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EFFICIENT MARKET DESIGN WITH
DISTRIBUTIONAL OBJECTIVES†

ISA E. HAFALIR, FUHITO KOJIMA, ANDM. BUMIN YENMEZ∗

Abstract. Given an initial matching and a policy objective on the distribu-

tion of agent types to institutions, we study the existence of a mechanism

that weakly improves the distributional objective and satisfies constrained

efficiency, individual rationality, and strategy-proofness. We show that

such a mechanism need not exist in general. We introduce a new notion

of discrete concavity, which we call pseudo M♮-concavity, and construct a

mechanismwith the desirable properties when the distributional objective

satisfies this notion. We provide several practically relevant distributional

objectives that are pseudo M♮-concave.

1. Introduction

The political problem of mankind is to combine three things:

economic efficiency, social justice, and individual liberty.

-John Maynard Keynes (1926)

In a 1926 lecture, Keynes highlighted the combination of economic ef-

ficiency, social justice, and individual liberty as the political problem of
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mankind. We study this problem in a matching context, say between in-

stitutions and agents of different types. In this context, social justice can be

interpreted as the policy to improve a distributional objective on agent types.

Economic efficiency of a matching can be understood as the requirement

that there exists no alternative matching improving the welfare of agents

without undermining the distributional objective, dubbed as constrained effi-

ciency. Individual liberty corresponds to the property that no agent is forced

to be matched with an institution against their will, the so-called individual

rationality. To Keynes’ list, we add strategy-proofness as the fourth desidera-

tum because agent preferences need to be elicited to implement a matching

with the desired properties. In this paper, given an initial matching and a

distributional objective, we study the existence of a mechanism that weakly

improves the distributional objective and satisfies constrained efficiency, in-

dividual rationality, and strategy-proofness.

In many markets, a major goal for policymakers is to improve the dis-

tribution of agents to institutions compared to a preexisting matching. Ex-

amples include interdistrict school choice, civil servant matching, teacher

assignment, Japanese residency matching, daycare assignment, and worker

and tuition exchange.1 In some applications, agents can be divided into two

sets: newcomers, who are unmatched, and existing agents, who are already

matched with institutions. For example, doctors who graduate from medi-

cal school need to be assigned to hospitals. Similarly, after teachers get their

licenses, they are matched with schools. Many labor markets share this fea-

ture. In these markets, the initial matching assigns existing agents with their

current institutions, and newcomers are unassigned. In other applications,

agents may have a home institution that defines the initial matching. For

instance, in interdistrict school choice, students are initially assigned to a

school within their district (which may be their neighborhood school) and,

in worker exchange, workers are assigned to the firms they are employed

1See, Hafalir et al. (2022) and Kamada and Kojima (2022) for interdistrict school
choice; Thakur (2021) for civil servant matching; Dur and Kesten (2018) and Combe et al.
(2022a,b) for teacher assignment; Kamada and Kojima (2015) for Japanese residency
matching; Dur and Ünver (2019) for worker and tuition exchange; and various other pa-
pers in the related literature section below.
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at. In some of these markets, agent characteristics play an important role

and, thus, agents are categorized into different types that can specify, for ex-

ample, their gender, institution, race, socioeconomic status, disability status,

and veteran status.

We define the distribution of a matching as a vector that specifies the num-

ber of agents of each type at every institution and the distributional objec-

tive as a function on distributions that specify how desirable distributions

are in terms of the policy. We seek a mechanism that, among other things,

weakly improves the distributional objective compared to the initial match-

ing. In the rest of the paper, for concreteness, we use the terminology of

the school choice application where students of different types are matched

with schools, but our results are applicable to the aforementioned markets

and others as well.

We first observe, for some policy objective on distributions, that there ex-

ists nomechanism that weakly improves the distributional objective and sat-

isfies constrained efficiency, individual rationality, and strategy-proofness

(Example 1). By contrast, we provide a new mechanism based on the top-

trading cycles algorithm of Shapley and Scarf (1974) with these properties

when the distributional objective is pseudo M♮-concave, a notion of concavity

for discrete functions that we introduce (Theorem 1).

A distributional objective is pseudo M♮-concave if the minimum value it

takes on two distributions is weakly smaller than the minimum value that it

takes when these distributions are made closer to each other. Here, getting

closer may either mean adding or subtracting one in a coordinate that we

start with, or the existence of a second coordinate such that we add one in

one of the two coordinates and remove one from the other. We show that a

distributional objective is pseudoM♮-concave if and only if its upper contour

sets satisfy a notion of discrete convexity called M♮-convexity (Theorem 2).

In this sense, pseudo M♮-concavity can be viewed as a discrete analogue of

quasi-concavity. We also show that when there is a set of ideal distributions

and the distributional objective is the negative of the distance to the ideal set

using either the Chebyshev distance or the discretemetric, the distributional
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objective satisfies pseudo M♮-concavity if and only if the set of ideal distri-

butions is M♮-convex (Lemmas 1 and 2). For instance, if there is a single

distribution that is considered ideal, the condition trivially holds.

In the last part of the paper, we provide distributional objectives that are

pseudoM♮-concave. For example, in theworker exchangemarket, firmsmay

set quota policies where each firm restricts the number of workers assigned

to it between a floor and a ceiling. When students are assigned to schools,

each school may have type-specific floors and ceilings to promote diversity.

Furthermore, when there are interdistrict transfers, each district may want

to weakly increase its number of students not to lose any funding. We show

that for each of these markets, the distributional objective corresponding to

the policy set is pseudo M♮-concave. We provide additional examples with

pseudo M♮-concave distributional objectives in Section 5 and Appendix C.

Related Literature.

Distributional policies have only recently been studied in the market-design

literature. In practice, distributional policies are usually implemented by re-

serving seats or positions for target groups in society. Hafalir et al. (2013),

Ehlers et al. (2014), and Echenique and Yenmez (2015) introduce and study

reserve policies. A prominent example of a matching market with distri-

butional policies is the Japanese Residency Market, where there are con-

straints on the number of doctors in regions. Kamada and Kojima (2015,

2017, 2018, 2020) introduce and study matching markets with regional con-

straints such as the Japanese Residency Market. Likewise, distributional

policies play an important role in interdistrict school choice where, histor-

ically, students of color were bused to schools with predominantly white

students. Hafalir et al. (2022) introduce the interdistrict school choice prob-

lem and study distributional policies in this context.2 Whereas the main fo-

cus of this earlier literature is on finding fair outcomes, we study efficient

allocations.

2See a more recent work by Kamada and Kojima (2022) as well.
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There are only a few papers that study constrained efficient and individu-

ally rational mechanisms in the presence of an initial matching and distribu-

tional constraints.3 Ehlers et al. (2014) consider a setting with type-specific

floors and ceilings at schools and construct an algorithm that satisfies con-

strained efficiency with other desired properties (Ehlers et al., 2014, Theo-

rem 2).4 However, their notion of constrained efficiency is different from

ours because they also consider a notion of fairness, which makes the com-

parison between their work and ours impossible. We consider a distribu-

tional objective in their setting and show that a mechanismwith the desired

properties exists for this objective (Proposition 2). Building on their work,

Suzuki et al. (2018) study an efficiency notion similar to ours in a market

without student types and, therefore, a distribution in their setting specifies

only the number of students assigned to each school. Furthermore, their

distributional policy is represented by a set of distributions that satisfy it.5

They show that a version of the top trading cycles mechanism satisfies desir-

able properties if every student ismatched initially, the initialmatching itself

satisfies the distributional policy, and the set of distributions satisfying the

policy goal is M-convex.6 While our paper is inspired by their work, there

are several crucial differences between our work and Suzuki et al. (2018).

First, we allow for student types and, therefore, a distribution in our setting

specifies the number of students of each type at every school. Second, we

introduce distributional objectives as functions on distributions and study

3There are other papers that study constrained efficient mechanisms when
there are distributional constraints while there is no initial matching. See
Abdulkadiroğlu and Sönmez (2003), Imamura and Kawase (2022), and Yokote (2022).
See also Abdulkadiroğlu and Sönmez (1999) for efficient mechanisms in a setting with an
initial matching and without distributional constraints.

4There is no initialmatching in themodel of Ehlers et al. (2014), but the student-exchange
algorithm that they introduce takes an initial matching as an input and satisfies individual
rationality.

5Suzuki et al. (2023) is an updated journal version of Suzuki et al. (2018) where the
authors also consider the core properties of their mechanism, study the deferred acceptance
mechanism, and present simulations. Suzuki et al. (2023) is subsequent to Hafalir et al.
(2018), which our paper is based on, and contemporaneous to the current work.

6See Kurata et al. (2016) for earlier work in a more specialized setting involving floor
constraints at schools.
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the existence of a matching that weakly improves the distributional objec-

tive. The motivation for our modeling approach is that, in practice, distri-

butional policies often depend on student attributes such as socioeconomic

status, and they are introduced because the initial matching does not satisfy

them. Indeed, policymakers often seek to improve upon the initial situation

toward satisfying the ultimate policy goal, but they do not necessarily insist

on satisfying them.7 Another difference is that we allow students to be un-

matched. Nonetheless, we establish a generalization of their main result as

Corollary 1.

Motivated by markets in which institutions swap students (or workers),

Dur and Ünver (2019) study exchange programs and introduce algorithms

with some desirable properties. A key difference between their work and

ours is that, in Dur and Ünver (2019), both sides of the market have prefer-

ences and, therefore, their efficiency notion takes into account preferences

of both students and institutions. In contrast, we define efficiency only

in terms of student preferences. In addition, the distributional policy of

Dur and Ünver (2019) imposes floors and ceilings on the number of stu-

dents that an institution may accept, and this interval includes the number

of students that it has before the exchange, whereas we do not focus on any

specific policy but consider a general class of distributional policy objectives.

However, an application of our results is that in the setting of Dur and Ünver

(2019), our mechanism satisfies their distributional policy, constrained effi-

ciency, individual rationality, and strategy-proofness (Proposition 1).

Another related research is Delacrétaz et al. (2019) who study refugee re-

settlement. They incorporate various constraints into mechanisms similar

to the top-trading cycles algorithm. Constraints studied in their paper are

so general that the constraints may fail M♮-convexity and, therefore, their

mechanisms are not constrained efficient in general. Our study and theirs

are complementary in that we identify a class of constraints under which

constrained efficiency can be achieved together with other desiderata while

7For example, see the Achievement and Integration Program of the Minnesota Depart-
ment of Education (Hafalir et al., 2022).
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they providemechanisms that achieve certain efficiency gains over the initial

assignment under general constraints, if not full constrained efficiency.

In a more recent paper, Combe et al. (2022b) study how to improve as-

signments upon the initial matching both in terms of the participants’ wel-

fare and distributional objectives similar to our work. However, their model

and ours differ in many respects, which makes a direct comparison elusive.

One notable difference is that they analyze a highly structured class of dis-

tributional objectives, namely those given by a partial order based on the

first-order stochastic dominance of the number of students of various types

matched at each school, whereas we do not assume such a structure.

The rest of the paper is organized as follows. We present themodel in Sec-

tion 2 and the top trading cycles mechanism together with its properties in

Section 3. We introduce distributional objectives defined in terms of the dis-

tance to an ideal set of distributions in Section 4. We provide distributional

objectives from real-life matching markets that are pseudo M♮-concave in

Section 5. In Section 6, we conclude. We have additional results and all our

proofs in the Appendix.

