one cannot escape from this impossibility result by weakening strategy-
proofness to “ordinal Bayesian incentive compatibility.” Balbuzanov (2020) pro-
duces another impossibility result, showing the incompatibility between efficiency
and a fairness property, “anonymity.” Our Theorem 3 is considered an effective
endowments-swapping-proofness counterpart of these results.

Restricted domains Nicolò and Rodorı́guez-Álvarez (2017) show that, on the
domain of common ranking preferences, the natural priority mechanism is the
only pairwise exchange mechanism that satisfies efficiency, individual rationality,
and strategy-proofness.9 Our result indicates that this characterization theorem
can no longer hold, except in the three-agent case, when efficiency and strategy-
proofness are replaced by effective endowments-swapping-proofness.

Tamura (2023) shows that the characterizations of TTC proposed by Ma (1994)
and Fujinaka and Wakayama (2018) persist even if preferences are restricted to be-
ing single-dipped. However, Tamura does not consider feasibility constraints on
the size of exchanges. From our results, we propose that strategy-proofness can be
dropped from Tamura’s endowments-swapping-proofness characterization of TTC
on the domain of single-dipped preferences if we focus on pairwise exchanges.

8Roth et al. (2004), which is the earliest study on kidney exchange, also consider strict prefer-
ences, but ignore limitations on the size of exchanges.

9Rodorı́guez-Álvarez (2021) specifies the extent to which the domain of common ranking pref-
erences can be enlarged to permit the existence of mechanisms that satisfies the three axioms.
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1.3 Organization

The remainder of the paper is organized as follows. Section 2 introduces the
model and our axioms. Section 3 reviews the related results and provides new
insights under no feasibility constraints. Section 4 states our impossibility re-
sult for the model with feasibility constraints. Section 5 considers two restricted
domains of preferences and provides our results on these domains. Section 6 con-
cludes. Appendix A discusses the existence of effective endowments-swapping-proof
mechanisms on the domain of single-dipped preferences on a tree, instead of a
line. Appendix B contains the proofs that are omitted from the main text.

2 Preliminaries

2.1 Model

Let N = {1, 2, . . . , n} and H = {h1, h2, . . . , hn} be a finite set of agents and a finite
set of objects, respectively. Throughout this paper, we assume that n ≥ 3. An
assignment is a bijection x : N → H. For convenience, we write xi for x(i). Here,
xi represents the object agent i receives at x. Let X be the set of assignments.
An endowment is denoted by ω = (ωi)i∈N ∈ X, where ωi represents the object
owned by agent i.

Given a pair of an assignment and an endowment (x, ω) ∈ X × X, we call
a sequence (i1(= iS+1), . . . , iS) of agents a trading cycle at (x, ω) if for each
{s, s′} ⊂ {1, . . . , S} with s 6= s′, is 6= is′ and for each s ∈ {1, . . . , S}, xis = ωis+1 .
Given an endowment ω ∈ X and an integer ` ∈ {1, . . . , n}, we say that an assign-
ment x ∈ X is `-feasible with respect to ω if for each trading cycle (i1, . . . , iS)
at (x, ω), |{i1, . . . , iS}| ≤ `.10 Denote by X`(ω) the set of `-feasible assignments
with respect to ω.11

We assume that agent i ∈ N has a strict preference relation Âi over H. Let
P be the set of strict preferences over H. For each Â0 ∈ P , %0 represents the
induced weak preference relation from Â0; that is, for each {h, h′} ⊂ H, h %0 h′ if
and only if either h Â0 h′ or h = h′. Let PN be the set of strict preference profiles
Â = (Âi)i∈N such that for each i ∈ N, Âi ∈ P . We often represent Âi as an

10Given a set Z, |Z| denotes the cardinality of Z.
11Note that Xn(ω) = X for each ω ∈ X. However, if ` 6= n, there is {ω′, ω′′} ⊂ X such that

X`(ω′) 6= X`(ω′′). For example, consider the case where n = 3 and ` = 2. Let ω′ = (h1, h2, h3)
and ω′′ = (h2, h3, h1). Then, X`(ω′) 6= X`(ω′′), as (h2, h3, h1) ∈ X`(ω′′) but (h2, h3, h1) /∈ X`(ω′).
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ordered list of objects as follows:

Âi

h
h′

h′′
...

This means that agent i prefers object h the most; further, agent i prefers h to h′,
h′ to h′′, and so on. For each i ∈ N and each (Âi, ωi) ∈ P × H, let A(Âi, ωi) =
{h ∈ H \ {ωi} : h Âi ωi} be the set of acceptable objects for i at (Âi, ωi).

An economy is a pair of a preference profile and an endowment e = (Â, ω) ∈
PN × X. Let E ⊆ PN × X be a set of admissible economies, which we call a
domain. Denote by E st = PN × X the strict domain.

Given a domain E ⊆ E st, a mechanism on E is a function f : E → X that
maps each economy e = (Â, ω) ∈ E to an assignment f (e) ∈ X. Given an
integer ` ∈ {1, . . . , n}, we say that a mechanism f on E is `-feasible if for each
e = (Â, ω) ∈ E , f (e) ∈ X`(ω). In particular, we say that a mechanism f on E is a
pairwise exchange mechanism if it is 2-feasible.

2.2 Axioms

We introduce desirable properties of mechanisms. To explain our main axiom, we
begin by introducing the following strategic property: no pair of agents can both
strictly benefit from swapping their endowments before they enter the mecha-
nism. To define this property formally, we require additional notation. Given an
economy e = (Â, ω) ∈ E and a pair {i, j} ⊂ N, let ei,j = (Â, ωi,j) ∈ PN × X be
such that ω

i,j
i = ωj, ω

i,j
j = ωi, and for each k ∈ N \ {i, j}, ω

i,j
k = ωk.

Endowments-swapping-proofness: There are no e = (Â, ω) ∈ E and {i, j} ⊂ N
such that

(i) ei,j ∈ E , and

(ii) fi(ei,j) Âi fi(e) and f j(ei,j) Âj f j(e).

It should be emphasized that in the definition of endowments-swapping-proofness,
the pre-swapping is not required to be individually rational; that is, one agent
might temporarily receive an object that is strictly worse than his endowment.
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Then, one can consider a weaker and more natural version of endowments-swapping-
proofness, which only requires that individually rational pre-swapping is not prof-
itable.12

Effective endowments-swapping-proofness: There are no e = (Â, ω) ∈ E and
{i, j} ⊂ N such that

(i) ei,j ∈ E ,

(ii) ωj ∈ A(Âi, ωi) and ωi ∈ A(Âj, ωj), and

(iii) fi(ei,j) Âi fi(e) and f j(ei,j) Âj f j(e).

Remark 1. Fujinaka and Wakayama (2018), who first propose both endowments-
swapping-proofness and effective endowments-swapping-proofness, do not include Con-
dition (i), ei,j ∈ E , in their definitions. This is because they only consider the strict
domain and that domain clearly includes any “swapping economy” in which a
pair of agents swaps their endowments. Unlike Fujinaka and Wakayama (2018),
we consider not only the strict domain but also its restricted domains. There is no
guarantee that such restricted domains necessarily include any swapping econ-
omy. This makes it necessary for us to require Condition (i) in the definitions of
endowments-swapping-proofness and effective endowments-swapping-proofness. ♦

We also impose the following allocative property, which states that no one is
made worse off by participating in a mechanism.

Individual rationality: For each e = (Â, ω) ∈ E and each i ∈ N,

fi(e) %i ωi.

3 Endowments-swapping-proof mechanisms without

feasibility constraints

A prominent mechanism on the strict domain is the so-called top trading cycles
mechanism. The top trading cycles mechanism, or TTC for short, is the mecha-
nism TTC : E st → X that selects for each e ∈ E st, the assignment TTC(e) obtained
via the following algorithm, known as the TTC algorithm:

12This notion itself is not new and has been already presented in Fujinaka and
Wakayama (2018), who call it “weak endowments-swapping-proofness.”
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• Step 1. Each agent points to the agent who owns his best object. Then, there
is at least one trading cycle as there is a finite number of agents. Each agent
involved in a cycle is assigned the object along the cycle and removed. If an
agent remains, the procedure continues to the next step, and it terminates
otherwise.

• Step t ≥ 2. Each remaining agent points to the agent who owns his best
object among those remaining. Then, at least one trading cycle exists. Each
agent involved in a cycle is assigned the object along the cycle and removed.
If an agent remains, the procedure continues to the next step, and it termi-
nates otherwise.

For each e = (Â, ω) ∈ E st and each t ∈ N, let St(e) ⊂ 2N be the set of groups
of agents that form cycles at Step t of TTC, and

Nt(e) =
∪

S∈St(e)

{S};

Ht(e) = {h ∈ H : ωi = h for some i ∈ Nt(e)}.

That is, S = {i1(= iK+1), . . . , iK} ∈ St(e) means that for each k ∈ {1, . . . , K},
ik ∈ N \ ∪t−1

j=1 Nj(e) and ωik ∈ H \ ∪t−1
j=1 Hj(e), and for each h ∈ H \ (

∪t−1
j=1 Hj(e) ∪

{ωik+1}), ωik+1 Âik h.
An axiomatic characterization of TTC on the strict domain in terms of effec-

tive endowments-swapping-proofness has been already presented in Theorem 4 of
Fujinaka and Wakayama (2018).

Theorem 1. A mechanism on E st is individually rational, strategy-proof, and effectively
endowments-swapping-proof if and only if it is TTC.13

As Example 1 below shows, TTC violates the following strict version of effec-
tive endowments-swapping-proofness.

Strict effective endowments-swapping-proofness: There are no e = (Â, ω) ∈ E

and {i, j} ⊂ N such that

(i) ei,j ∈ E ,

13The notion of strategy-proofness requires that no agent should ever be made better off than by
telling the truth. This notion is formally stated as follows: For each e = (Â, ω) ∈ E , each i ∈ N,
and each e′ = ((Â′

i,Â−i), ω) ∈ E , fi(e) %i fi(e′).
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(ii) ωj ∈ A(Âi, ωi) and ωi ∈ A(Âj, ωj), and

(iii) fi(ei,j) %i fi(e) and f j(ei,j) Âj f j(e).