2. Model

There exist a finite set of schools C, a finite set of students S, and a finite

set of student types T . Each student s ∈ S has a type τs ∈ T and a strict pref-

erence relation (a linear order) Ps over C ∪ {∅}, where ∅ denotes the outside

option of being unmatched.8 The corresponding weak order is denoted by

Rs. Each school c ∈ C has a capacity qc ∈ N,9 which is the maximum number

of students who can be enrolled in the school.

A matching µ : S → C ∪ {∅} assigns students to schools or to the outside

option such that no school is assigned more students than its capacity. In a

matching µ, the outcome of student s ∈ S is denoted by µ(s) ∈ C ∪ {∅}, and

the outcome of school c ∈ C is denoted by µ−1(c) ⊆ S. There exists an initial

8Depending on the application, the outside option can have different interpretations.
In the context of school choice, the outside option can be going to a private school, home-
schooling, or moving to a different city.

9
N represents the set of nonnegative integers.
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matching denoted by µ0. Note that students can be unmatched at the initial

matching.

A distribution ξ ∈ N
|C|×|T | is a vector such that the entry for school c ∈ C

and type t ∈ T is denoted by ξtc. The entry ξtc is interpreted as the number

of type-t students at school c. Given a matching µ, the distribution induced

by µ is denoted by ξ(µ). Formally, for each school c ∈ C and type t ∈ T ,

ξtc(µ) is the number of type-t students assigned to school c in matching µ. A

distribution ξ ∈ N
|C|×|T | is feasible if, for each school c ∈ C, qc ≥

∑

t∈T ξtc. The

set of feasible distributions is denoted by Ξ0. By definition, ξ(µ0) is feasible.

A distributional objective f : Ξ0 → R is a function on distributions such

that f(ξ) ≥ f(ξ′) means that distribution ξ satisfies the objective at least as

well as distribution ξ′.10 Given the initial matching µ0, a matching µweakly

improves the distributional objective upon µ0 if f(ξ(µ)) ≥ f(ξ(µ0)). When

there is no risk of confusion, we simply state that µ weakly improves the

distributional objective.

Amatching µPareto dominatesmatching ν if each studentweakly prefers

her outcome in µ to her outcome in ν and, for at least one student, the prefer-

ence comparison is strict. Given a distributional objective, a matching µ that

weakly improves the distributional objective is constrained efficient if there

exists no matching that weakly improves the distributional objective upon

µ0 and Pareto dominates µ. A matching µ satisfies individual rationality if

each student weakly prefers her outcome in µ to her initial outcome in µ0,

i.e., for each student s, µ(s) Rs µ0(s).

Throughout the paper, we fix (C,S, T , (τs)s∈S , (qc)c∈C, f, µ0) and assume

that it is commonly known. Therefore, we refer to a profile of student pref-

erences as a matching problem. A mechanism φ takes a matching problem

as input and produces a matching. The outcome for student s ∈ S at the

reported preference profile P under mechanism φ is denoted as φs(P ). A

mechanism φ satisfies strategy-proofness if no student can misreport her

preferences and get a strictly more preferred outcome. More formally, for

10
R represents the set of real numbers. Alternatively, we can define the distributional

objectives as f : N|C|×|T | → R ∪ {−∞}with f(ξ) = −∞ if and only if ξ /∈ Ξ0. Therefore, we
only consider feasible distributions.
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each student s ∈ S and preference profile P , there exists no preference re-

lation P ′
s such that φs(P

′
s, P−s) Ps φs(P ), where P−s denotes the preference

profile of students excluding s.

For any property on matchings (such as constrained efficiency and indi-

vidual rationality), amechanism satisfies the property if, for each preference

profile, the matching produced by the mechanism satisfies the property at

the preference profile.

3. Improving the Distributional Objective

We study the existence of amechanism that weakly improves the distribu-

tional objective and satisfies constrained efficiency, strategy-proofness, and

individual rationality.

3.1. An Example.

We first show that, for some distributional policies, there exists no mecha-

nism with the desirable properties. The following example establishes this

result.

Example 1. Suppose that the set of schools is {c1, . . . , c6}, the set of students

is {s1, . . . , s6}, and the set of student types is {t1, t2, t3}. Each school has a

capacity of one. Students s1 and s4 have type t1, students s2 and s5 have type

t2, and students s3 and s6 have type t3. The distributional policy objective is

given as, for every feasible distribution ξ ∈ Ξ0,

f(ξ) =

{

1 if
∑

t,c ξ
t
c = 6 and

∑

c∈{c1,c2,c3}
ξtc = 1 for each t ∈ T ; and

0 otherwise.

In the initial matching, student si is matched with school ci, where i =

1, . . . , 6. Therefore, the initial matching is such that all six students are as-

signed to a school and, for each type t ∈ T , there is one type-t student as-

signed to a school in {c1, c2, c3}. Therefore, f(ξ(µ0)) = 1.
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Student preferences are as follows:

s1 s2 s3 s4 s5 s6

c6 c6 c5 c3 c3 c1

c1 c2 c4 c4 c5 c2
...

... c3
...

... c6
...

...

where the dots in the table mean that the corresponding parts of the prefer-

ences over the schools are arbitrary, and being unassigned is the least pre-

ferred option for each student.

In this example, there are twomatchings thatweakly improve the distribu-

tional objective and satisfy constrained efficiency and individual rationality:

µ = {(s1, c6), (s2, c2), (s3, c4), (s4, c3), (s5, c5), (s6, c1)}, and

µ̃ = {(s1, c1), (s2, c6), (s3, c5), (s4, c4), (s5, c3), (s6, c2)}.

Therefore, if a mechanism satisfies the desired properties, then its outcome

at the above student preference profile must be either matching µ or µ̃.

Consider the casewhere themechanismproducesmatching µ at the above

student preference profile. Suppose student s3 misreports her preference by

ranking c5 first and c3 second while the ranking of other schools is arbitrary.

Under the new report, the mechanism produces matching µ̃ because it is the

onlymatching thatweakly improves the distributional objective and satisfies

constrained efficiency and individual rationality. Since student s3 strictly

prefers her school at µ̃ to her school at µ, she has a profitable deviation.

Similarly, consider the case where the mechanism produces matching µ̃

at the above student preference profile. Suppose student s6 misreports her

preference by ranking c1 first and c6 second while the ranking of the other

schools is arbitrary. In this case, the mechanism produces matching µ be-

cause it is the only matching that weakly improves the distributional objec-

tive and satisfies constrained efficiency and individual rationality. Since stu-

dent s6 strictly prefers her school at µ to her school at µ̃, she has a profitable

deviation.
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In both cases, there exists a student who benefits from misreporting her

preferences, so there exists nomechanismwith the desirable properties. �

Hence, for a given distributional objective, it may not be possible to

achieve the desired properties.

3.2. Pseudo M♮-concavity.

To achieve the existence of a mechanism with the desirable properties, we

introduce a new notion of discrete concavity and consider distributional ob-

jectives that satisfy it.

Let χt
c ∈ N

|C|×|T | denote the distribution where there is one student of type

t ∈ T at school c ∈ C and there are no other students.

Definition 1. A distributional objective f is pseudo M♮-concave if, for every fea-

sible distributions ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, either

(1) min{f(ξ − χt
c), f(ξ̃ + χt

c)} ≥ min{f(ξ), f(ξ̃)} or

(2) there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

min{f(ξ − χt
c + χt′

c′), f(ξ̃ + χt
c − χt′

c′)} ≥ min{f(ξ), f(ξ̃)}.

Intuitively, pseudo M♮-concavity requires that when we move from two

distributions towards each other, the minimum value of the distributional

objective does not decrease. The definition not only requires the stated in-

equalities but also that the arguments of the function are feasible. As will be

shown in Theorem 2, pseudo M♮-concavity is analogous to quasi-concavity.

Let χ∅
∅ ∈ N

|C|×|T | be the zero vector for notational convenience. Using this

notation, pseudo M♮-concavity can be written as follows: A distributional

objective f is pseudo M♮-concave if, for every feasible distributions ξ, ξ̃ ∈ Ξ0

and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ (C × T ) ∪ {(∅, ∅)} (with

ξt
′

c′ < ξ̃t
′

c′ whenever (c′, t′) ∈ C × T ) such that

min{f(ξ − χt
c + χt′

c′), f(ξ̃ + χt
c − χt′

c′)} ≥ min{f(ξ), f(ξ̃)}.

We use this notation in the rest of the paper.

Pseudo M♮-concavity is weaker than the following notion. A distribu-

tional objective f is pseudo M-concave if, for every feasible distributions

ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c′, t′) ∈ C × T with
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ξt
′

c′ < ξ̃t
′

c′ such that

min{f(ξ − χt
c + χt′

c′), f(ξ̃ + χt
c − χt′

c′)} ≥ min{f(ξ), f(ξ̃)}.

The failure of a mechanismwith the desirable properties in Example 1 can

be attributed to the distributional objective failing pseudo M♮-concavity.

Example 1, Continued. Recall that matchings µ and µ̃ are such that f(ξ(µ)) =

f(ξ(µ̃)) = 1. Denote ξ(µ) by ξ and ξ(µ̃) by ξ̃. Observe that ξt1c3 = 1 > 0 = ξ̃t1c3
because (i) school c3 is matched with student s4 at µ, whose type is t1 and

(ii) school c3 is matched only with student s5 at µ̃, whose type is t2.

We show that f is not pseudo M♮-concave. Towards a contradiction, sup-

pose that f satisfies the condition. Since ξt1c3 > ξ̃t1c3 , pseudo M♮-concavity

implies the existence of (c′, t′) ∈ (C × T ) ∪ {(∅, ∅)} (with ξt
′

c′ < ξ̃t
′

c′ whenever

(c′, t′) ∈ C × T ) such that

min{f(ξ − χt1
c3
+ χt′

c′), f(ξ̃ + χt1
c3
− χt′

c′)} ≥ min{f(ξ), f(ξ̃)}.

Note that, f(ξ) = f(ξ̃) = 1 and, furthermore, f(ξ − χt1
c3
) = 0 because not

all students are matched at ξ − χt1
c3
. Therefore, we need to have (c′, t′) ∈

C × T (equivalently, (c′, t′) 6= (∅, ∅)) for the displayed inequality to hold.

Furthermore, we need a school c′ ∈ C and a type t′ ∈ T such that ξt
′

c′ < ξ̃t
′

c′ and

f(ξ−χt1
c3
+χt′

c′) = 1. This requires ξ−χt1
c3
+χt′

c′ to be feasiblewhere all students

are matched, and hence the only candidate for (c′, t′) satisfying the above

condition is when c′ = c3. Next, ξt
′

c3
< ξ̃t

′

c3
requires ξ̃tc3 be strictly positive,

and the only non-zero ξ̃tc3 is for t = t2 (because s5 is the unique student

matched with c3 at µ̃). Finally, f(ξ − χt1
c3
+ χt2

c3
) = 0 gives a contradiction to

the displayed inequality.

We conclude that f is not pseudo M♮-concave. �

3.3. Top Trading Cycles Mechanism.

Wenow introduce amechanism that achieves the desirable propertieswhen-

ever the distributional objective is pseudo M♮-concave.

We first create a hypothetical two-sided matching market. On one side of

the market, there are school-type pairs (c, t) ∈ C × T , and also an outside

option (∅, ∅) that represents being unmatched. On the other side, there are

students from the original market, S.
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Given any student s ∈ S with type t ∈ T and her preference relation Ps in

the originalmarket, let P̃s be a preference relation over school-type pairs and

the outside option in the hypothetical market such that, for every c, c′ ∈ C

and t′ ∈ T \ {t}, we have,

(i) c Ps c
′ ⇐⇒ (c, t) P̃s (c

′, t),

(ii) c Ps ∅ ⇐⇒ (c, t) P̃s (∅, ∅),

(iii) if µ0(s) ∈ C, then (µ0(s), t) P̃s (c, t
′), and

(iv) if µ0(s) = ∅, then (∅, ∅) P̃s (c, t
′).

That is, P̃s is a preference relation over school-type pairs and the outside

option that ranks the school-type pairs in which the type is t in the same

order as in Ps, while finding all school-type pairs specifying a different type

as less preferred than the pair corresponding to her initial outcome. Let R̃s

denote the weak preference corresponding to P̃s.

Next, we define a priority ordering of students that school-type pairs and

(∅, ∅)use to rank students. For a pair (c, t) ∈ C×T , students initiallymatched

with (c, t) (i.e., µ0(s) = c with τs = t) have the highest priority, and then all

other students have the second highest priority. For (∅, ∅), students who are

initially unmatched have the highest priority, and then all other students

have the second highest priority. This gives us two priority classes for stu-

dents at each school-type pair and (∅, ∅). We break ties within each class

according to a master priority list over students that every school-type pair

and (∅, ∅) uses.

Now we define the set of students that each school-type pair or (∅, ∅) can

point to in our algorithm below. At a matching µ, a student s ∈ S with type

t ∈ T and µ0(s) = c ∈ C is permissible to (c′, t′) ∈ (C × T ) ∪ {(∅, ∅)} if

f(ξ(µ) + χt′

c′ − χt
c) ≥ f(ξ(µ0)).

Note that such a student is permissible to pair (c, t) at amatching µwhenever

f(ξ(µ)) ≥ f(ξ(µ0)). Similarly, at a matching µ, a student s ∈ S with type

t ∈ T and µ0(s) = ∅ is permissible to (c′, t′) ∈ (C × T ) ∪ {(∅, ∅)} if

f(ξ(µ) + χt′

c′) ≥ f(ξ(µ0)).



14 HAFALIR, KOJIMA, AND YENMEZ

We generalize the top trading cycles algorithm of Shapley and Scarf

(1974) to our setting as follows.

Top Trading Cycles (TTC) Algorithm. Consider a hypothetical market cor-

responding to a matching problem.

Step 1: Let µ1 ≡ µ0. Each school-type pair and (∅, ∅) points to the per-

missible student at matching µ1 with the highest priority. If there

exists no such student, remove the school-type pair or (∅, ∅) from

the market. Each student s points to the highest ranked remaining

school-type pair or (∅, ∅)with respect to P̃s. Identify and execute cy-

cles by assigning each student the school-type pair or (∅, ∅) she is

pointing to. Remove all students in the identified cycles from the

market.

Step n (n > 1): Let µn denote the matching consisting of assignments

in the previous steps and initial assignments for all students who

have not been processed in the previous steps. Each remaining

school-type pair and (∅, ∅) points to the student who is permissible

at matching µn with the highest priority. If there exists no such stu-

dent, remove the school-type pair or (∅, ∅) from the market. Each

student s points to the highest-ranked remaining school-type pair

or (∅, ∅) with respect to P̃s. Identify and execute cycles by assigning

each student the school-type pair or (∅, ∅) she is pointing to. Remove

all students in the identified cycles from the market.

The algorithm terminates when no student remains to be processed. The

outcome is defined as the matching corresponding to the outcome of the hy-

pothetical market at the final step in the following sense. A student s ∈ S is

assigned to school c ∈ C at the outcome of the TTC algorithm if s is assigned

to (c, t), for some t ∈ T , in the hypothetical market and s is unassigned at

the outcome of the TTC algorithm if s is assigned to (∅, ∅) in the hypothetical

market. We provide an illustrative example of the TTC algorithm in Appen-

dix A. Note that the definition of permissibility and, hence, the definition of

the TTC algorithm depends on the distributional objective f . Nevertheless,

we do not explicitly state the distributional objective under consideration

when it is clear from the context.
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The top trading cycles (TTC) mechanism takes a profile of student pref-

erences as input and produces the outcome of the TTC algorithm at the re-

ported student preference profile.

Our main result is as follows.

Theorem 1. Suppose that the distributional objective f is pseudo M♮-concave.

Then the TTC mechanism weakly improves the distributional objective and satis-

fies constrained efficiency, individual rationality, and strategy-proofness.

4. Sets of Distributions as Policy Goals

In this section, we studymarkets inwhich policymakers identify their pol-

icy goal with a set of ideal distributions and their distributional objective is

definedusing this set.11 Therefore, we represent a policy goal as a non-empty

set of distributions Ξ ⊆ Ξ0 and say that amatching µ satisfies the policy goal

Ξ if the distribution induced by µ is in Ξ, that is, ξ(µ) ∈ Ξ.

4.1. Discrete Convexity.

We use the following notion of discrete convexity on policy goals, which is

studied in mathematics and operations research literatures (Murota, 2003).

Definition 2. A policy goal Ξ ⊆ Ξ0 is M♮-convex if, for every ξ, ξ̃ ∈ Ξ and

(c, t) ∈ C ×T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ (C × T )∪{(∅, ∅)} (with ξt

′

c′ < ξ̃t
′

c′

whenever (c′, t′) ∈ C × T ) such that

ξ − χt
c + χt′

c′ ∈ Ξ and ξ̃ + χt
c − χt′

c′ ∈ Ξ.

For example, Ξ0 is M♮-convex. We show this claim in the proof of Lemma

2.

M♮-convexity is a weakening of the following property: A set of distri-

butions Ξ ⊆ Ξ0 is M-convex if, for every ξ, ξ̃ ∈ Ξ and (c, t) ∈ C × T with

ξtc > ξ̃tc, there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that ξ − χt
c + χt′

c′ ∈

Ξ and ξ̃ + χt
c − χt′

c′ ∈ Ξ.

To see the difference between these two concepts, consider the following

simple examples: {(2, 0), (1, 1), (0, 2)} is M-convex, and hence M♮-convex,

whereas {0, 1, 2} is M♮-convex but not M-convex.

11We provide examples of such policies in Section 5 and in Appendix C.



16 HAFALIR, KOJIMA, AND YENMEZ

4.2. A Characterization of Pseudo M♮-concavity.

Here, we establish a close connection between pseudo M♮-concavity of a

function and M♮-convexity of a policy goal.

Given a distributional objective f and a constant λ ∈ R, consider the fol-

lowing distributional policy goal, named (f, λ)-goal: Ξ(f, λ) ≡ {ξ ∈ Ξ0 |

f(ξ) ≥ λ}. In words, a distribution satisfies the (f, λ)-goal if the value that f

takes on the distribution is at least λ. In other words, (f, λ)-goals represent

upper contour sets of function f .

We show that pseudo M♮-concavity is characterized by all upper contour

sets beingM♮-convex. Moreover, for eachM♮-convex policy goal, there exists

a corresponding distributional objective satisfying pseudo M♮-concavity.

Theorem 2. The policy goal Ξ(f, λ) is M♮-convex for every λ ∈ R if and only if the

distributional objective f is pseudo M♮-concave. Moreover, if Ξ ⊆ Ξ0 is M♮-convex,

then there exist a constant λ ∈ R and a pseudo M♮-concave distributional objective

f such that Ξ(f, λ) = Ξ.

Theorem 2 demonstrates that pseudo M♮-concavity is a natural discrete

counterpart of the familiar notion of quasi-concavity: A real-valued function

g defined on a convex domain D ⊆ R
n is quasi-concave if, for every real

number λ ∈ R, the upper contour set {x ∈ D : g(x) ≥ λ} is convex.

We also note that, similar to Theorem 2, it can be shown that pseudo M-

concavity is equivalent to the requirement that all upper contour sets are

M-convex.

4.3. Distributional Objectives Based on Policy Goals.

Our previous analysis of distributional policy objectives has implications for

desirablemechanisms that satisfy a policy goal. Tomake this connection, we

consider a diversity objective that is inversely related to the distance between

the distribution in consideration and the policy goal. For this purpose, we

use two different notions of distance.12

12In Appendix B, we consider a third distributional policy objective based on the Man-
hattan distance (or L1 metric) to a policy goal.
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The first is the Chebyshev distance (also called the maximum or L∞ met-

ric). For any ξ, ξ̃ ∈ Ξ0,

DC(ξ, ξ̃) ≡ max
(c,t)∈C×T

|ξtc − ξ̃tc|,
13

is the distance between two distributions ξ and ξ̃. Then the distance between

a distribution ξ and a policy goal Ξ is defined asminξ̃∈ΞDC(ξ, ξ̃). Hence, we

consider the distributional objective fΞ
C , which is equal to the negative of

the Chebyshev distance between the policy goal Ξ and the distribution in

question.14 More explicitly, fΞ
C is defined as, for every ξ ∈ Ξ0,

fΞ
C(ξ) ≡ −min

ξ̃∈Ξ
DC(ξ, ξ̃).

The next lemma shows that M♮-convexity of Ξ is both necessary and suf-

ficient for fΞ
C to be pseudo M♮-concave.

Lemma 1. The policy goal Ξ ⊆ Ξ0 is M♮-convex if and only if fΞ
C is pseudo M♮-

concave.

Next, we investigate an alternative distributional objective based on policy

goals. Policymakers may be strict in implementing a policy goal and view

a distribution as a success if it is in the policy goal and everything outside

of the policy goal as a failure. Therefore, the distributional objective may be

defined using the discrete metric (or the characteristic function) as follows.

For each policy goal Ξ, the distributional objective fΞ
D is given by fΞ

D(ξ) = 1

if ξ ∈ Ξ, and fΞ
D(ξ) = 0, when ξ ∈ Ξ0 \ Ξ.

The next lemma shows that M♮-convexity of Ξ is both necessary and suf-

ficient for fΞ
D to be pseudo M♮-concave.

Lemma 2. The policy goal Ξ ⊆ Ξ0 is M♮-convex if and only if fΞ
D is pseudo M♮-

concave.

The following result follows from Lemma 2 and Theorem 1.

13For a real number x ∈ R, |x| denotes the absolute value of x.
14Since higher values of f means the distributional policy objective is satisfied more, we

consider the negative of the distance to define the distributional objective.



18 HAFALIR, KOJIMA, AND YENMEZ

Corollary 1. Suppose that µ0 satisfies the policy goal Ξ ⊆ Ξ0. If Ξ is M♮-convex,

then the TTC mechanism for the distributional objective fΞ
D satisfies the policy goal

Ξ, constrained efficiency, individual rationality, and strategy-proofness.

Since µ0 satisfies the policy goal Ξ, we have fΞ
D(ξ(µ0)) = 1. In addition,

by Lemma 2, fΞ
D is pseudo M♮-concave. Therefore, by Theorem 1, the TTC

mechanism weakly improves fΞ
D. Since the value of fΞ

D is one if the distri-

bution satisfies the policy goal Ξ and zero otherwise, we conclude that the

TTCmechanism satisfies the policy goal Ξ. The other properties also imme-

diately follow from Theorem 1.

Corollary 1 is a generalization of the main result of Suzuki et al. (2018),

who study a setting where, (i) there are no student types,15 (ii) students

are not allowed to be unmatched, and (iii) the policy goal is M-convex. In

Corollary 1, however, there can be multiple student types, not all students

need to be initially or eventually matched, and the policy goal is M♮-convex

(rather than M-convex, which is more restrictive).

Note that the assumption that the initial matching satisfies the policy goal

is necessary for Corollary 1. To see this, consider student preferences such

that each student’s highest-ranked option is her initial assignment. Then the

initial matching is the unique individually rational matching. Therefore, if

there exists a mechanism with the desired properties, then the outcome of

this preference profile has to be the initial matching. Hence, we need the

assumption that the initial matching satisfies the policy goal to have such a

mechanism.