Example 1. Let e = (Â, ω) ∈ E st be such that

Â1 Â2 Â3 Âj≥4

h3 h3 h1 hj

h2
... h2

...
h1 h3
...

...

and for each i ∈ N, ωi = hi. Then, TTC(e) = (h3, h2, h1, h4, . . . , hn) and TTC(e2,3) =
(h2, h3, h1, h4, . . . , hn). It thus follows that ω3 = h3 ∈ A(Â2, ω2) and ω2 = h2 ∈
A(Â3, ω3), and

TTC2(e2,3) = h3 Â2 h2 = TTC2(e);

TTC3(e2,3) = h1 = TTC3(e).

This implies that TTC violates strict effective endowments-swapping-proofness. ¥

The next result indicates that on the strict domain, not only TTC, but also all
other individually rational mechanisms violate strict effective endowments-swapping-
proofness.

Theorem 2. No mechanism on E st satisfies individual rationality and strict effective
endowments-swapping-proofness.

Proof. See Appendix B.

4 Endowments-swapping-proof mechanisms with fea-

sibility constraints

As shown above, in the setting without feasibility constraints on the size of trad-
ing cycles, TTC is the unique mechanism that satisfies individual rationality, strategy-
proofness, and effective endowments-swapping-proofness. A natural question is whether
an effectively endowments-swapping-proof mechanism satisfying other desirable prop-
erties can be found when we impose feasibility constraints on the size of trad-
ing cycles. Unfortunately, the next result indicates that as soon as feasibility
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constraints are imposed, individual rationality and effectively endowments-swapping-
proofness are incompatible.

Theorem 3. Let ` ∈ {1, . . . , n − 1}. Then, no `-feasible mechanism on E st satisfies
individual rationality and effective endowments-swapping-proofness.

Proof. Suppose, by contradiction, that there is an `-feasible mechanism f on E st

satisfying the two axioms. Let Â ∈ PN be such that

Â1 Â2 Â3 . . . Âk . . . Ân−1 Ân

h2 h3 h4 . . . hk+1 . . . hn h1

h3 h4 h5 . . . hk+2 . . . h1 h2

h4 h5 h6 . . . hk+3 . . . h2 h3
...

...
... . . .

... . . .
...

...
hn−1 hn h1 . . . hk−2 . . . hn−3 hn−2

hn h1 h2 . . . hk−1 . . . hn−2 hn−1

h1 h2 h3 . . . hk . . . hn−1 hn

Since we fix the preference profile Â in this proof, we write ω for e = (Â, ω).
Let ω̄ = (h1, h2, . . . , hn). For each m ∈ N(= {1, 2, . . . , n}) and each integer m′(≥
n + 1), let hm′ = hm if m′ ≡ m (mod n).

Step 1: f1(ω̄) = h2. Let Ω1
1 = {ω ∈ X : ω1 = h2} and for each k ∈ N \ {1},

Ω1
k = {ω ∈ X : ω1 = hk+1 and for each i ∈ {2, . . . , k}, ωi = hi} .

Note that Ω1
n = {ω̄}. We prove by induction that for each k ∈ N and each

ω ∈ Ω1
k, f1(ω) = h2.

BASE STEP. Let k = 1 and ω ∈ Ω1
1. By individual rationality, f1(ω) = h2.

INDUCTION HYPOTHESIS. Let k ∈ {2, 3, . . . , n}. For each k′ ∈ {1, 2, . . . , k − 1}
and each ω ∈ Ω1

k′ , f1(ω) = h2.

INDUCTION STEP. Let k ∈ {2, 3, . . . , n} and ω ∈ Ω1
k. Then, ω is represented as

follows:

11



Â1 Â2 Â3 . . . Âk−1 Âk

h2 h3 h4 . . . hk hk+1

h3 h4 h5 . . . hk+1 hk+2
...

...
... . . .

...
...

hk
...

... . . .
...

...

hk+1
...

... . . .
...

...
...

...
... . . .

...
...

h1 h2 h3 . . . hk−1 hk

In the above preference table, the boxes indicate the agents’ endowments. Sup-
pose, by contradiction, that f1(ω) 6= h2. By individual rationality, there is q ∈
{3, 4, . . . , k + 1} such that f1(ω) = hq. Then, we can show the following claim by
using the induction hypothesis.

Claim 1. For each i ∈ {q − 1, q, . . . , k}, fi(ω) = hi+1.

The proof of Claim 1 is in Appendix B. By Claim 1, we have fq−1(ω) = hq, which
contradicts f1(ω) = hq.

Step 2: For each i ∈ N \ {1}, fi(ω̄) = hi+1. Let i ∈ N \ {1}. Let Ωi
1 = {ω ∈ X :

ωi = hi+1} and for each k ∈ N \ {1},

Ωi
k =

{
ω ∈ X : ωi = hi+k and for each j ∈ {i + 1, . . . , i + k − 1}, ωj = hj

}
.

Note that Ωi
n = {ω̄}. By argument similar to Step 1, we can show that for each

k ∈ N and each ω ∈ Ωi
k, fi(ω) = hi+1.

Step 3: Conclusion. By Steps 1 and 2, we have that for each i ∈ N, fi(ω̄) = hi+1.
This means f (ω̄) /∈ X`(ω̄), which is a contradiction.

5 Pairwise exchanges on restricted domains

We have so far observed that individual rationality and effective endowments-swapping-
proofness are incompatible on the strict domain when the size of trading cycles is
limited. However, these two axioms might be compatible if one restricts the do-
main of strict preferences to a special class of preferences. This section examines
whether the two axioms are compatible on a restricted domain when we focus
on pairwise exchanges. Here we consider two well-known restricted domains:
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common ranking preferences (Nicolò and Rodrı́guez-Álvarez (2017); Rodrı́guez-
Álvarez (2021)) and single-dipped preferences.

5.1 Common ranking preferences

We begin our discussion by providing a formal definition of common ranking
preferences. An agent who has a common ranking preference orders acceptable
objects according to a predetermined ranking of objects that is common to all
agents. Here we consider the common ranking in which objects are naturally
ordered; that is, for each {j, k} ∈ N with j < k, hj is ranked higher than hk. For
each i ∈ N and ωi ∈ H, we say that agent i’s preference relation Âi ∈ P is a
common ranking preference with respect to ωi if for each {hj, hk} ⊆ A(Âi, ωi),

hj Âi hk ⇐⇒ j < k.

Let Pωi ⊂ P be the set of common ranking preferences with respect to ωi. Given
ω ∈ X, let Pω = ∏n

i=1 Pωi . Denote by E cm =
∪

ω∈X {Pω × {ω}} the common
ranking domain.

Given an endowment ω ∈ X, a priority ordering at ω, σJωK : N → N, is a
permutation such that the k-th agent in the permutation is the agent with the k-th
priority. Let σ = {σJωK : ω ∈ X} be a priority ordering. The natural priority
ordering is the priority ordering σ∗ such that for each ω ∈ X and each i ∈ N, if
ωi = hk, then σ∗JωK(i) = k.

We introduce a pairwise exchange mechanism that selects the assignment ob-
tained the following algorithm:

σ-priority algorithm. Pick any priority ordering σ and any economy e = (Â
, ω) ∈ E :

• Xσ
0 (e) = I(e) = {x ∈ X2(ω) : for each i ∈ N, xi %i ωi}.

• For each t ∈ N, let Xσ
t (e) ⊆ Xσ

t−1(e) be such that:

Xσ
t (e) =

{
x ∈ Xσ

t−1(e) :
there is no y ∈ Xσ

t−1(e) such that
y(σJωK)−1(t) Â(σJωK)−1(t) x(σJωK)−1(t)

}
.

The σ-priority algorithm works as follows. Given an economy e = (Â, ω) ∈ E ,
we start with the set I(e), which denotes the set of individually rational pairwise
assignments for e. At Step 1, the first agent in the priority ordering σJωK selects
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his best pairwise assignments from the set of individually rational pairwise as-
signments. The selection proceeds iteratively. In general, at Step t ≥ 2, the t-th
agent in the priority ordering σJωK selects his best pairwise assignments from
those that have survived in the previous steps. The natural priority mechanism
is the pairwise exchange mechanism P : E cm → X such that for each e ∈ E cm,
P(e) ∈ Xσ∗

n (e).

Remark 2. Note that for each e ∈ E cm, Xσ
n(e) 6= ∅ and |Xσ

n(e)| = 1. Accordingly,
we confirm that the natural priority mechanism is well-defined. ♦

Remark 3. There is a priority ordering σ̄( 6= σ∗) such that for each e ∈ E cm,
Xσ∗

n (e) = Xσ̄
n(e). Specifically, it satisfies the following: for each ω ∈ X and each

i ∈ N, if ωi = hk and k ≤ n − 2, then σ̄JωK(i) = k. Then, we also refer to the
mechanism that selects the assignment via the σ̄-priority algorithm as the natu-
ral priority mechanism, although σ̄-priority algorithm is not based on the natural
priority ordering. ♦

The next result indicates that on the common ranking domain, no pairwise
exchange mechanism meets both individual rationality and effective endowments-
swapping-proofness except for the natural priority mechanism.

Proposition 1. If a pairwise exchange mechanism on E cm is individually rational and
effectively endowments-swapping-proof, then it is the natural priority mechanism.

Proof. See Appendix B.

Note that Proposition 1 says nothing about whether the natural priority mech-
anism on the common ranking domain satisfies effective endowments-swapping-
proofness. In fact, when there are three agents, the natural priority mechanism
on the common ranking domain is the only pairwise exchange mechanism satis-
fying both individual rationality and effective endowments-swapping-proofness.

Theorem 4. Suppose n = 3. A pairwise exchange mechanism on E cm is individually ra-
tional and effectively endowments-swapping-proof if and only if it is the natural priority
mechanism.

Proof. See Appendix B.

Unfortunately, the natural priority mechanism on the common ranking do-
main violates effective endowments-swapping-proofness when there are at least four
agents, as illustrated by the four-agent example below (the example can easily be
adapted to n > 4).
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Example 2. Suppose N = {1, 2, 3, 4}. Let e = (Â, ω) ∈ E cm be such that

Â1 Â2 Â3 Â4

h2 h3 h1 h1

h3 h4 h4 h2

h1 h2 h3 h4

h4 h1 h2 h3

and ω = (h1, h2, h3, h4). Then, for each i ∈ N, σ∗JωK(i) = i, and hence P(e) =
(h3, h4, h1, h2). Consider e2,4. By ω2,4 = (h1, h4, h3, h2), σ∗Jω2,4K(1) = 1, σ∗Jω2,4K(2) =
4, σ∗Jω2,4K(3) = 3, and σ∗Jω2,4K(4) = 2. Thus, P(e2,4) = (h2, h3, h4, h1). Then,
e2,4 ∈ E cm, ω4 = h4 ∈ A(Â2, ω2) and ω2 = h2 ∈ A(Â4, ω4), and

P2(e2,4) = h3 Â2 h4 = P2(e);

P4(e2,4) = h1 Â4 h2 = P4(e),

which implies that P violates effective endowments-swapping-proofness. ¥

The observation in Example 2, together with Proposition 1, yields the follow-
ing impossibility result.

Theorem 5. Suppose n ≥ 4. No pairwise exchange mechanism on E cm satisfies indi-
vidual rationality and effective endowments-swapping-proofness.

Theorem 5 is in sharp contrast with Nicolò and Rodrı́guez-Álvarez’s (2017)
possibility result that the natural priority mechanism on the common ranking
domain is the only pairwise exchange mechanism satisfying individual rationality,
efficiency, and strategy-proofness.

Furthermore, by strengthening effective endowments-swapping-proofness to strict
effective endowments-swapping-proofness, we face a similar impossibility result even
in the three-agent case.

Theorem 6. No pairwise exchange mechanism on E cm satisfies individual rationality
and strict effective endowments-swapping-proofness.

Proof. From Theorem 4 and Theorem 5, it suffices to show that the natural priority
mechanism on E cm violates strict effective endowments-swapping-proofness in the
three-agent case. Let e = (Â, ω) ∈ E cm be such that
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Â1 Â2 Â3

h2 h3 h1

h3 h2 h2

h1 h1 h3

and ω = (h1, h2, h3). Then, for each i ∈ N, σ∗JωK(i) = i, and hence P(e) =
(h3, h2, h1). Consider e2,3. By ω2,3 = (h1, h3, h2), σ∗Jω2,3K(1) = 1, σ∗Jω2,3K(2) = 3,
and σ∗Jω2,3K(3) = 2. Thus, P(e2,3) = (h2, h3, h1). Then, e2,3 ∈ E cm, ω3 = h3 ∈
A(Â2, ω2) and ω2 = h2 ∈ A(Â3, ω3), and

P2(e2,3) = h3 Â2 h2 = P2(e);

P3(e2,3) = h1 = P3(e),

which implies that P violates strict effective endowments-swapping-proofness.

5.2 Single-dipped preferences

This section considers another restricted domain of preferences, called “single-
dipped” preferences. We first describe a formal definition of single-dipped pref-
erences. To do this, we consider a linear order < on H. Without loss of generality,
we fix a linear order < on H as:

h1 < h2 < · · · < hn.

Given i ∈ N, we say that i’s preference relation Âi ∈ P is single-dipped with
respect to < if there is an object, d(Âi) ∈ H, such that

(i) for each h ∈ H \ {d(Âi)}, h Âi d(Âi);

(ii) for each {h, h′} ⊂ H \ {d(Âi)}, if either h′ < h < d(Âi) or d(Âi) < h < h′,
then h′ Âi h.

We denote by S∨ ⊂ P the set of single-dipped preference relations. Let E ∨ =
S N

∨ × X be the single-dipped domain.
Interestingly, TTC on the single-dipped domain is a pairwise exchange mech-

anism because the size of each trading cycle generated by TTC is either one or
two. Moreover, on this domain, TTC emerges as the unique mechanism satisfy-
ing individual rationality and effective endowments-swapping-proofness.

Proposition 2. TTC on E ∨ is a pairwise exchange mechanism.
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Proof. Let e = (Â, ω) ∈ E ∨. Without loss of generality, for each i ∈ N, ωi =
hi. We denote i(t) (resp. i(t)) the lowest (resp. highest) index among the set of
remaining agents at Step t. Note that i(1) = 1 and i(1) = n.

We first consider Step 1 of TTC. Since preferences are single-dipped, then for
each i ∈ N and each h ∈ H \ {ωi(1), ωi(1)}, we have either

(a) ωi(1) = ω1 Âi h and ωi(1) Âi ωi(1), or

(b) ωi(1) = ωn Âi h and ωi(1) Âi ωi(1).

Thus,

S1(e) ∈
{{

{i(1), i(1)}
}

,
{
{i(1)}, {i(1)}

}
,
{
{i(1)}

}
,
{
{i(1)}

}}
,

which implies that N1(e) ⊆ {i(1), i(1)} = {1, n}. We next consider Step t ≥ 2.
Since preferences are single-dipped, then for each i ∈ N \ ∪t−1

j=1 Nj(e) and each

h ∈ H \
(∪t−1

j=1 Hj(e) ∪ {ωi(t), ωi(t)}
)

, we have either

(a) ωi(t) Âi h and ωi(t) Âi ωi(t), or

(b) ωi(t) Âi h and ωi(t) Âi ωi(t).

Thus,
St(e) ∈

{{
{i(t), i(t)}

}
,
{
{i(t)}, {i(t)}

}
,
{
{i(t)}

}
,
{
{i(t)}

}}
,

which implies that Nt(e) ⊆ {i(t), i(t)}. Hence, we observe that the size of each
cycle formed in each step is either one or two. This implies that TTC on E ∨ is a
pairwise exchange mechanism.

Theorem 7. A pairwise exchange mechanism on E ∨ is individually rational and effec-
tively endowments-swapping-proof if and only if it is TTC.

Proof. See Appendix B.

Recall that effective endowments-swapping-proofness is weaker than endowments-
swapping-proofness. Moreover, it is easy to see that TTC on E ∨ satisfies endowments-
swapping-proofness. Using these facts together with Theorem 7, we obtain the fol-
lowing corollary.

Corollary 1. A pairwise exchange mechanism on E ∨ is individually rational and endowments-
swapping-proof if and only if it is TTC.
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Remark 4. Both Theorem 7 and Corollary 1 no longer hold if we consider the
size of exchanges larger than pairwise exchanges. That is, we can construct a
non-TTC mechanism that satisfies individual rationality and (effective) endowments-
swapping-proofness. To demonstrate this, consider n = 3 and the following 3-
feasible mechanism: for each e ∈ E ∨,

f ∨(e) =

(h2, h3, h1) if e = (Â′, ω′)

TTC(e) otherwise,

where

Â′
1 Â′

2 Â′
3

h3 h3 h1

h2 h2 h2

h1 h1 h3

and ω′ = (h1, h2, h3). It is clear that this mechanism is individually rational. Ad-
ditionally, it satisfies effective endowments-swapping-proofness.14 Indeed, Tamura
(2023) has shown that strategy-proofness is indispensable for the characterization
of TTC using (effective) endowments-swapping-proofness on the singe-dipped do-
main without feasibility constraints. That is, our results indicate that one can
drop strategy-proofness in Tamura’s characterization of TTC if pairwise exchanges
only are allowed. ♦

Remark 5. The domain of single-dipped preferences considered in this section
can be referred to as the domain of single-dipped preferences on a line. We can
consider a generalization of this domain, called the domain of single-dipped pref-
erences on a “tree.” Without feasibility constraints on the size of exchanges, the
characterization of TTC holds on the domain of single-dipped preferences on a
tree (Tamura (2023)). However, our characterizations of TTC (Theorem 7 and
Corollary 1) no longer hold on the domain of single-dipped preferences on a tree.
We discuss it in detail in Appendix A. ♦

14For each e = (Â, ω) ∈ E ∨, if Â 6= Â′, f∨(e) = TTC(e). Since TTC is effectively endowments-
swapping-proof, no pair of agents has an incentive to swap their endowments at e = (Â, ω) with
Â 6= Â′. Therefore, we now consider e = (Â, ω) with Â = Â′. If ω = ω′, agents 2 and 3
have no incentive to swap their endowments with another agent because they have received their
best objects; that is, no pair of agents gains by swapping their endowments at (Â′, ω′). Thus,
we consider the case ω 6= ω′. Then, f∨(Â′, ω) = TTC(Â′, ω). Since TTC is efficient at (Â′, ω),
TTC(Â′, ω) ∈ {(h3, h2, h1), (h2, h3, h1)}. In both cases, two of the three agents receive their best
objects. Hence, no pair of agents has an incentive to swap their endowments. Hence we conclude
that f∨ is effectively endowments-swapping-proof.
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As the following example shows, TTC violates strict effective endowments-swapping-
proofness even on the single-dipped domain.

Example 3. Let e = (Â, ω) ∈ E ∨ be such that

Â1 Âi≥2

hn h1

hn−1 h2
...

...
h2 hn−1

h1 hn

and ω = (h1, h2, . . . , hn). Then, TTC(e) = (hn, h2, h3, . . . , hn−1, h1) and TTC(e1,2) =
(hn, h1, h3, . . . , hn−1, h2). Hence, e1,2 ∈ E ∨, ω2 = h2 ∈ A(Â1, ω1) and ω1 = h1 ∈
A(Â2, ω2), and

TTC1(e1,2) = hn = TTC1(e);

TTC2(e1,2) = h1 Â2 h2 = TTC2(e),

in violation of strict effective endowments-swapping-proofness. ¥

By Theorem 7 and Example 3, we have the following corollary.