5. Applications

In this section, we consider several real-life applications and show that a

wide variety of distributional policies can be expressed by distributional ob-

jectives that are pseudoM♮-concave and, therefore, our TTCmechanism can

15Suzuki et al. (2018) state that type-specific floors and ceilings at schools form M-
convex distributional constraints. Suzuki et al. (2023) show that the transformation used
in Hafalir et al. (2018), which our paper is based on, can be applied for this specific ap-
plication so that the main result in Suzuki et al. (2018) applies. However, the model of
Suzuki et al. (2018) and Suzuki et al. (2023) do not have student types.
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be applied in these settings. Additional examples are provided in Appendix

C.

5.1. School-level quota policies.

In our first application, each school has a floor and ceiling on the number

of students that it can admit. This is motivated by exchange markets, where

participating institutions either require the numbers of incoming and out-

going agents to be the same or set bounds on the imbalance between the

incoming and outgoing agents (Dur and Ünver, 2019). More specifically,

consider the following policy:

ΞQ ≡

{

ξ ∈ Ξ0|uc ≥
∑

t

ξtc ≥ lc for all c ∈ C

}

,

where uc ∈ N is the ceiling and lc ∈ N is the floor at school c ∈ C such that

uc ≥ lc.
16 We call a policy goal ΞQ of this form a school-level quota policy.

In Appendix D, we show that ΞQ is an M♮-convex set. Therefore, we get

the following result using Theorem 1 and Lemmas 1 and 2.

Proposition 1. Suppose that the distributional objective is fΞQ

C or fΞQ

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.

5.2. School-level diversity policies.

In this application,we study diversity (or affirmative action) policies that are

commonly used in controlled school choice (Ehlers et al., 2014). Suppose

that the policy goal sets type-specific floors and ceilings at each school. More

precisely,

ΞD ≡
{

ξ ∈ Ξ0|qtc ≥ ξtc ≥ ptc for all (c, t) ∈ C × T
}

where qtc ∈ N is the ceiling and ptc ∈ N is the floor for type t ∈ T at school

c ∈ C such that qtc ≥ ptc. This policy requires, for each school, the number

of students of a given type to be between the ceiling and floor of this type

at the school. As it is standard in the controlled school choice literature, we

16Dur and Ünver (2019) make the stronger assumption uc ≥
∑

t ξ
t
c(µ0) ≥ lc, which we

do not need.
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assume that each school c ∈ C has enough capacity to cover all floors, that is,

qc ≥
∑

t p
t
c. We call a policy goal of this form a school-level diversity policy.

In AppendixD, we show that ΞD is anM♮-convex set. Therefore, Theorem

1 and Lemmas 1 and 2 imply the following result.

Proposition 2. Suppose that the distributional objective is fΞD

C or fΞD

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.

5.3. Exchange-feasibility policy.

Next, we introduce a variation of the balanced-exchange policy studied in

Hafalir et al. (2022). The motivation comes from a school choice problem

with school districts where students can be assigned to schools outside of

their home districts. Each school district would like to have the number of

students assigned to schools in the district to not decrease compared to the

initial matching. This is a practically important objective because, for ex-

ample, in the U.S., each school district’s funding increases in the number of

students that it enrolls.17

Suppose that there is a set of districts D and each school c ∈ C is in a

district d(c) ∈ D. With the exchange-feasibility policy, for each district, we

require the total number of students assigned to schools in the district to

weakly increase. Let kd denote the number of students assigned to schools

in district d ∈ D at the initial matching.18 Then, the exchange-feasibility

policy is formally defined as

ΞE ≡







ξ ∈ Ξ0|
∑

t,c:d(c)=d

ξtc ≥ kd for all d ∈ D







.

As before, we show that ΞE is an M♮-convex set in Appendix D and, there-

fore, the following result holds.

17For example, a 2005 report details the state funding for school districts in the U.S.,
which depends on the number of enrolled students, in all states except Delaware, Hawaii,
and Pennslyvania. See https://www.ecs.org/clearinghouse/59/81/5981.pdf (last accessed
on January 4, 2023).

18Propositions 3 and 4 below hold for every (kd)d∈D because M♮-convexity of ΞE and
ΞDE do not depend on the profile (kd)d∈D.

https://www.ecs.org/clearinghouse/59/81/5981.pdf
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Proposition 3. Suppose that the distributional objective is fΞE

C or fΞE

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.

One of the advantages of our approach is that pseudo M♮-concavity of

a distributional objective (or M♮-convexity of a policy goal) is so general

that a wide variety of distributional objectives satisfy it and, therefore, it

is likely to be applicable for distributional objectives that one may encounter

in the future. To highlight this point, we consider school-level diversity and

exchange-feasibility policies simultaneously. More specifically, let

ΞDE ≡







ξ ∈ Ξ0|qtc ≥ ξtc ≥ ptc , ∀(c, t) ∈ C × T and
∑

t,c:d(c)=d

ξtc ≥ kd , ∀d ∈ D







and call it the combination of school-level diversity and exchange-

feasibility policies. This is the set of distributions that satisfy the school-

level diversity policies and the flow-feasibility requirement for districts. We

establish that ΞDE is M♮-convex, implying the following result.

Proposition 4. Suppose that the distributional objective is fΞDE

C or fΞDE

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.

In general, the intersection of twoM♮-convex sets need not beM♮-convex.19

Therefore, the proof of this result does not follow from the proofs of Propo-

sitions 2 and 3.

5.4. District-level Diversity Policies.

We consider the interdistrict school choice setting as in Section 5.3, but in-

stead of the exchange-feasibility policy, we study diversity policies at the

district level as follows. Suppose that, for each district d ∈ D and type t ∈ T ,

there exist a type-specific floor ptd ∈ N and a type-specific ceiling qtd ∈ N at

the district level such that qtd ≥ ptd. Therefore, the policy goal can be written

19Such an example is available from the authors upon request.
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as






ξ ∈ Ξ0|qtd ≥
∑

c:d(c)=d

ξtc ≥ ptd for all (d, t) ∈ D × T







.

Moreover, suppose that the floors and ceilings are not too tight in the sense

that there exist feasible distributions that satisfy the policy goal. We show

that this policy goal is not necessarilyM♮-convex and, therefore, the distribu-

tional objectives corresponding to this policy goal that we defined in Section

4 are not pseudo M♮-concave (Lemmas 1 and 2).

To see this, consider the setting in Example 1. Suppose that there are two

districts: d1 has schools c1, c2, and c3, whereas d2 has schools c4, c5, and c6. Let

the floors and ceilings be qtd = ptd = 1 for each type t ∈ T and district d ∈ D.

We have shown in Section 3 that the distributional objective corresponding

to this policy goal for the discrete metric fails pseudo M♮-concavity. There-

fore, the policy goal is not M♮-convex (Lemma 2). Hence, the distributional

objective corresponding to this policy goal using the Chebyshev distance

also fails pseudo M♮-concavity (Lemma 1).

We note that the main reason for the failure of M♮-convexity is not floors

(since floors do not create a problem as we have seen in Section 5.3). This is

in contrast with the controlled school choice literature in the context of sta-

ble matchings: Abdulkadiroğlu and Sönmez (2003) establish the existence

of stable matchings when there are type-specific ceilings at each school

whereas Ehlers et al. (2014) show the failure of the stable matchings when

there are type-specific floors at schools.

6. Conclusion

We studied the principles that Keynes laid down as the political prob-

lem of mankind in a matching context. In our setting, the challenge was

to design a mechanism that achieves constrained efficiency, individual ra-

tionality, and strategy-proofness while weakly improving a distributional

objective. We identified a notion of discrete concavity, which we called

pseudoM♮-concavity, and showed that when the distributional objective sat-

isfies this notion, there exists a mechanism with all the desirable properties

listed above. In fact, we provided an explicit mechanism that achieves these
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goals, namely a generalization of the celebrated top-trading cycles mecha-

nism (Shapley and Scarf, 1974).

One of our main contributions is to identify a general class of distribu-

tional objectives, rather than a specific objective, under which a mechanism

with the desirable properties exists. Pseudo M♮-concavity is quite permis-

sive in the sense of being satisfied by many important real-life applications.

Identifying additional practical examples of distributional objectives that are

pseudo M♮-concave is left for future research.

We hope that our approach will pave the way for a more systematic anal-

ysis of distributional policies. For example, in our context, whether pseudo

M♮-concavity can be weakened for the existence of a mechanism with the

desirable properties is an important open question and is also left for future

research. We hope and anticipate that our results will be useful in attain-

ing a better understanding of when constrained efficiency can be achieved

in matching environments where distributional policies play a crucial role.
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Appendix A. An Illustration of the TTC Algorithm

In this appendix, we illustrate how the TTC algorithm works. Con-

sider a matching problem with S = {s1, . . . , s7}, C = {c1, c2, c3, c4}, and

T = {t1, t2}. School c1 has capacity three, school c2 has capacity two, and

schools c3 and c4 have capacity one. Students s1, s2, s3, and s4 have type

t1 whereas students s5, s6, and s7 have type t2. The initial matching µ0 is

{(s1, c1), (s2, c1), (s3, c2), (s4, ∅), (s5, ∅), (s6, c3), (s7, c4)}. Student preferences

are as follows.
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Ps1 Ps2 Ps3 Ps4 Ps5 Ps6 Ps7

c2 c3 c4 c3 c1 c4 c2

c3 c1 c2 c1 c2 c3 c3

c1
...

... ∅ ∅
... c4

...
...

...
...

The distributional policy objective is given by the following: (i) f(ξ) = 1 if

ξ is a feasible distribution, ξt1c1 ≤ 2, ξt2c1 ≤ 1, ξt1c2 ≤ 1, and ξt2c2 ≤ 1; (ii) f(ξ) = 0,

otherwise. It is easy to verify that f(ξ(µ0)) = 1.

To run the TTC algorithm, we use a master priority list. Suppose that the

master priority list ranks students as follows: s1 ≻ s2 ≻ s3 ≻ s4 ≻ s5 ≻ s6 ≻

s7.

At Step 1, there are eight school-type pairs and (∅, ∅)which represents be-

ing unassigned. Consider (c1, t1). Initially, students s1 and s2 are matched

with c1, so they are both permissible to this pair. We use the master priority

list to rank them, so s1 gets the highest priority at (c1, t1). Therefore, (c1, t1)

points to s1. Now consider (c1, t2). Initially, it does not have any students

because there is no type-t2 student assigned to c1 in the original matching

problem. Furthermore, s1 is permissible to (c1, t2) because she can be re-

moved from (c1, t1) and a type-t2 student can be assigned to (c1, t2) with-

out worsening the distributional policy objective. Therefore, (c1, t2) points

to s1 as well because s1 gets a higher priority than other permissible stu-

dents because of the master priority list. The rest of the pairs also point to

the highest-priority permissible students. Each student points to the high-

est ranked school-type pair of the same type as shown in Figure 1. There

is only one cycle at Step 1: s7 → (c2, t2) → s3 → (c4, t1) → s7. Therefore,

s7 is assigned to (c2, t2) and s3 is assigned to (c4, t1). At Step 2, there are five

remaining school-type pairs and (∅, ∅): there are no permissible students for

(c4, t1) and (c4, t2) because c4 has a capacity of one and it is already assigned

to s3; there are no permissible students for (c2, t2) because c2 is already as-

signed to a type-t2 student. Each remaining school-type pair points to the

highest-ranked remaining permissible student. Each student points to the
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(∅, ∅)

s1

s2

s3

s4

s5

s6

s7

(c1, t1)

(c1, t2)
(c2, t1)

(c2, t2)

(c3, t1)

(c3, t2)

(c4, t1)

(c4, t2)

Figure 1. First step of the TTC algorithm. The cycle is repre-
sented by thick arrows.