Corollary 2. No pairwise exchange mechanism on E ∨ satisfies individual rationality
and strict effective endowments-swapping-proofness.

Before completing this section, we check the independence of axioms in The-
orem 7.

Example 4 (Dropping effective endowments-swapping-proofness). Consider the
following pairwise exchange mechanism, NT: for each e = (Â, ω) ∈ E ∨, NT(e) =
ω. This mechanism is individually rational, but not effectively endowments-swapping-
proof. ¥

Example 5 (Dropping individual rationality). Consider the following pairwise
exchange mechanism, f↔: for each e = (Â, ω) ∈ E ∨,

• if n is even, then for each i ∈
{

1, . . . , n
2

}
, f↔2i−1(e) = ω2i and f↔2i (e) = ω2i−1;

• if n is odd, then f↔n (e) = ωn and for each i ∈
{

1, . . . , n−1
2

}
, f↔2i−1(e) = ω2i

and f↔2i (e) = ω2i−1.
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It is easy to see that this mechanism violates individual rationality. We show below
that f↔ is effectively endowments-swapping-proof. Suppose, by contradiction, that
there are e = (Â, ω) ∈ E ∨ and {i, j} ⊂ N such that

(i) ei,j ∈ E ∨,

(ii) ωj ∈ A(Âi, ωi) and ωi ∈ A(Âj, ωj), and

(iii) f↔i (ei,j) Âi f↔i (e) and f↔j (ei,j) Âj f↔j (e).

Let

N↔ =


{
{2i − 1, 2i} ⊂ N : ∃ i ∈

{
1, . . . , n

2

}}
if n is even{

{2i − 1, 2i} ⊂ N : ∃ i ∈
{

1, . . . , n−1
2

}}
if n is odd.

There are two cases.

• Case 1: {i, j} ∈ N ↔. Without loss of generality, we assume {i, j} = {1, 2}. By
(ii), ω2 Â1 ω1. Then, by the definition of f↔, f↔1 (e) = ω2 and f↔1 (e1,2) = ω1,2

2 =
ω1. By (iii), f↔1 (e1,2) = ω1 Â1 ω2 = f↔1 (e), which contradicts ω2 Â1 ω1.

• Case 2: {i, j} /∈ N ↔. Without loss of generality, we assume i = 1. By {i =
1, j} /∈ N↔, j 6= 2. Then, by the definition of f↔, f↔1 (e1,j) = ω

1,j
2 = ω2 = f↔1 (e),

which contradicts (iii). ¥

6 Conclusion

This paper searched for effectively endowments-swapping-proof mechanisms in the
presence of feasibility constraints on trading cycles. We found that on the strict
domain, individual rationality and effective endowments-swapping-proofness are in-
compatible under the feasibility constraints. To escape from this negative result,
we considered two well-known domains of preferences: common ranking pref-
erences and single-dipped preferences. First, we showed that if there are three
agents, then the natural priority mechanism is the only pairwise exchange mech-
anism on the common ranking domain that satisfies individual rationality and ef-
fective endowments-swapping-proofness; otherwise, the two axioms are incompati-
ble on the common ranking domain with pairwise exchanges. Second, we es-
tablished that on the single-dipped domain, TTC is the only pairwise exchange
mechanism that satisfies individual rationality and effective endowments-swapping-
proofness.

We close our discussion by mentioning four possible extensions of the model.
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Other restricted domains Since we considered single-dipped preferences, we
can also consider its dual version,“single-peaked” preferences. Recently interest
has been growing in mechanisms on the single-peaked domain. (Bade (2019);
Liu (2022); Tamura (2022); Tamura and Hosseini (2022); Fujinaka and Wakayama
(2023)). According to these studies, there are many non-TTC mechanisms on
the single-peaked domain that satisfy certain desirable properties if there are no
feasibility constraints. Thus, it remains open to clarify the structure of effectively
endowments-swapping-proof mechanisms on the single-peaked domain both with
and without feasibility constraints.

Beyond pairwise exchanges We only considered pairwise exchanges on our
two restricted domains. It would be interesting to study exchanges that involve
more than two agents on those domains. Nicolò and Rodrı́guez-Álvarez (2017)
show that on the common ranking domain, no `-feasible (where 3 ≤ ` < n) mech-
anism satisfies individual rationality, (constrained) efficiency, and strategy-proofness.
It remains open as to whether a similar negative result holds when using ef-
fective endowments-swapping-proofness instead of efficiency and strategy-proofness.
Tamura’s (2023) characterization of TTC on the single-dipped domain implies
that TTC is the unique `-feasible (where 3 ≤ ` < n) mechanism satisfying indi-
vidual rationality, strategy-proofness, and endowments-swapping-proofness. Remark 4
stated that the characterization no longer holds without strategy-proofness. Find-
ing non-strategy-proof `-feasible mechanisms satisfying individual rationality and
effective endowments-swapping-proofness is an interesting future research topic.

Weak preferences Our setting does not allow the preferences of agents to ex-
hibit indifferences. Nicolò and Rodrı́guez-Álvarez (2017) and Rodrı́guez-Álvarez
(2021) extend the common ranking domain to domains where the preferences of
the agents might be weak. They call these “age based domains” and propose
a pairwise exchange mechanism on those domains that satisfies individual ratio-
nality, (constrained) efficiency, and strategy-proofness. It is an open question as to
whether there is a pairwise exchange mechanism on age based domains that sat-
isfies individual rationality and effective endowments-swapping-proofness.

Probabilistic mechanisms Balbuzanov (2020) succeeds in finding an efficient
and “anonymous” pairwise exchange mechanism on the strict domain by allow-
ing randomness, whereas no deterministic mechanism satisfies the two proper-
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ties. However, he shows that under certain mild conditions, no pairwise ex-
change mechanism on the strict domain satisfies individual rationality, efficiency,
and strategy-proofness even if randomness is admitted. Thus, it is an open ques-
tion as to whether there is a probabilistic pairwise exchange mechanism on the
strict domain satisfying individual rationality and effective endowments-swapping-
proofness.
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A Appendix: Single-dipped preferences on a tree

Section 5 considers the domain of single-dipped preferences on a line. This pref-
erence domain can be extended to the domain of single-dipped preferences on a
“tree.” Tamura (2023) has characterized TTC as the only mechanism that satisfies
individual rationality, strategy-proofness, and endowments-swapping-proofness on this
extended domain without restrictions on the size of possible exchanges. Here, we
discuss whether Tamura’s characterization holds even when there is a restriction
on the size of possible exchanges, and we search for effective endowments-swapping-
proof mechanisms in this setting.

A.1 Definitions and preliminary results

To formally define single-dipped preferences on a tree, we now introduce some
graph theoretical notions. An (indirected) graph is a pair G = (H, E), where
E ⊂ {{h′, h′′} ⊂ H : h′ 6= h′′} is the set of edges. The degree of object h ∈ H is
the number of edges that contain h; that is, |{{h′, h′′} ∈ E : h ∈ {h′, h′′}}|. Given
an object h ∈ H, we say that h is a leaf if the degree of h is one. We denote
by L the set of leaves in G.15 Given {h′, h′′} ⊂ H with h′ 6= h′′, a path from
h′ to h′′ in G = (H, E) is a sequence (h1, . . . , hK) such that h1 = h′, hK = h′′,
|{h1, . . . , hK}| = K, and for each k ∈ {1, . . . , K − 1}, {hk, hk+1} ∈ E. A graph
G = (H, E) is a tree if

(i) it is connected (i.e., for each {h′, h′′} ⊂ H with h′ 6= h′′, there is a path from
h′ to h′′ in G), and

(ii) it has no cycle (i.e., there is no sequence (h1, . . . , hK) such that K ≥ 3, h1 =
hK, for each k ∈ {1, . . . , K − 1}, {hk, hk+1} ∈ E, and for each {k′, k′′} ⊂
{1, . . . , K} such that k′ 6= k′′ and {k′, k′′} 6= {1, K}, hk′ 6= hk′′).

It is well-known that if a graph G is a tree, then, for each {h′, h′′} ⊂ H with
h′ 6= h′′, there is a unique path from h′ to h′′ in G (See, for example, Theorem 2.1.4
in West (2001)). We often denote the path from h′ to h′′ by [h′, h′′]. For each
{h, h′, h′′} ⊂ H, we write h ∈ [h′, h′′] if h is on the path from h′ to h′′.

Given a tree G = (H, E) and an agent i ∈ N, we say that i’s preference relation
Âi ∈ P is single-dipped on the tree G if there is an object, d(Âi) ∈ H, such that

15Formally, it should be L(G), but unless otherwise specified, we omit G for simplicity.
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(i) for each h ∈ H \ {d(Âi)}, h Âi d(Âi);

(ii) for each h, h′ ∈ H \ {d(Âi)}, if h ∈ [d(Âi), h′], then h′ Âi h.

Given a tree G, we denote the set of single-dipped preferences on the tree G by
PG ⊂ P . Let E G = PN

G × X.

Remark 6. Note that, for each i ∈ N and each Âi ∈ PG, i’s best object at Âi

among H is a leaf. To observe this, let h ∈ H \ L. We only consider the case
where h 6= d(Âi); if h = d(Âi), it is evident that h is not his best object at Âi. By
h 6= d(Âi), there is the unique path from d(Âi) to h in the tree G, [d(Âi), h] =
(h1 = d(Âi), . . . , hK = h). By h /∈ L, the degree of h is greater than 1. Thus, there
is h′ ∈ H such that h′ 6= hK−1 and {h, h′} ∈ E. Since G has no cycle, for each
k ∈ {1, . . . , K}, h′ 6= hk. Hence, [d(Âi), h′] = (h1 = d(Âi), . . . , hK = h, h′). Since
h ∈ [d(Âi), h′] and Âi is single-dipped on G, h′ Âi h, which implies that h is not
i’s best object at Âi. Hence, i’s best object at Âi must be in L. ♦

It is worthwhile to mention that TTC on the domain of single-dipped prefer-
ences on a tree is a |L|-feasible exchange mechanism. In addition, we observe
that the maximal size of possible exchanges under TTC is |L|.

Proposition 3. Suppose that G is a tree. Then, TTC on E G is |L|-feasible.

Proof. See Appendix B.

Proposition 4. Suppose that G is a tree. Then, the maximal size of possible trading
cycles under TTC on E G is |L|.

Proof. Without loss of generality, assume L =
{

h1, h2, . . . , h|L|

}
. Let e = (Â, ω) ∈

E G be such that

Â1 Â2 · · · Âk · · · Â|L|−1 Â|L|
h2 h3 · · · hk+1 · · · h|L| h1
...

... · · · ... · · · ...
...

for each i ∈ N, ωi = hi. Then, for each i ∈ {1, 2, . . . , |L| − 1}, TTCi(e) = hi+1 and
TTC|L|(e) = h1, that is, the size of this trading cycle is |L|. By Proposition 3, since
for each e ∈ E G, each t ∈ N, and each S ∈ St(e), |S| ≤ |L|, the maximal size of
possible trading cycles under TTC is |L|.
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A.2 Severe feasibility constraints

Theorem 7 and Corollary 1 characterized TTC as the only individually rational and
(effectively) endowments-swapping-proof pairwise exchange mechanism on the do-
main of single-dipped preferences on a line. However, since the maximal size
of possible exchanges under TTC is |L| (Proposition 4), we cannot extend this
characterization of TTC to the domain of single-dipped preferences on a tree
when there are three or more leaves and possible exchanges restrict attention
to pairwise ones. Furthermore, we can show that when there are three or more
leaves, no pairwise exchange mechanism satisfies individual ratinality and effective
endowmens-swapping-proofness. More generally, as shown below, this negative re-
sult holds as long as the possible exchanges are less than the number of leaves.
Since effective endowments-swapping-proofness is much weaker than endowments-
swapping-proofness, our negative result implies that Tamura’s (2023) characteri-
zation no longer holds under such a “severe” constraint on the size of possible
exchanges.

Theorem 8. Suppose that G is a tree. Let ` ∈ {1, 2, . . . , |L| − 1}. Then, no `-feasible
mechanism on E G satisfies individual rationality and effective endowments-swapping-
proofness.

Proof. Without loss of generality, assume L =
{

h1, h2, . . . , h|L|

}
. Suppose, by

contradiction, that there is an `-feasible mechanism f on E G satisfying the two
axioms. Let ē = (Â, ω̄) ∈ E G be such that

Â1 Â2 Â3 · · · Âk · · · Â|L|−1 Â|L|
h2 h3 h4 · · · hk+1 · · · h|L| h1

h3 h4 h5 · · · hk+2 · · · h1 h2

h4 h5 h6 · · · hk+3 · · · h2 h3
...

...
... · · · ... · · · ...

...
h|L|−1 h|L| h1 · · · hk−2 · · · h|L|−3 h|L|−2

h|L| h1 h2 · · · hk−1 · · · h|L|−2 h|L|−1

h1 h2 h3 · · · hk · · · h|L|−1 h|L|
...

...
... · · · ... · · · ...

...

and for each i ∈ N, ω̄i = hi. By the argument similar to that in Theorem 3, we
have that for each i ∈ {1, 2, . . . , |L| − 1}, fi(ē) = hi+1 and f|L|(ē) = h1. However,
by ` < |L|, f (ē) /∈ X`(ω̄), which is a contradiction.
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Figure 1: Tree in Example 6

Corollary 3. Suppose that G is a tree and |L| ≥ 3. Then, no pairwise exchange
mechanism on E G satisfies individual rationality and (effective) endowments-swapping-
proofness.

Corollary 4. Suppose that G is a tree. Let ` ∈ {1, 2, . . . , |L| − 1}. Then, no `-feasible
mechanism on E G satisfies individual rationality and endowments-swapping-proofness.

A.3 Mild feasibility constraints

Based on Proposition 3, one might think that on the domain of single-dipped
preferences on a tree, TTC can be characterized by means of individual rationality
and effective endowments-swapping-proofness if |L|-feasible exchanges are allowed.
However, this conjecture is not true whenever |L| ≥ 3. In fact, if |L| ≥ 3, we can
construct a non-TTC mechanism that is |L|-feasible, individually rational, and ef-
fectively endowments-swapping-proof. We blow provide an example of such a mech-
anism.

Example 6. Consider N = {1, 2, 3, 4, 5} and H = {h1, h2, h3, h4, h5}. Suppose that
a tree G is represented as Figure 1. Then, L = {h1, h2, h3}. Let ě = (Â̌, ω̌) ∈ E G

be such that

Â̌1 Â̌2 Â̌3 Â̌4 Â̌5

h2 h1 h3 h2 h1

h4 h2 h1 h4 h2

h1 h3 h2 h1 h3

h3 h4 h4 h3 h4

h5 h5 h5 h5 h5
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and for each i ∈ N, ω̌i = hi. Note that TTC(ě) = (h2, h1, h3, h4, h5) and by Propo-
sition 3, TTC is a 3-feasible mechanism. Let f O : E G → X be a 3-feasible mecha-
nism such that for each e ∈ E G,

f O(e) =

(h4, h1, h3, h2, h5) if e = ě,

TTC(e) otherwise.

It is obvious that this mechanism is individually rational. Moreover, f O satisfies
(effective) endowments-swapping-proofness.16 ¥

Note that mechanism f O defined in Example 6 violates strategy-proofness. To
see this, let Â̌′

1 ∈ PG be such that

Â̌′
1

h2

h1

h4

h3

h5

Then,

f O
1 ((Â̌′

1, Â̌−1), ω̌) = TTC1((Â̌′
1, Â̌−1), ω̌) = h2 Â̌1 h4 = f O

1 (ě).

Thus, agent 1 with preferences Â̌1 can benefit from announcing false preferences
Â̌′

1. This suggests that, by adding strategy-proofness, one could obtain a character-
ization of TTC. Recall here that when there is no restriction on the size of possible
exchanges, Tamura (2023) proposes a characterization of TTC by means of in-
dividual rationality, strategy-proofness, and endowments-swapping-proofness. In fact,
Tamura’s characterization holds true even when the size of possible exchanges
is greater than or equal to the number of leaves. This is simply because the
|L|-feasibility of TTC (Proposition 3) makes it possible for TTC to satisfy such
a “mild” feasibility constraint. It is also noteworthy that Tamura’s character-
ization still holds when endowments-swapping-proofness is weakened to effective
endowments-swapping-proofness.17 Since, as mentioned above, TTC satisfies the

16See Appendix B for the proof of this fact.
17Given the feature mentioned in Remark 6, we can show this by using arguments similar to

the proof of Theorem 4 in Fujinaka and Wakayama (2018) (or Theorem 1 in this paper). The proof
is available upon request.
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mild feasibility constraint on the size of possible exchange, we obtain the follow-
ing result:

Theorem 9. Suppose that G is a tree. Let ` ≥ |L|. Then, an `-feasible mechanism on E G

satisfies individual rationality, strategy-proofness, and effective endowments-swapping-
proofness if and only if it is TTC.
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B Appendix: Omitted proofs

B.1 Proof of Theorem 2

Without loss of generality, we assume n = 3. Suppose, by contradiction, that a
mechanism f satisfies the two axioms. Let e = (Â, ω) ∈ E st be such that

Â1 Â2 Â3

h3 h3 h1

h2 h1 h2

h1 h2 h3

and ω = (h1, h2, h3). We proceed in three steps.

Step 1: f (e) = (h3, h2, h1). It suffices to show ( f1(e), f3(e)) = (h3, h1), as this
immediately implies f (e) = (h3, h2, h1). Suppose, by contradiction, that f1(e) 6=
h3. Consider e1,3. Then, e1,3 ∈ E st, ω3 = h3 ∈ A(Â1, ω1) and ω1 = h1 ∈ A(Â3

, ω3), and by individual rationality,

f1(e1,3) = h3 Â1 f1(e);

f3(e1,3) = h1 %3 f3(e),

in violation of strict effective endowments-swapping-proofness. Hence, f1(e) = h3. A
similar argument leads to f3(e) = h1.

Step 2: f (e2,3) = (h2, h3, h1). Let ē = e2,3. By individual rationality, f2(ē) = h3.
Suppose, by contradiction, that ( f1(ē), f3(ē)) = (h1, h2). Consider ē1,3. Then,
ē1,3 ∈ E st, ω2,3

3 = h2 ∈ A(Â1, ω2,3
1 = h1) and ω2,3

1 = h1 ∈ A(Â3, ω2,3
3 = h2), and

by individual rationality,

f1(ē1,3) %1 h2 Â1 h1 = f1(ē);

f3(ē1,3) = h1 Â3 h2 = f3(ē),

in violation of strict effective endowments-swapping-proofness.

Step 3: Conclusion. By Steps 1 and 2, it holds that e2,3 ∈ E st, ω3 = h3 ∈ A(Â2

, ω2) and ω2 = h2 ∈ A(Â3, ω3), and

f2(e2,3) = h3 Â2 h2 = f2(e);

f3(e2,3) = h1 = f3(e),
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in violation of strict effective endowments-swapping-proofness. ¤

B.2 Proof of Claim 1

We prove this claim by induction.

BASE STEP. Suppose, by contradiction, that fk(ω) 6= hk+1. Consider ω1,k. Then,
ω1,k is represented as

Â1 Â2 Â3 · · · Âk−1 Âk

h2 h3 h4 · · · hk hk+1

h3 h4 h5 · · · hk+1 hk+2
...

...
... · · · ...

...

hk
...

... · · · ...
...

hk+1
...