(∅, ∅)

s1

s2

s4

s5

s6

(c1, t1)

(c1, t2)
(c2, t1)

(c3, t1)

(c3, t2)

Figure 2. Second step of the TTC algorithm. Cycles are repre-
sented by thick arrows.

highest-ranked remaining school-type pair (see Figure 2). There are two cy-

cles: s1 → (c2, t1) → s1 and s6 → (c3, t2) → s6. Hence, s1 is assigned to (c2, t1)

and s6 is assigned to (c3, t2).
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The algorithm ends in five steps. Steps 3 and 4 are shown in Figure 3,

Panels A and B. In Step 5, s5 points to (c1, t2), which points back to s5. The

outcome is

{(s1, c2), (s2, c1), (s3, c4), (s4, c1), (s5, c1), (s6, c3), (s7, c2)}.

(∅, ∅)

s2

s4

s5

(c1, t1)

(c1, t2)

(a) Step 3 of TTC

(∅, ∅)
s4

s5

(c1, t1)

(c1, t2)

(b) Step 4 of TTC

Figure 3. Steps three and four of the TTC algorithm. Cycles
are represented by thick arrows.

It can be easily seen that the distribution induced by this matchingweakly

improves the distribution policy.

Appendix B. Manhattan Distance

In this appendix, we consider the Manhattan distance (or L1 metric) be-

tween two distributions and the corresponding distributional objective for

policy sets. The Manhattan distance is defined as, for any ξ, ξ̃ ∈ Ξ0,

DM(ξ, ξ̃) ≡
∑

(c,t)∈C×T

|ξtc − ξ̃tc|.

Using the Manhattan distance between two distributions, we define the

Manhattan distance between a distribution ξ and a policy set Ξ as

minξ̃∈Ξ DM(ξ, ξ̃). Then, we consider the following distributional objective:

fΞ
M(ξ) ≡ −min

ξ̃∈Ξ
DM(ξ, ξ̃).
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We show that fΞ
M is not necessarily pseudo M♮-concave even when Ξ is M♮-

convex.

Example 2. Consider a setting with one school c and two types t1 and t2. Let

(x, y) represent the distributionwhere there are x number of type-t1 students

and y number of type-t2 students. Suppose Ξ = {(1, 1), (2, 1)}. It is easy to

verify that Ξ is M♮-convex.

Let ξ = (3, 1) and ξ̃ = (2, 0) and note that fΞ
M(ξ) = fΞ

M(ξ̃) = −1. Since ξt1c >

ξ̃t1c , pseudo M♮-concavity implies the existence of (c′, t′) ∈ (C × T ) ∪ {(∅, ∅)}

(with ξt
′

c′ < ξ̃t
′

c′ whenever (c′, t′) 6= (∅, ∅)) such that

min{fΞ
M(ξ − χt1

c + χt′

c′), f
Ξ
M(ξ̃ + χt1

c − χt′

c′)} ≥ min{fΞ
M(ξ), fΞ

M(ξ̃)}.

Since there is no coordinate in which ξ̃ is greater than ξ, it must be that

(c′, t′) = (∅, ∅). Therefore, ξ − χt1
c + χt′

c′ = (2, 1) and ξ̃ + χt1
c − χt′

c′ = (3, 0). It

is easy to see that fΞ
M(2, 1) = 0while fΞ

M(3, 0) = −2. Therefore, the left-hand

side of the displayed inequality is −2, whereas the right-hand side of the

displayed inequality is −1. We conclude that fΞ
M is not necessarily pseudo

M♮-concave even though Ξ is M♮-convex. �

Appendix C. Additional Results

In this section, we provide additional markets with distributional objec-

tives that are pseudo M♮-concave and establish new results as applications

of Theorem 1.

First, we study the balanced-exchange policy requiring that the number

of students assigned to schools in the district to remain the same compared

to the initial matching.20 As in Section 5.3, we assume that there is a set of

districts denoted by D and schools are partitioned into districts where the

district of school c is denoted by d(c) ∈ D.

With a balanced-exchange policy, we require the number of students as-

signed to schools in each district to remain the same. More specifically, when

20This policy is equivalent to the balanced exchange policy considered by Hafalir et al.
(2022) when all students are required to be matched.



30 HAFALIR, KOJIMA, AND YENMEZ

the number of students assigned to schools in district d at the initial match-

ing is denoted by kd, the balanced-exchange policy can be written as

ΞB ≡







ξ ∈ Ξ0|
∑

t,c:d(c)=d

ξtc = kd for all d ∈ D







.

The balanced-exchange policy is more restrictive than the exchange-

feasibility policy ΞE that we introduced in Section 5.3, so ΞB ⊆ ΞE .

We show that ΞB is M-convex (and, hence, M♮-convex) in Appendix D.

Therefore, we get the following result.

Proposition 5. Suppose that the distributional objective is fΞB

C or fΞB

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.

Lastly, consider imposing school-level diversity and balanced-exchange

policies for districts simultaneously. More specifically, consider the follow-

ing set of distributions

ΞDB ≡







ξ ∈ Ξ0 | qtc ≥ ξtc ≥ ptc , ∀(c, t) ∈ C × T and
∑

t,c:d(c)=d

ξtc = kd , ∀d ∈ D







and call it the combination of school-level diversity and balanced-exchange

policies. This is the set of distributions that satisfy both the school-level

floors and ceilings and the balanced-exchange requirement. Since the

balanced-exchange policy is more restrictive than the exchange-feasibility

policy that we introduced in Section 5.3, we get ΞDB ⊆ ΞDE. Thus, the com-

bination of school-level diversity and balanced-exchange policies is more

restrictive than the combination of school-level diversity and exchange-

feasibility policies.

We establish that ΞDB is M-convex (and, hence, M♮-convex), implying the

following result.

Proposition 6. Suppose that the distributional objective is fΞDB

C or fΞDB

D . Then

the TTC mechanism weakly improves the distributional objective and satisfies con-

strained efficiency, individual rationality, and strategy-proofness.
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Appendix D. Omitted Proofs

In this section, we provide the omitted proofs where we use the following

notation. For a distribution ξ ∈ N
|C|×|T |, let n(ξ) ≡

∑

c,t ξ
t
c denote the number

of studentswho are assigned at ξ, and, for any c ∈ C, nc(ξ) ≡
∑

t ξ
t
c denote the

number of students who are assigned to c at ξ. When schools are partitioned

into districts and, for each school c, its district is denoted by d(c), nd(ξ) ≡
∑

t,c:d(c)=d ξ
t
c denotes the number of students who are assigned to schools in

district d at a distribution ξ ∈ N
|C|×|T |.

Proof of Theorem 1. We build on the main result of Suzuki et al. (2018). They

study a setting where each student is initially matched with a school and

there is a policy goal Ξ. Furthermore, there are no student types and, hence,

there are no constraints associated with student types. In their setting, they

show that if the policy goal Ξ is M-convex and the initial distribution of

students satisfies the policy goal Ξ, then their mechanism, called TTC-M,

satisfies the policy goal Ξ, constrained efficiency, individual rationality, and

strategy-proofness.

Let us recap the hypothetical market that we introduced before the defi-

nition of the TTC algorithm in Section 3.3. On one side of the market, there

are school-type pairs (c, t)where c ∈ C and t ∈ T , and also an outside option

(∅, ∅) that represents being unmatched. On the other side, there are students

from the original problem, S. The preferences of the students and the prior-

ity orders of school-type pairs are given in Section 3.3.

Next, let Ξ ≡ Ξ(f, f(µ0)) be the (f, f(µ0))−policy goal. By Theorem 2, the

policy goal Ξ is M♮-convex since f is pseudo M♮-concave.

We now verify that the hypothetical market with a modified policy goal

based on Ξ satisfies all the conditions assumed by Suzuki et al. (2018). We

denote the modified policy goal by Ξ̃. To construct it, we add a coordinate

to Ξ to represent the number of unassigned students. More formally, Ξ̃ ≡

{(ξ, |S|−n(ξ)|ξ ∈ Ξ}, where |S|−n(ξ) is the number of unassigned students

in ξ. Inwhat follows,we argue that, whenΞ satisfiesM♮-convexity, Ξ̃ satisfies

M-convexity. Theorem 6.3 of Murota (2003) and the discussion afterward

establish that aM♮-convex set with n variables results in aM-convex set with
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n + 1 variables where the extra variable is given by the negative of the sum

of n variables.21 Hence, we conclude that Ξ̃ is M-convex.

Therefore, given the M-convex policy goal Ξ̃, TTC-M in the hypotheti-

cal market satisfies the policy goal Ξ̃ (i.e., the policy goal given by Ξ ≡

Ξ(f, f(µ0))), constrained efficiency, individual rationality, and strategy-

proofness.

We note that the outcome of our TTC algorithm is isomorphic to the out-

come of TTC-M in the hypothetical market in the following sense. Student

s with type t is allocated to c for some c ∈ C under preference profile

P = (Ps)s∈S at the outcome of the TTC algorithm if and only if student s

is allocated to the school-type pair (c, t) ∈ C × T under preference profile

P̃ = (P̃s)s∈S at TTC-M in the hypothetical market. Moreover, student s is

unassigned under preference profile P = (Ps)s∈S at the outcome of the TTC

algorithm if and only if student s is allocated to (∅, ∅) under preference pro-

file P̃ = (P̃s)s∈S at TTC-M in the hypothetical market. Moreover, it is not

difficult to confirm that our TTC’s permissibility condition given in Section

3.3 is equivalent to TTC-M’s acceptability condition.22 The rest of the proof is

devoted to showing that our TTCmechanism satisfies the desired properties

in the original matching problem.

The result that the TTC mechanism weakly improves the distributional

objective follows from the result that the distribution corresponding to the

TTC-M outcome is in Ξ̃. Suppose that µ is the outcome of the TTC mecha-

nism. Then, (ξ(µ), |S| − n(ξ(µ)) ∈ Ξ̃ implies that f(µ) ≥ f(µ0). Therefore,

the TTC mechanism weakly improves the distributional objective f .

To show constrained efficiency, let µ be the outcome of the TTC mech-

anism. Suppose, for contradiction, that there exists a matching µ′ with

(ξ(µ′), |S| − n(ξ(µ′))) ∈ Ξ̃ that Pareto dominates matching µ: for each stu-

dent s ∈ S, µ′(s) Rs µ(s), with at least one relation being strict. Then,

21See also Equation 6.4 in Murota (2003) and Equation 29 in Murota (2021).
22To see this, consider a student s ∈ S with type t ∈ T at a matching µ, (i) if µ0(s) =

c ∈ C, then s is permissible to (c′, t′) ∈ (C × T ) ∪ {(∅, ∅)} if f(ξ(µ) + χt′

c′ − χt
c) ≥ f(ξ(µ0)),

which is the identical condition for acceptability, and (ii) if µ0(s) = ∅, then s is permissible

to (c′, t′) ∈ (C × T )∪{(∅, ∅)} if f(ξ(µ)+χt′

c′) ≥ f(ξ(µ0)), which is equivalent to acceptability
since χt

∅ is absent in our formulation.
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by the construction of preferences R̃s in the hypothetical market, we have

(µ′(s), τ ′s) R̃s (µ(s), τ
′′
s ) for every student s ∈ S, where (i) τ ′s = τs if µ

′(s) ∈ C

and τ ′s = ∅ otherwise, and (ii) τ ′′s = τs if µ(s) ∈ C and τ ′′s = ∅ otherwise.

Moreover, one relation needs to be strict. However, this implies that, in the

hypothetical market, {(s, (µ′(s), τs)) | µ′(s) ∈ C} ∪ {(s, (∅, ∅)) | µ′(s) = ∅}

Pareto dominates {(s, (µ(s), τs)) | µ(s) ∈ C} ∪ {(s, (∅, ∅)) | µ(s) = ∅}, while

both matchings inducing distributions in the policy goal Ξ̃. This is a contra-

diction to the result that TTC-M is constrained efficient.

To show individual rationality, let matching µ be the outcome of the TTC

mechanism and hence let {(s, (µ(s), τs)) | µ(s) ∈ C} ∪ {(s, (∅, ∅)) | µ(s) = ∅}

be the result of TTC-M in the hypothetical market. TTC-M is individually

rational, hence, for each s with µ0(s) ∈ C, we have (µ(s), τ ′s) R̃s (µ0(s), τs),

where τ ′s = τs if µ(s) ∈ C and τ ′s = ∅, otherwise. By the construction of R̃s,

this relation implies µ(s) Rs µ0(s) for each s with µ0(s) ∈ C. Moreover, for

each s with µ0(s) = ∅, we have (µ(s), τ ′s) R̃s (∅, ∅) where τ ′s = τs if µ(s) ∈ C

and τ ′s = ∅, otherwise. These together imply that µ is individually rational

in the original matching problem.

To show strategy-proofness, in the original matching problem, let s be a

student, t her type, P−s the preference profile of students other than stu-

dent s, Ps the true preference of student s, and P ′
s another preference of

student s. Furthermore, let µ(s) and µ′(s) be the assignments of student s

under (Ps, P−s) and (P ′
s, P−s) for TTC, respectively. Note that the previous

argument establishes that, in the hypothetical market, student s is allocated

to (µ(s), τ ′s) and (µ′(s), τ ′′s ), (where (i) τ ′s = t if µ(s) ∈ C and τ ′s = ∅, oth-

erwise, and (ii) τ ′′s = t if µ′(s) ∈ C and τ ′′s = ∅ otherwise) under (P̃s, P̃−s)

and (P̃ ′
s, P̃−s), respectively. Because TTC-M is strategy-proof, it follows that

(µ(s), τs) R̃s (µ′(s), τ ′′s ). By the construction of R̃s, this relation implies

µ(s) Rs µ
′(s), establishing strategy-proofness of the TTC mechanism. �

Proof of Theorem 2. We first prove that Ξ(f, λ) is M♮-convex for every λ ∈ R if

and only if f is pseudo M♮-concave.

The if direction: Suppose that f is pseudoM♮-concave and fix λ ∈ R. Consider

ξ, ξ̃ ∈ Ξ(f, λ) and (c, t) ∈ C × T with ξtc > ξ̃tc . By definition, f(ξ), f(ξ̃) ≥ λ.
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By pseudo M♮-concavity, we have, either (i) min{f(ξ − χt
c), f(ξ̃ + χt

c)} ≥

min{f(ξ), f(ξ̃)}, or (ii) there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

min{f(ξ − χt
c + χt′

c′), f(ξ̃ + χt
c − χt′

c′)} ≥ min{f(ξ), f(ξ̃)}.

Let us consider case (i) first. In this case, since f(ξ), f(ξ̃) ≥ λ, we have

f(ξ − χt
c), f(ξ̃ + χt

c) ≥ λ. Hence, we get ξ − χt
c, ξ̃ + χt

c ∈ Ξ(f, λ).

Next, let us consider case (ii). In this case, since f(ξ), f(ξ̃) ≥ λ, we have

f(ξ−χt
c+χt′

c′), f(ξ̃+χt
c−χt′

c′) ≥ λ. Hence, we have ξ−χt
c+χt′

c′, ξ̃+χt
c−χt′

c′ ∈

Ξ(f, λ).

We conclude that either ξ−χt
c, ξ̃+χt

c ∈ Ξ(f, λ) or there exists (c′, t′) ∈ C×T

with ξt
′

c′ < ξ̃t
′

c′ such that ξ−χt
c+χt′

c′ , ξ̃+χt
c−χt′

c′ ∈ Ξ(f, λ), implying that Ξ(f, λ)

is M♮-convex.

The only-if direction: Suppose that Ξ(f, λ) is M♮-convex for every λ ∈ R. As-

sume, for contradiction, that f is not pseudo M♮-concave. Therefore, there

exist ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C×T with ξtc > ξ̃tc such that (i) either ξ−χt
c /∈ Ξ0 or

ξ̃ + χt
c /∈ Ξ0 or min{f(ξ − χt

c), f(ξ̃ + χt
c)} < min{f(ξ), f(ξ̃)} and (ii) for every

(c′, t′) ∈ C×T with ξt
′

c′ < ξ̃t
′

c′ we have either ξ−χt
c+χt′

c′ /∈ Ξ0 or ξ̃+χt
c−χt′

c′ /∈ Ξ0

or min{f(ξ − χt
c + χt′

c′), f(ξ̃ + χt
c − χt′

c′)} < min{f(ξ), f(ξ̃)}. Now, let λ ≡

min{f(ξ), f(ξ̃)}. These conditions imply that Ξ(f, λ) is not M♮-convex be-

cause for M♮-convexity we need either (1) ξ−χt
c, ξ̃+χt

c ∈ Ξ(f, λ) or (2) there

exists (c′, t′) ∈ C×T with ξt
′

c′ < ξ̃t
′

c′ such that ξ−χt
c+χt′

c′, ξ̃+χt
c−χt′

c′ ∈ Ξ(f, λ).

The first condition cannot hold because of (i) and the second condition can-

not hold because of (ii). Therefore, we get a contradiction to M♮-convexity

of Ξ(f, λ).

Next, we prove the following: If Ξ ⊆ Ξ0 is M♮-convex, then there exist a

pseudo M♮-concave function f and a constant λ ∈ R such that Ξ(f, λ) = Ξ.

Let f = fΞ
D, where the distributional objective fΞ

D is defined using the

discrete metric in Section 4: fΞ
D(ξ) = 1 if ξ ∈ Ξ and fΞ

D(ξ) = 0 otherwise (i.e.,

if ξ ∈ Ξ0 \Ξ). Since Ξ ⊆ Ξ0 is M♮-convex, Lemma 2 implies that fΞ
D is pseudo

M♮-concave.

Finally, we show that Ξ(fΞ
D, λ) = Ξ for λ = 1. For every ξ ∈ Ξ(fΞ

D, 1),

fΞ
D(ξ) = 1, which implies that ξ ∈ Ξ by the construction of fΞ

D. Therefore,
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Ξ(fΞ
D, 1) ⊆ Ξ. Now, let ξ ∈ Ξ. Then, by the construction of fΞ

D, f
Ξ
D(ξ) = 1, so

ξ ∈ Ξ(fΞ
D, 1). Therefore, Ξ ⊆ Ξ(fΞ

D, 1). We conclude that Ξ(fΞ
D, 1) = Ξ. �

Proof of Lemma 1. The if direction: Suppose that fΞ
C is pseudoM♮-concave. We

need to show that Ξ is M♮-convex. By Theorem 2, for every λ ∈ R, Ξ(fΞ
C , λ) is

M♮-convex. Let λ = 0. By definition of the Chebyshev distance, Ξ(fΞ
C , 0) = Ξ.

Therefore, Ξ is M♮-convex.

The only-if direction: Suppose that Ξ is M♮-convex. We need to show that

fΞ
C is pseudo M♮-concave. By Theorem 2, it suffices to show that Ξ(fΞ

C , λ) is

M♮-convex for all λ ≤ 0.23

Since the Chebychev distance DC only takes integer values, we have

Ξ(fΞ
C , λ

′) = Ξ(fΞ
C , λ) for each λ ∈ Z− and λ′ ∈ R with λ − λ′ ∈ (0, 1).24.

Hence, it suffices to show that Ξ(fΞ
C , λ) is M

♮-convex for each λ ∈ Z−. We

prove this claim by mathematical induction. For the base case, when λ = 0,

we have Ξ(fΞ
C , 0) = Ξ, which is M♮-convex by assumption. In what follows,

we prove the inductive step that if Ξ(fΞ
C , λ) is M

♮-convex for a λ ∈ Z−, then

Ξ(fΞ
C , λ− 1) is also M♮-convex.

Consider ξ, ξ̃ ∈ Ξ(fΞ
C , λ−1) and (c, t) ∈ C×T with ξtc > ξ̃tc . First, note that

ξ ∈ Ξ(fΞ
C , λ− 1) implies that there exists ξ̇ ∈ Ξ(fΞ

C , λ) such that DC(ξ, ξ̇) ≤ 1.

Similarly, ξ̃ ∈ Ξ(fΞ
C , λ − 1) implies that there exists ξ̈ ∈ Ξ(fΞ

C , λ) such that

DC(ξ̃, ξ̈) ≤ 1.

We consider the following two cases that are exhaustive.

Case 1 is given by the following condition: “there exists ξ̇ ∈ Ξ(fΞ
C , λ)

with DC(ξ, ξ̇) ≤ 1 and ξtc − ξ̇tc ∈ {0, 1}” and “there exists ξ̈ ∈ Ξ(fΞ
C , λ) with

DC(ξ̃, ξ̈) ≤ 1 and ξ̃tc − ξ̈tc ∈ {0,−1}.”

Case 2 is given by the following condition: “for all ξ̇ ∈ Ξ(fΞ
C , λ) with

DC(ξ, ξ̇) ≤ 1, we have ξtc− ξ̇tc = −1” or “for all ξ̈ ∈ Ξ(fΞ
C , λ)withDC(ξ̃, ξ̈) ≤ 1,

we have ξ̃tc − ξ̈tc = 1.”

Case 1: Take arbitrary ξ̇ and ξ̈ that satisfy the conditions described in Case

1. Since we have ξtc − ξ̇tc ∈ {0, 1}, we can conclude that DC(ξ − χt
c, ξ̇) =

max{|(ξ − χt
c)

t
c − (ξ̇)tc|, (|(ξ − χt

c)
t′

c′ − (ξ̇)t
′

c′)|)(c′,t′)6=(c,t)} ≤ 1. Similarly, since we

23The reason is that, by definition, fΞ

C only takes non-positive values.
24
Z− denotes the set of non-positive integers including zero
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have ξ̃tc− ξ̈tc ∈ {−1, 0}, we can conclude thatDC(ξ̃+χt
c, ξ̈) = max{|(ξ̃+χt

c)
t
c−

(ξ̈)tc|, (|(ξ̃ + χt
c)

t′

c′ − (ξ̈)t
′

c′)|)(c′,t′)6=(c,t)} ≤ 1. Hence, ξ − χt
c ∈ Ξ(fΞ

C , λ − 1) and

ξ̃ + χt
c ∈ Ξ(fΞ

C , λ− 1).

We consider Case 2 next.

Case 2: Take arbitrary ξ̇ and ξ̈ that satisfy the conditions described in Case

2. Note that, since ξtc > ξ̃tc, and either ξ̇tc > ξtc or ξ̃
t
c > ξ̈tc, we have ξ̇tc > ξ̈tc. Also

note that, the distances between the respective distributions are bounded

above by 1.