... · · · ...
...

...
...

... · · · ...
...

h1 h2 h3 · · · hk−1 hk

That is, ω1,k ∈ Ω1
k−1. By the induction hypothesis of Theorem 3, f1(ω1,k) = h2.

By individual rationality, fk(ω1,k) = hk+1. Hence, (Â, ω1,k) ∈ E st, ωk = hk ∈ A(Â1

, ω1 = hk+1) and ω1 = hk+1 ∈ A(Âk, ωk = hk), and

f1(ω1,k) = h2 Â1 hq = f1(ω);

fk(ω1,k) = hk+1 Âk fk(ω),

in violation of effective endowments-swapping-proofness.

INDUCTION HYPOTHESIS. Let j ∈ {q − 1, q, . . . , k − 1}. For each i ∈ {j + 1, j +
2, . . . , k}, fi(ω) = hi+1.

INDUCTION STEP. Let j ∈ {q − 1, q, . . . , k − 1}. Suppose, by contradiction, that
f j(ω) 6= hj+1. By the induction hypothesis of this claim,

f j(ω) /∈
{

hj+2, hj+3, . . . , hk+1
}

.

Hence, hk+1 Âj f j(ω). Consider ω1,j. Then, ω1,j is represented as
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Â1 Â2 Â3 · · · Âj−1 Âj · · · Âk−1 Âk

h2 h3 h4 · · · hj hj+1 · · · hk hk+1

h3 h4 h5 · · · hj+1 hj+2 · · · hk+1 hk+2
...

...
... · · · ...

... · · · ...
...

...
...

... · · · ... hk+1 · · · ...
...

...
...

... · · · ...
... · · · ...

...

hj
...

... . . .
...

... · · · ...
...

...
...

... · · · ...
... · · · ...

...

hk+1
...

... · · · ...
... · · · ...

...
...

...
... · · · ...

... · · · ...
...

h1 h2 h3 · · · hj−1 hj · · · hk−1 hk

That is, ω1,j ∈ Ω1
j−1. By the induction hypothesis of Theorem 3, f1(ω1,j) = h2. By

individual rationality, f j(ω1,k) %j hk+1. Hence, (Â, ω1,j) ∈ E st, ωj = hj ∈ A(Â1

, ω1 = hk+1), ω1 = hk+1 ∈ A(Âj, ωj = hj), and

f1(ω1,j) = h2 Â1 hq = f1(ω);

f j(ω1,j) %j hk+1 Âj f j(ω),

in violation of effective endowments-swapping-proofness. ¤

B.3 Proof of Proposition 1

Before proving this proposition, we provide additional notions. For each e = (Â
, ω) ∈ E , each {x, y} ⊂ X2(ω), and each {i, j} ⊂ N with i 6= j, {i, j} weakly
blocks x at e via y if

(i) yi = ωj and yj = ωi;

(ii) yi %i xi and yj Âj xj.

For each e = (Â, ω) ∈ E , an assignment x ∈ X2(ω) is in the strict core for e if
x ∈ I(e) and there are no pair {i, j} ⊂ N with i 6= j and assignment y ∈ X2(ω)
such that {i, j} weakly blocks x at e via y. We denote by C(e) the strict core for e.

We prove Proposition 1 by a series of lemmas. The first lemma (Lemma 1)
states that any “individually rational swapping” economy in which a pair of
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agents swaps their endowments before participating the given mechanism be-
longs to the common ranking domain. The second lemma (Lemma 2) states that
the assignment chosen by a pairwise exchange mechanism satisfying individual
rationality and effective endowments-swapping-proofness is in the strict core. The last
lemma (Lemma 3) states that the strict core is a singleton consisting of the assign-
ment chosen by the natural priority mechanism. Note that Lemma 3 has already
appeared in Nicolò and Rodrı́guez-Álvarez (2013b). However, for completeness,
we below provide the proof of Lemma 3 by accommodating its proof to our set-
ting.

Lemma 1. For each e = (Â, ω) ∈ E cm and each {i, j} ⊂ N with i 6= j, if ω
i,j
i = ωj ∈

A(Âi, ωi) and ω
i,j
j = ωi ∈ A(Âj, ωj), then ei,j ∈ E cm.

Proof. Let {hk, hk′} ⊆ A(Âi, ω
i,j
i = ωj). Since ω

i,j
i = ωj ∈ A(Âi, ωi), {hk, hk′} ⊆

A(Âi, ωi). By Âi ∈ Pωi , it holds that

hk Âi hk′ ⇐⇒ k < k′.

Thus, Âi ∈ P
ω

i,j
i

. Similarly, Âj ∈ P
ω

i,j
j

. These imply that ei,j ∈ E cm.

Lemma 2. If a pairwise exchange mechanism f on E cm is individually rational and
effectively endowments-swapping-proof, then for each e = (Â, ω) ∈ E cm, f (e) ∈ C(e).

Proof. Suppose, by contradiction, that there is e = (Â, ω) ∈ E cm with f (e) /∈ C(e).
By f (e) ∈ I(e), there are {i, j} ⊂ N with i 6= j and y ∈ X2(ω) such that {i, j}
weakly blocks f (e) at e via y, that is, (i) yi = ωj and yj = ωi and (ii) yi %i fi(e)
and yj Âj f j(e). If ωi = f j(e),

ωi = yj Âj f j(e) = ωi,

which is a contradiction. Thus, ωi 6= f j(e), which together with f (e) ∈ X2(ω)
implies that ωj 6= fi(e). By individual rationality,

yi = ωj Âi fi(e) %i ωi;

yj = ωi Âj f j(e) %i ωj.

We consider ei,j. Then, ω
i,j
i = ωj ∈ A(Âi, ωi) and ω

i,j
j = ωi ∈ A(Âj, ωj), and by
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Lemma 1, ei,j ∈ E cm. Further, by individual rationality,

fi(ei,j) %i ω
i,j
i = ωj Âi fi(e);

f j(ei,j) %j ω
i,j
j = ωi Âj f j(e),

in violation of effective endowments-swapping-proofness.

Lemma 3. For each e = (Â, ω) ∈ E cm, C(e) = {P(e)}.

Proof. Let e = (Â, ω) ∈ E cm. We proceed in three steps.

Step 1: For each y ∈ X2(ω) \ {P(e)}, y /∈ C(e). Let y ∈ X2(ω) \ {P(e)}.
If y /∈ I(e), then y /∈ C(e). Thus, we assume y ∈ I(e). Let i ∈ N be such
that yi 6= Pi(e) and for each i′ ∈ N with σ∗JωK(i′) < σ∗JωK(i), yi′ = Pi′(e).
Let j ∈ N be such that Pi(e) = ωj. Since y ∈ I(e) and for each i′ ∈ N with
σ∗JωK(i′) < σ∗JωK(i), yi′ = Pi′(e), it holds that y ∈ Xσ∗

σ∗JωK(i)−1(e). Since Âi is
strict, yi 6= Pi(e), and y ∈ I(e), by the definitions of P,

Pi(e) = ωj Âi yi %i ωi, (1)

which implies that i 6= j. Further, σ∗JωK(i) < σ∗JωK(j); otherwise, by the defini-
tion of i, Pi(e) = ωj, and {y, P(e)} ⊂ X2(ω), it holds that yj = Pj(e) = ωi and
yi = Pi(e) = ωj, which is a contradiction. Suppose ωi = h`. Since Pj(e) = ωi ∈
A(Âj, ωj), by the definition of E cm, we have that for each k ∈ N with ωk Âj ωi,
ωk = h`′ with `′ < ` and thus, σ∗JωK(k) < σ∗JωK(i) by the definition of σ∗. Recall
that for each k ∈ N with σ∗JωK(k) < σ∗JωK(i), Pk(e) = yk. These imply that for
each k ∈ N with ωk Âj ωi, yj 6= ωk; if yj = ωk, by {y, P(e)} ⊂ X2(ω), it holds that
yk = Pk(e) = ωj and yj = Pj(e) = ωk, which contradicts Pj(e) = ωi. In addition,
by yi 6= Pi(e) = ωj, yj 6= Pj(e) = ωi. Hence,

Pj(e) = ωi Âj yj. (2)

Hence, by (1) and (2), {i, j} weakly blocks y at Â via P(e), which implies y /∈ C(e).

Step 2: P(e) ∈ C(e). Since P(e) ∈ I(e), it suffices to show that no pair weakly
blocks P(e) at e. Suppose, by contradiction, that there are {i, j} ⊂ N with i 6= j
and y ∈ X2(ω) such that {i, j} weakly blocks P(e) at e via y. Without loss of gen-
erality, σ∗JωK(i) < σ∗JωK(j). Since preferences are strict, y 6= P(e), {y, P(e)} ⊂
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X2(ω), and P(e) ∈ I(e), we have that

yi = ωj Âi Pi(e) %i ωi; (3)

yj = ωi Âj Pj(e) %i ωj. (4)

Let k ∈ N be such that Pi(e) = ωk. There are two cases.

• Case 1: σ∗JωK(k) < σ∗JωK(i). By k 6= i and (3),

ωj Âi Pi(e) = ωk Âi ωi.

By this and e ∈ E cm, σ∗JωK(j) < σ∗JωK(k), which contradicts σ∗JωK(k) < σ∗JωK(i) <

σ∗JωK(j).

• Case 2: σ∗JωK(i) ≤ σ∗JωK(k). By (3) and (4), there is x ∈ Xσ∗
0 (e) = I(e)

such that (xi, xj) = (ωj, ωi). However, there is no x ∈ Xσ∗
σ∗JωK(i)−1(e) such that

(xi, xj) = (ωj, ωi); otherwise, by the definition of P, Pi(e) %i ωj, which contra-
dicts (3). These imply that there is i′ ∈ N such that σ∗JωK(i′) < σ∗JωK(i) and
(Pi′(e), Pj(e)) = (ωj, ωi′). By e ∈ E cm, {ωi′ , ωi} ⊂ A(Âj, ωj), and σ∗JωK(i′) <

σ∗JωK(i),
Pj(e) = ωi′ Âj ωi = yj,

which contradicts (4).