Since Ξ(fΞ
C , λ) is M

♮-convex, ξ̇, ξ̈ ∈ Ξ(fΞ
C , λ) and ξ̇tc > ξ̈tc, we have

(i) ξ̇ − χt
c ∈ Ξ(fΞ

C , λ) and ξ̈ + χt
c ∈ Ξ(fΞ

C , λ), or

(ii) there exist school c′ and type t′ with ξ̇t
′

c′ < ξ̈t
′

c′ such that ξ̇ − χt
c + χt′

c′ ∈

Ξ(fΞ
C , λ) and ξ̈ + χt

c − χt′

c′ ∈ Ξ(fΞ
C , λ).

If (i) holds, then sinceDC(ξ̇−χt
c, ξ−χt

c) = DC(ξ̇, ξ) ≤ 1 andDC(ξ̈+χt
c, ξ̃+

χt
c) = DC(ξ̈, ξ̃) ≤ 1, we have ξ − χt

c ∈ Ξ(fΞ
C , λ− 1) and ξ̃ + χt

c ∈ Ξ(fΞ
C , λ− 1).

If (ii) holds, then we analyze two contingencies: (a) ξt
′

c′ < ξ̃t
′

c′ and (b)

ξt
′

c′ ≥ ξ̃t
′

c′.

For contingency (a), since DC(ξ̇ − χt
c + χt′

c′, ξ − χt
c + χt′

c′) ≤ 1 and DC(ξ̈ +

χt
c−χt′

c′ , ξ̃+χt
c−χt′

c′) ≤ 1, we have ξ−χt
c+χt′

c′ ∈ Ξ(fΞ
C , λ−1) and ξ̃+χt

c−χt′

c′ ∈

Ξ(fΞ
C , λ− 1) where ξt

′

c′ < ξ̃t
′

c′.

For contingency (b), for ξ̇t
′

c′ < ξ̈t
′

c′ and ξt
′

c′ ≥ ξ̃t
′

c′ to hold simultaneously,

we need to have one of the following three subcases: (1) ξ̇t
′

c′ = ξt
′

c′ − 1 and

ξ̈t
′

c′ = ξ̃t
′

c′ + 1, or (2) ξ̇t
′

c′ = ξt
′

c′ and ξ̈t
′

c′ = ξ̃t
′

c′ + 1 or (3) ξ̇t
′

c′ = ξt
′

c′ − 1 and ξ̈t
′

c′ = ξ̃t
′

c′ .

In the first subcase b(1), we haveDC(ξ̇−χt
c +χt′

c′, ξ−χt
c) = DC(ξ̇+χt′

c′, ξ).

Moreover, since ξ̇t
′

c′ = ξt
′

c′ −1, we getDC(ξ̇+χt′

c′, ξ) ≤ DC(ξ̇, ξ) ≤ 1. Therefore,

since ξ̇−χt
c+χt′

c′ ∈ Ξ(fΞ
C , λ), we conclude ξ−χt

c ∈ Ξ(fΞ
C , λ−1). Similarly, we

have DC(ξ̈ + χt
c − χt′

c′ , ξ̃ + χt
c) = DC(ξ̈ − χt′

c′, ξ̃). Moreover, since ξ̈t
′

c′ = ξ̃t
′

c′ + 1,

we getDC(ξ̈−χt′

c′, ξ̃) ≤ DC(ξ̈, ξ̃) ≤ 1. Therefore, since ξ̈+χt
c−χt′

c′ ∈ Ξ(fΞ
C , λ),

we conclude ξ̃ + χt
c ∈ Ξ(fΞ

C , λ− 1).

In the second subcase b(2),DC(ξ̈+χt
c−χt′

c′, ξ̃+χt
c) ≤ DC(ξ̈, ξ̃) = 1. Hence,

ξ̃ + χt
c ∈ Ξ(fΞ

C , λ − 1). Moreover, ξ − χt
c ∈ Ξ(fΞ

C , λ − 1) unless ξ̇tc = ξtc + 1.

When ξ̇tc = ξtc +1 and ξ̇t
′

c′ = ξt
′

c′ , however, we haveDC(ξ̇−χt
c +χt′

c′ , ξ−χt
c) = 1

so ξ−χt
c ∈ Ξ(fΞ

C , λ−1). This is because, the absolute value of the differences

between these two distributions is one at (t, c) and one at (t′, c′) (for all other
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(t′′, c′′), it is equal to the corresponding difference between ξ and ξ̇, which is

at most one).

In the third subcase b(3), DC(ξ̇ − χt
c + χt′

c′, ξ − χt
c) ≤ DC(ξ̇, ξ) = 1. Hence,

ξ−χt
c ∈ Ξ(fΞ

C , λ−1). Moreover, ξ̃+χt
c ∈ Ξ(fΞ

C , λ−1) unless ξ̈tc = ξ̃tc−1. When

ξ̈tc = ξ̃tc − 1 and ξ̈t
′

c′ = ξ̃t
′

c′, however, we have DC(ξ̈ + χt
c − χt′

c′, ξ̃ + χt
c) = 1. So,

ξ̃ − χt
c ∈ Ξ(fΞ

C , λ − 1). This is because, the absolute value of the differences

between these two distributions is one at (t, c) and one at (t′, c′) (for all other

(t′′, c′′), it is equal to the corresponding difference between ξ̃ and ξ̈, which is

at most one).

This completes the proof that Ξ(fΞ
C , λ− 1) is M♮-convex.

Hence, by mathematical induction, we have proven that Ξ(fΞ
C , λ) is M♮-

convex for each λ ∈ Z−, and therefore for each λ ≤ 0. Therefore, fΞ
C is

pseudo M♮-concave by Theorem 2. �

Proof of Lemma 2. The if direction: Suppose that fΞ
D is pseudo M♮-concave. By

Theorem 2, for every λ ∈ R,Ξ(fΞ
D, λ) isM

♮-convex. Let λ = 1, thenΞ(fΞ
D, λ) =

Ξ. Therefore, Ξ is M♮-convex.

The only-if direction: Suppose that the policy goal Ξ ⊆ Ξ0 is M♮-convex. To

show that fΞ
D is pseudo M♮-concave, we show, for every λ ∈ R, Ξ(fΞ

D, λ) is

M♮-convex.

If λ > 1, then Ξ(fΞ
D, λ) = ∅, which is trivially M♮-convex. If 1 ≥ λ > 0,

then Ξ(fΞ
D, λ) = Ξ, which is M♮-convex by assumption. Finally, if λ ≤ 0, then

Ξ(fΞ
D, λ) = Ξ0, which we show to be M♮-convex.

Suppose that there exist ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc. To

show M♮-convexity, we analyze two possible cases depending on whether

nc(ξ̃) < qc or nc(ξ̃) = qc.

Case 1: If nc(ξ̃) < qc, then both ξ − χt
c and ξ̃ + χt

c satisfy the capacity

constraint at school c. Therefore, ξ − χt
c ∈ Ξ0 and ξ̃ + χt

c ∈ Ξ0.

Case 2: If nc(ξ̃) = qc, then there exists t′ ∈ T such that ξt
′

c < ξ̃t
′

c . This is

because, otherwise, ξ cannot satisfy the capacity constraint at school c given

that ξtc > ξ̃tc and nc(ξ̃) = qc. For every school, the number of students that it

has in ξ − χt
c + χt′

c and ξ are the same, which implies that ξ − χt
c + χt′

c ∈ Ξ0
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since ξ ∈ Ξ0. Likewise, for every school, the number of students that it has

in ξ̃ + χt
c − χt′

c and ξ̃ are the same, so ξ̃ + χt
c − χt′

c ∈ Ξ0 since ξ̃ ∈ Ξ0.

Therefore, Ξ0 is M♮-convex. Since all upper contour sets of fΞ
D are M♮-

convex, we conclude that fΞ
D is pseudo M♮-concave by Theorem 2. �

Proof of Proposition 1. We show that the school-level quota policy

ΞQ =

{

ξ ∈ Ξ0|uc ≥
∑

t

ξtc ≥ lc for all c ∈ C

}

is M♮-convex. For a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C,

(2) uc ≥
∑

t ξ
t
c (equivalently, uc ≥ nc(ξ)) the upper quota constraint for

school c ∈ C, and

(3)
∑

t ξ
t
c ≥ lc (equivalently, nc(ξ) ≥ lc) the lower quota constraint for

school c ∈ C.

Suppose that there exist ξ, ξ̃ ∈ ΞQ and (c, t) ∈ C ×T with ξtc > ξ̃tc. To show

M♮-convexity, we analyze two possible cases depending on whether ξ̃t
′

c ≤ ξt
′

c

for all t′ ∈ T (Case 1) or there exists t′ ∈ T such that ξ̃t
′

c > ξt
′

c (Case 2).

Case 1: Suppose ξ̃t
′

c ≤ ξt
′

c for all t′ ∈ T . In this case, we first show ξ − χt
c ∈

ΞQ and, then, ξ̃ + χt
c ∈ ΞQ.

Capacity constraints for ξ − χt
c: For each school c′ ∈ C, nc′(ξ − χt

c) ≤ nc′(ξ).

Therefore, since ξ satisfies the quota constraints at all schools, so does ξ−χt
c.

Upper quota constraints for ξ − χt
c: Since nc′(ξ − χt

c) ≤ nc′(ξ) for each school

c′ ∈ C and ξ satisfies the upper quota constraints at all schools, ξ − χt
c also

satisfies the upper quota constraints at all schools.

Lower quota constraints for ξ−χt
c: Notice that ξt

′

c ≥ ξ̃t
′

c for all t′ ∈ T and ξtc > ξ̃tc
imply nc(ξ̃) < nc(ξ). As a consequence, together with nc(ξ−χt

c) = nc(ξ)− 1,

we get nc(ξ − χt
c) ≥ nc(ξ̃). Since ξ̃ satisfies the lower quota constraint for

school c, so does ξ − χt
c. For c′ ∈ C \ {c}, nc′(ξ − χt

c) = nc′(ξ). Therefore,

ξ − χt
c satisfies the lower quota constraint at c′ because ξ satisfies the same

constraint.
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Capacity constraints for ξ̃+χt
c: For each school c′ ∈ C \{c}, nc′(ξ̃+χt

c) = nc′(ξ̃).

Since ξ̃ satisfies the quota constraint at school c′, so does ξ̃−χt
c. Furthermore,

ξt
′

c ≥ ξ̃t
′

c for all t′ ∈ T and ξtc > ξ̃tc yieldnc(ξ̃) < nc(ξ). This inequality, together

with nc(ξ̃ + χt
c) = nc(ξ̃) + 1, yields nc(ξ̃ + χt

c) ≤ nc(ξ). Therefore, since ξ

satisfies the capacity constraint at school c, so does ξ̃ + χt
c.

Upper quota constraints for ξ̃ + χt
c: We show in the previous paragraph that

nc(ξ̃ + χt
c) ≤ nc(ξ) and, for each school c′ ∈ C \ {c}, nc′(ξ̃ + χt

c) = nc′(ξ̃).

Therefore, ξ̃ + χt
c satisfies the upper quota constraints at all schools because

ξ and ξ̃ satisfy them.

Lower quota constraints for ξ̃ + χt
c: For every school c′, we have nc′(ξ̃ + χt

c) =

nc′(ξ̃)+1. Furthermore, ξ̃ satisfies the lower quota constraints for all schools.

Hence, ξ̃ + χt
c satisfies the lower quota constraints for all schools as well.

Therefore, we conclude this case by concluding that ξ − χt
c ∈ ΞQ and ξ̃ +

χt
c ∈ ΞQ.

Case 2: Suppose that t′ ∈ T is such that ξ̃t
′

c > ξt
′

c . In this case we show that

ξ − χt
c + χt′

c ∈ ΞQ and ξ̃ + χt
c − χt′

c ∈ ΞQ.