Step 3: Conclusion. By Steps 1 and 2, we have C(e) = {P(e)}.

Proof of Proposition 1. Let f be a pairwise exchange mechanism on E cm satisfying
the two axioms. By Lemma 2 and Lemma 3, we have f = P.

B.4 Proof of Theorem 4

The “only if” part follows from Proposition 1. We next show the “if” part. The
definition of P immediately implies individual rationality of P. We now prove that
if n = 3, then P is effectively endowments-swapping-proof. Let e = (Â, ω) ∈ E cm.
Without loss of generality, we assume ω = (h1, h2, h3). Thus, σ∗JωK(1) = 1,
σ∗JωK(2) = 2, and σ∗JωK(3) = 3. Suppose, by contradiction, that there is a pair
{i, j} ⊂ N such that

(i) ei,j ∈ E cm,

(ii) ωj ∈ A(Âi, ωi) and ωi ∈ A(Âj, ωj), and
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(iii) Pi(ei,j) Âi Pi(e) and Pj(ei,j) Âj Pj(e).

There are three cases.

• Case 1: {i, j} = {1, 2}. By ω2 = h2 ∈ A(Â1, ω1), ω1 = h1 ∈ A(Â2, ω2), and
e ∈ E cm, h2 or h1 is agent 1’s or 2’s best object at Â1 or Â2, respectively. Hence,
by the definition of P, (P1(e), P2(e)) = (h2, h1), which contradicts (iii).

• Case 2: {i, j} = {1, 3}. By ω3 = h3 ∈ A(Â1, ω1) and ω1 = h1 ∈ A(Â3, ω3),
x = (h3, h2, h1) ∈ Xσ∗

0 (e) = I(e). Hence, by the definition of P, P1(e) %1 h3.
Further, by (ii) and (iii),

P1(e1,3) = h2 Â1 P1(e) = h3 Â1 ω1 = h1.

By P(e) ∈ X2(ω) and P1(e) = ω3 = h3, P3(e) = ω1 = h1. Since ω1 = h1 ∈ A(Â3

, ω3) and e ∈ E cm, h1 is agent 3’s best object at Â3, which contradicts P3(e1,3) Â3

P3(e) = h1.

• Case 3: {i, j} = {2, 3}. There are two subcases.

◦ Subcase 3.1: P1(e) 6= ω1 = h1. By P(e) ∈ X2(ω), there is k ∈ {2, 3} such that
Pk(e) = ω1 = h1. Further, by P(e) ∈ I(e) and e ∈ E cm, h1 is agent k’s best object
at Âk. Hence, agent k has no incentive to collude with another agent, which is a
contradiction.

◦ Subcase 3.2: P1(e) = ω1 = h1. By (ii), ω3 = h3 ∈ A(Â2, ω2 = h2) and ω2 = h2 ∈
A(Â3, ω3 = h3). Since P1(e) = ω1 = h1, x = (h1, h3, h2) ∈ Xσ∗

2 (e). By h3 Â2 h2,
(P2(e), P3(e)) = (h3, h2). This together with (ii) and (iii) implies that

P2(e2,3) Â2 P2(e) = h3 Â2 ω2 = h2;

P3(e2,3) Â3 P3(e) = h2 Â3 ω3 = h3.

It follows from this that P2(e2,3) = P3(e2,3) = h1, which is a contradiction. ¤

B.5 Proof of Theorem 7

The “if” part follows from Tamura (2023) because the size of cycles formed in the
TTC algorithm is either one or two even without feasibility constraints. Thus,
it suffices to show the “only if” part. The following lemma, which immediately
follows from Proposition 2, is useful in this proof.
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Lemma 4. For each e = (Â, ω) ∈ E ∨, each t ∈ N, and each S ∈ St(e), we have either
|S| = 1 or |S| = 2.

We now prove that for each e = (Â, ω) ∈ E ∨, each t ∈ N, and each i ∈ Nt(e),
fi(e) = TTCi(e). Let e = (Â, ω) ∈ E ∨. Without loss of generality, suppose
ωi = hi for each i ∈ N. We use induction on t.

BASE STEP. t = 1. Let S ∈ S1(e). By Lemma 4, there are two cases.

• Case 1: |S| = 1. Then, S ∈ {{1}, {n}}. Without loss of generality, suppose
S = {1}. Then, ω1 is agent 1’s best object at Â1. By individual rationality, we have
f1(Â) = ω1 = TTC1(Â).

• Case 2: |S| = 2. Then, S = {1, n} and

Â1 Ân

ωn ω1
...

...

Suppose, by contradiction, that ( f1(Â), fn(Â)) 6= (TTC1(Â), TTCn(Â)) = (ωn, ω1).
Without loss of generality, we assume f1(Â) 6= ωn. Since f is a pairwise exchange
mechanism, fn(Â) 6= ω1. Consider e1,n. Then, e1,n ∈ E ∨, ω1,n

1 = ωn ∈ A(Â1, ω1)
and ω1,n

n = ω1 ∈ A(Ân, ωn), and by individual rationality,

f1(e1,n) = ω1,n
1 = ωn Â1 f1(e) %1 ω1;

fn(e1,n) = ω1,n
n = ω1 Ân fn(e) %n ωn,

in violation of effective endowments-swapping-proofness.

From these two cases, we have that for each i ∈ N1(e), fi(e) = TTCi(e).

INDUCTION HYPOTHESIS. For each t ∈ {1, 2, . . . , r − 1} and each i ∈ Nt(e),
fi(e) = TTCi(e).

INDUCTION STEP. Let t = r. By the induction hypothesis,

r−1∪
j=1

Hj(e) =

h ∈ H : fi(e) = h for some i ∈
r−1∪
j=1

Nj(e)

 . (5)

Consider S ∈ Sr(e). By the discussion in Proposition 2, we know that

S ∈
{
{i(r), i(r)}, {i(r)}, {i(r)}

}
.
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There are two cases.

• Case 1: S ∈ {{i(r)}, {i(r)}}. Without loss of generality, we assume S =
{i(r)}. Then, {i(r)} forms a cycle at Step r of the TTC algorithm at e. Hence, for
each h ∈ H \ (

∪r−1
j=1 Hj(e)∪ {ωi(r)}), ωi(r) Âi(r) h. By (5), fi(r)(e) ∈ H \∪r−1

j=1 Hj(e).
These together with individual rationality, fi(r)(e) = ωi(r) = TTCi(r)(e).

• Case 2: S = {i(r), i(r)}. Then, {i(r), i(r)} forms a cycle at Step r of the TTC
algorithm at e. Hence, for each h ∈ H \ (

∪r−1
j=1 Hj(e) ∪ {ωi(r), ωi(r)}),

ωi(r) Âi(r) h and ωi(r) Âi(r) ωi(r); (6)

ωi(r) Âi(r) h and ωi(r) Âi(r) ωi(r). (7)

Suppose, by contradiction, that ( fi(r)(e), fi(r)(e)) 6= (TTCi(r)(e), TTCi(r)(e)) =
(ωi(r), ωi(r)). Without loss of generality, we assume fi(r)(e) 6= ωi(r). Since f
is a pairwise exchange mechanism, fi(r)(e) 6= ωi(r). By (5), { fi(r)(e), fi(r)(e)} ⊂
H \ ∪r−1

j=1 Hj(e). Thus, by (6) and (7)

ωi(r) Âi(r) fi(r)(e);

ωi(r) Âi(r) fi(r)(e).

Consider ei(r),i(r). Then, ei(r),i(r) ∈ E ∨, ω
i(r),i(r)
i(r) = ωi(r) ∈ A(Âi(r), ωi(r)) and

ω
i(r),i(r)
i(r)

= ωi(r) ∈ A(Âi(r), ωi(r)), and by individual rationality,

fi(r)(ei(r),i(r)) %i(r) ω
i(r),i(r)
i(r) = ωi(r) Âi(r) fi(r)(e) %i(r) ωi(r);

fi(r)(ei(r),i(r)) %i(r) ω
i(r),i(r)
i(r)

= ωi(r) Âi(r) fi(r)(e) %i(r) ωi(r),

in violation of effective endowments-swapping-proofness. Hence, ( fi(r)(e), fi(r)(e)) =
(TTCi(r)(e), TTCi(r)(e)).

From Cases 1 and 2, for each i ∈ Nr(e), fi(e) = TTCi(e). ¤

B.6 Proof of Proposition 3

Let e = (Â, ω) ∈ E G. Recall that, for each t ∈ N, Nt(e) is the set of agents that
form cycles at Step t of TTC at e and Ht(e) is the set of objects that are assigned to
agents in Nt(e). We now introduce additional notation:
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• N1 = N and for each t ≥ 2, Nt = Nt−1 \ Nt−1(e);

• G1 = (H1, E1) = (H, E) and for each t ≥ 2, Gt = (Ht, Et), where Ht =
Ht−1 \ Ht−1(e) and Et = {{h′, h′′} ∈ Et−1 : {h′, h′′} ⊂ Ht};

• for each i ∈ N1, d1(Âi) = d(Âi) and for each t ≥ 2 and each i ∈ Nt,
dt(Âi) denotes i’s worst object at Âi among Ht (i.e., dt(Âi) ∈ Ht and for
each h ∈ Ht \ {dt(Âi)}, h Âi dt(Âi)).

We will observe below that for each t ≥ 2, the graph Gt = (Ht, Et) is a tree. We
denote by Lt the set of leaves in Gt. Note that L1 = L. Moreover, for each t ∈ N

and each {h′, h′′} ⊂ Ht with h′ 6= h′′, we denote by [h′, h′′]t the unique path from
h′ to h′′ in Gt. We now consider each step of TTC.

STEP 1 OF TTC. As stated previously, for each i ∈ N1 = N, i’s best object at
Âi among H1 = H is in L1 = L. Hence, N1(e) ⊂ {i ∈ N1 : ωi ∈ L1} and
H1(e) ⊂ L1. This implies that the size of each trading cycle formed at Step 1 is
less than or equal to |L1|.

STEP 2 OF TTC. Note that the set of remaining agents (resp. objects) is N2 = N1 \
N1(e) (resp. H2 = H1 \ H1(e)). We present a series of claims before completing
the proof.

Claim 2. G2 is a tree.

Proof of Claim 2. Since H2 = H1 \ H1(e) and H1(e) ⊂ L1, by Lemma 2.1.3 in
West (2001), G2 is a tree.

Claim 3. |L2| ≤ |L1|.

Proof of Claim 3. Note that, by H1(e) ⊂ L1,

|L1| = |L1 ∩ H1(e)| + |L1 \ H1(e)| = |H1(e)| + |L1 \ H1(e)|;
|L2| = |L2 ∩ L1| + |L2 \ L1|.

In what follows, we show that (i) |L2 ∩ L1| ≤ |L1 \ H1(e)| and (ii) |L2 \ L1| ≤
|H1(e)|, which together imply that |L2| ≤ |L1|.

(i) Let h ∈ L2 ∩L1. By h ∈ L2 ⊂ H2, h /∈ H1(e), which implies that h ∈ L1 \ H1(e).
Hence, L2 ∩ L1 ⊂ L1 \ H1(e) and |L2 ∩ L1| ≤ |L1 \ H1(e)|.
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(ii) Note that the degree of h ∈ L2 \ L1 in G2 is equal to 1 and that in G1 is
greater than 1. Then, for each h ∈ L2 \ L1, there is ĥ ∈ H1(e)(⊂ L1) such that
{h, ĥ} ∈ E1.18 Thus, we can construct a mapping α : L2 \ L1 → H1(e) such that
for each h ∈ L2 \ L1, α(h) ∈ H1(e) with {h, α(h)} ∈ E1. We now show that
α is injective, which immediately implies that |L2 \ L1| ≤ |H1(e)|. Suppose, by
contradiction, that there is {h′, h′′} ⊂ L2 \L1 such that h′ 6= h′′ but α(h′) = α(h′′).
Then, by {{h′, α(h′)}, {h′′, α(h′′) = α(h′)}} ⊂ E1, the degree of α(h′) = α(h′′) in
G1 is greater than 1, which is a contradiction to α(h′) = α(h′′) ∈ L1.

Claim 4. For each i ∈ N2, Âi is single-dipped on G2.

Proof of Claim 4. By the definition of d2(Âi), d2(Âi) ∈ H2 and for each h ∈ H2 \
{d2(Âi)}, h Âi d2(Âi). Next, let {h′, h′′} ⊂ H2 \ {d2(Âi)} be such that h′ ∈ [d2(Âi

), h′′]2 = (h1 = d2(Âi), . . . , hK = h′′). Note that, for each k ∈ {1, . . . , K − 1}, by
{hk, hk+1} ∈ E2, {hk, hk+1} ∈ E1. Hence, [d2(Âi), h′′]1 = (h1 = d2(Âi), . . . , hK =
h′′) = [d2(Âi), h′′]2. There are two cases.

• Case 1: d1(Âi) ∈ H2. It is obvious that d2(Âi) = d1(Âi). Since Âi is single-
dipped on G1 and h′ ∈ [d2(Âi) = d1(Âi), h′′]1, h′′ Âi h′.

• Case 2: d1(Âi) /∈ H2. Then, d1(Âi) ∈ H1(e) ⊂ L1. This implies that the
degree of d1(Â1) in G1 is equal to 1. Let h∗ ∈ H1 be the unique object such that
{d1(Âi), h∗} ∈ E1. Then, h∗ ∈ H2.19 We now show that h∗ = d2(Âi); that is,
for each h ∈ H2 \ {h∗}, h Âi h∗. Let h ∈ H2 \ {h∗}. By h ∈ H1, we can find
[d1(Âi), h]1 = (h̄1 = d1(Âi), h̄2, . . . , h̄K̄ = h). Since h∗ is the unique object such
that {d1(Âi), h∗} ∈ E1, h̄2 = h∗, and thus, h∗ ∈ [d1(Âi), h]1. Since Âi is single-
dipped on G1, h Âi h∗. Additionally, since [d2(Âi) = h∗, h′′]1 = (h1 = d2(Âi) =
h∗, . . . , hK = h′′) and {d1(Âi), h∗} ∈ E1, [d1(Âi), h′′]1 = (d1(Âi), h1 = d2(Âi) =
h∗, . . . , hK = h′′). By h′ ∈ [d2(Âi), h′′]2 = [d2(Âi), h′′]1, h′ ∈ [d1(Âi), h′′]1. Since Âi

is single-dipped on G1, h′′ Âi h′.

Since G2 is a tree (Claim 2) and for each i ∈ N2, Âi is single-dipped on G2

(Claim 4), we have that for each i ∈ N2, i’s best object at Âi among H2 is in
L2 (Remark 6). Hence, N2(e) ⊂ {i ∈ N2 : ωi ∈ L2} and H2(e) ⊂ L2. This

18Otherwise, there is h ∈ L2 \ L1 such that for each ĥ ∈ H1 with {h, ĥ} ∈ E1, ĥ /∈ H1(e). Then,
the degree of h in G2 is equal to that in G1, which is a contradiction.

19If h∗ ∈ H1(e), then h∗ ∈ L1 and the degree of h∗ in G1 is equal to 1. This implies that
H1 = {d1(Âi), h∗}, E1 = {{d1(Âi), h∗}}, and H2 = H1 \ H1(e) = ∅; that is, the TTC algorithm
terminates at Step 1, a contradiction.
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together with Claim 3 implies that the size of each trading cycle formed at Step 2
is less than or equal to |L1|.

By repeating this argument, we observe that the size of each trading cycle
formed in each step of TTC is less than or equal to |L1|. This implies that TTC on
E G is |L|-feasible. ¤

B.7 Omitted proof in Example 6

Here, we show that f O satisfies (effective) endowments-swapping-proofness. To ob-
serve this, consider e = (Â, ω) ∈ E G and {i, j} ⊂ N with i 6= j. If {e, ei,j} ⊂
E G \ {ě}, by f O(e) = TTC(e) and f O(ei,j) = TTC(ei,j), the pair has no incentive
to collude. Hence, we consider the following two cases.

• Case 1: e = ě and ei,j 6= ě. Since each agent i ∈ {2, 3, 4} receives his best object
according to his preferences Âi = Â̌i, he has no incentive to collude with another
agent at e. Thus, it suffices to consider the case where {i, j} = {1, 5}. Then,
ω1,5

1 = ω̌1,5
1 = ω̌5 = h5 and f O

1 (e1,5) = TTC1(e1,5) = h5. This means that agent
1 ends up with receiving his worst object according to his preferences Â1 = Â̌1.
Hence, agent 1 has no incentive to collude with agent 5 at e.

• Case 2: e 6= ě and ei,j = ě. If 5 ∈ {i, j}, by f O
5 (ei,j)(= f O

5 (ě)) = h5, agent 5 ends
up with receiving his worst object according to his preferences Â5 = Â̌5. Hence,
agent 5 has no incentive to collude with another agent at e. We below consider
the case where {i, j} ⊂ {1, 2, 3, 4}. Note that by ωi,j = ω̌, ω = ω̌i,j.

◦ Subcase 2-1: {i, j} = {1, 2}. Then, ω = (h2, h1, h3, h4, h5) and ( f O
1 (e), f O

2 (e)) =
(TTC1(e), TTC2(e)) = (h2, h1). This implies that both agents have already re-
ceived their best objects according to their preferences Â1 = Â̌1 and Â2 = Â̌2.
Hence, this pair has no incentive to collude at e.

◦ Subcase 2-2: {i, j} = {1, 3}. Then, ω = (h3, h2, h1, h4, h5) and ( f O
1 (e), f O

3 (e)) =
(TTC1(e), TTC3(e)) = (h2, h3). This implies that both agents have already re-
ceived their best objects according to their preferences Â1 = Â̌1 and Â3 = Â̌3.
Hence, this pair has no incentive to collude at e.

◦ Subcase 2-3: {i, j} = {1, 4}. Then, ω = (h4, h2, h3, h1, h5) and ( f O
1 (e), f O

4 (e)) =
(TTC1(e), TTC4(e)) = (h4, h2). This implies that agent 4 has already received his
best object according to his preferences Â4 = Â̌4. Hence, agent 4 has no incentive
to collude with agent 1 at e.
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◦ Subcase 2-4: {i, j} = {2, 3}. Then, ω = (h1, h3, h2, h4, h5) and ( f O
2 (e), f O

3 (e)) =
(TTC2(e), TTC3(e)) = (h1, h3). This implies that both agents have already re-
ceived their best objects according to their preferences Â2 = Â̌2 and Â3 = Â̌3.
Hence, this pair has no incentive to collude at e.

◦ Subcase 2-5: {i, j} = {2, 4}. Then, ω = (h1, h4, h3, h2, h5) and ( f O
2 (e), f O

4 (e)) =
(TTC2(e), TTC4(e)) = (h1, h2). This implies that both agents have already re-
ceived their best objects according to their preferences Â2 = Â̌2 and Â4 = Â̌4.
Hence, this pair has no incentive to collude at e.

◦ Subcase 2-6: {i, j} = {3, 4}. Then, ω = (h1, h2, h4, h3, h5) and ( f O
3 (e), f O

4 (e)) =
(TTC3(e), TTC4(e)) = (h3, h4). This implies that agent 3 has already received his
best object according to his preferences Â3 = Â̌3, Hence, agent 3 has no incentive
to collude with agent 4 at e. ¤
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Roth, A. E., T. Sönmez, and U. Ünver (2004) “Kidney exchange,” Quarterly Journal
of Economics, 119, 457–488.
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