For every ĉ ∈ C, nĉ(ξ − χt
c + χt′

c ) = nĉ(ξ) and nĉ(ξ̃ + χt
c − χt′

c ) = nĉ(ξ̃).

Therefore, ξ−χt
c+χt′

c satisfies capacity constraints, lower quota constraints,

and upper quota constraints at all schools because so does ξ. Likewise, ξ̃ +

χt
c − χt′

c satisfies capacity constraints, lower quota constraints, and upper

quota constraints at all schools because so does ξ̃. Therefore, ξ−χt
c+χt′

c ∈ ΞQ

and ξ̃ + χt
c − χt′

c ∈ ΞQ.

We conclude that ΞQ is an M♮-convex set. The desired conclusion then

follows from M♮-convexity of ΞQ, Theorem 1, and Lemmas 1 and 2. �

Proof of Proposition 2. We show that the school-level diversity policy

ΞD =
{

ξ ∈ Ξ0|qtc ≥ ξtc ≥ ptc for all (c, t) ∈ C × T
}

is M♮-convex.

For a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C,
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(2) qtc ≥ ξtc the ceiling constraint for school c ∈ C and type t ∈ T , and

(3) ξtc ≥ ptc the floor constraint for school c ∈ C and type t ∈ T .

Suppose that there exist ξ, ξ̃ ∈ ΞD and (c, t) ∈ C × T with ξtc > ξ̃tc. To

show M♮-convexity, we analyze two possible cases depending on whether

nc(ξ̃) < qc (Case 1) or nc(ξ̃) = qc (Case 2).

Case 1: Suppose that nc(ξ̃) < qc. We show that ξ−χt
c ∈ ΞD and ξ̃+χt

c ∈ ΞD.

Constraints for ξ−χt
c: Since ξ satisfies the capacity constraints for all schools,

so does ξ−χt
c. Likewise, since ξ satisfies the ceiling constraints for all schools

and types, so does ξ − χt
c. If (c′, t′) ∈ C × T is different than (c, t), then

(ξ − χt
c)

t′

c′ = ξt
′

c′ . Since ξ satisfies the floor constraint for school c
′ and type t′,

ξ−χt
c also satisfies it. For school c and type t, we have (ξ−χt

c)
t
c = ξtc−1 ≥ ξ̃tc.

Therefore, ξ−χt
c satisfies the floor constraint for school c and type t, because

ξ̃ satisfies the constraint.

Constraints for ξ̃+χt
c: Since nc(ξ̃) < qc, ξ̃+χt

c satisfies the capacity constraint.

Furthermore, since ξ̃ satisfies the floor constraints for all schools and types,

ξ̃ + χt
c also satisfies all floor constraints. If (c′, t′) ∈ C × T is different than

(c, t), then (ξ̃ + χt
c)

t′

c′ = ξ̃t
′

c′ implies that ξ̃ + χt
c satisfies the ceiling constraint

for school c′ and type t′ because ξ̃ satisfies the same constraint. For school

c and type t, (ξ̃ + χt
c)

t
c = ξ̃tc + 1 ≤ ξtc. Therefore, ξ̃ + χt

c satisfies the ceiling

constraint for school c and type t because ξ satisfies the constraint.

Case 2: Suppose that nc(ξ̃) = qc. Then there exists t′ ∈ T such that ξt
′

c < ξ̃t
′

c

because, otherwise, ξ cannot satisfy the capacity constraint (given that ξtc >

ξ̃tc and n(ξ̃) = qc). We show that ξ − χt
c + χt′

c ∈ ΞD and ξ̃ + χt
c − χt′

c ∈ ΞD.

Constraints for ξ−χt
c+χt′

c : For every school, the number of students assigned

to the school in ξ−χt
c+χt′

c and the number of students assigned to the school

in ξ are the same. Therefore, ξ − χt
c + χt′

c satisfies the capacity constraints

for all schools because ξ also satisfies them. In addition, for any (ĉ, t̂) ∈

(C ×T )\{(c, t), (c, t′)}, the number of type-t̂ students assigned to school ĉ in

ξ − χt
c + χt′

c is the same as the number of type-t̂ students assigned to school

ĉ in ξ. Therefore, ξ − χt
c + χt′

c satisfies the floor and ceiling constraints for
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school ĉ and type t̂ because ξ satisfies them. For school c and type t, we have

ξ̃tc ≤ ξtc − 1 = (ξ − χt
c + χt′

c )
t
c < ξtc.

Therefore, ξ − χt
c + χt′

c satisfies the floor constraint for school c and type t

because ξ̃ satisfies the same constraint, and ξ − χt
c + χt′

c satisfies the ceiling

constraint for school c and type t because ξ satisfies the same constraint.

Similarly, ξ − χt
c + χt′

c satisfies the floor constraint for school c and type t′

because ξ satisfies the same constraint, and ξ − χt
c + χt′

c satisfies the ceiling

constraint for school c and type t′ because ξ̃ satisfies the same constraint.

Constraints for ξ̃ + χt
c − χt′

c : The proof is analogous as in the previous para-

graph by changing the roles of twith t′ and ξ with ξ̃.

Hence, ΞD is an M♮-convex set. The desired conclusion then follows from

the fact that ΞD is an M♮-convex set, Theorem 1, and Lemmas 1 and 2. �

Proof of Proposition 3. We show that the exchange-feasiblity policy

ΞE =







ξ ∈ Ξ0|
∑

t,c:d(c)=d

ξtc ≥ kd for all d ∈ D







is M♮-convex.

For a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C,

(2)
∑

t,c:d(c)=d ξ
t
c ≥ kd the exchange-feasibility constraint for district d ∈ D.

Suppose that there exist ξ, ξ̃ ∈ ΞE and (c, t) ∈ C × T with ξtc > ξ̃tc. Let

us denote d(c) by d. To show M♮-convexity, we study three possible (non-

disjoint, yet exhaustive) cases depending on the comparison between nd(ξ)

and kd, and on the comparison between nc(ξ̃) and qc: nd(ξ) > kd and nc(ξ̃) <

qc (Case 1), nc(ξ̃) = qc (Case 2), and nd(ξ) = kd (Case 3).

Case 1: Suppose nd(ξ) > kd and nc(ξ̃) < qc. We show that ξ−χt
c ∈ ΞE and

ξ̃ + χt
c ∈ ΞE .
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Constraints for ξ−χt
c: Since ξ satisfies the capacity constraints for all schools,

so does ξ−χt
c. Moreover, since ξ satisfies the exchange-feasibility constraints

for all districts and nd(ξ) > kd, so does ξ − χt
c (as nd(ξ − χt

c) ≥ kd).

Constraints for ξ̃ + χt
c: Since nc(ξ̃) < qc, we have nc(ξ̃ + χt

c) ≤ qc, and hence

ξ̃ + χt
c satisfies the capacity constraints for all schools. Furthermore, since

ξ̃ satisfies the exchange-feasibility constraints for all districts, ξ̃ + χt
c clearly

satisfies the exchange-feasibility constraints.

Case 2: Suppose nc(ξ̃) = qc, then we argue that there exist t′ 6= t such that

ξt
′

c < ξ̃t
′

c . This follows from the facts that nc(ξ̃) = qc ≥ nc(ξ) and ξtc > ξ̃tc. Then,

both ξ−χt
c+χt′

c and ξ̃+χt
c−χt′

c clearly satisfy both the capacity constraints for

all schools and the exchange-feasibility constraints for all districts, as nc and

nd values among ξ and ξ − χt
c + χt′

c remain the same, and nc and nd values

among ξ̃ and ξ̃ + χt
c − χt′

c remain the same. Thus, ξ − χt
c + χt′

c ∈ ΞE and

ξ̃ + χt
c − χt′

c ∈ ΞE .

Case 3: Suppose nd(ξ) = kd, for this case, we first note that nd(ξ) ≤ nd(ξ̃).

Next, we consider two subcases of this case: nc(ξ) ≤ nc(ξ̃) (Subcase 3.1), and

nc(ξ) > nc(ξ̃) (Subcase 3.2).

Subcase 3.1: Supposenc(ξ) ≤ nc(ξ̃), then similar to Case 2 above, it follows

that there exists t′ 6= t such that ξt
′

c < ξ̃t
′

c . Then one can verify that ξ−χt
c+χt′

c ∈

ΞE and ξ̃ + χt
c − χt′

c ∈ ΞE .

Subcase 3.2: Suppose nc(ξ) > nc(ξ̃), then we first observe that there exists

a c′ 6= cwith d(c′) = d such that nc′(ξ) < nc′(ξ̃). This is because, otherwise, we

cannot have nd(ξ) ≤ nd(ξ̃). Next, we observe that nc′(ξ) < nc′(ξ̃) implies that

ξt
′

c′ < ξ̃t
′

c′ for some t′. Finally, we argue that ξ−χt
c+χt′

c′ ∈ ΞE and ξ̃+χt
c−χt′

c′ ∈

ΞE .

Exchange-feasibility constraints: Both ξ−χt
c+χt′

c′ and ξ̃+χt
c−χt′

c′ clearly satisfy

the exchange-feasibility constraints, nd values among ξ and ξ−χt
c+χt′

c remain

the same, and nd values among ξ̃ and ξ̃ + χt
c − χt′

c remain the same.

Capacity constraints for ξ − χt
c + χt′

c′ : ξ − χt
c + χt′

c′ clearly satisfies the capacity

constraint for c and it also satisfies the capacity constraint for c′ since nc′(ξ) <

nc′(ξ̃) ≤ qc′ . It also satisfies the capacity constraints for other schools since ξ

satisfies the capacity constraints for other schools.



EFFICIENT MARKET DESIGN 43

Capacity constraints for ξ̃ + χt
c − χt′

c′ : ξ̃ + χt
c − χt′

c′ clearly satisfies the capacity

constraint for c′ and it also satisfies the capacity constraint for c since nc(ξ̃) <

nc(ξ) ≤ qc. It also satisfies the capacity constraints for other schools since ξ̃

satisfies the capacity constraints for other schools.

Thus, ξ − χt
c + χt′

c′ ∈ ΞE and ξ̃ + χt
c − χt′

c′ ∈ ΞE .

Hence, we establish that ΞE is M♮-convex.

The result then follows from Theorem 1, and Lemmas 1 and 2 because ΞE

is M♮-convex. �

Proof of Proposition 4. Weshow that the combination of school-level diversity

and exchange-feasibility policies

ΞDE =







ξ ∈ Ξ0|qtc ≥ ξtc ≥ ptc , ∀(c, t) ∈ C × T and
∑

t,c:d(c)=d

ξtc ≥ kd , ∀d ∈ D







is M♮-convex.

As in Propositions 2 and 3, for a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C,

(2) qtc ≥ ξtc the ceiling constraint for school c ∈ C and type t ∈ T

(3) ξtc ≥ ptc the floor constraint for school c ∈ C and type t ∈ T , and

(4)
∑

t,c:d(c)=d ξ
t
c ≥ kd the exchange-feasibility constraint for district d ∈ D.

Suppose that there exist ξ, ξ̃ ∈ ΞDE and (c, t) ∈ C × T with ξtc > ξ̃tc. Let

us denote d(c) by d. To show M♮-convexity, we investigate three possible

(non-disjoint, yet exhaustive) cases depending on the comparison between

nd(ξ) and kd, and on the comparison between nc(ξ̃) and qc: nd(ξ) > kd and

nc(ξ̃) < qc (Case 1), nc(ξ̃) = qc (Case 2), and nd(ξ) = kd (Case 3).

Case 1: Suppose nd(ξ) > kd and nc(ξ̃) < qc. We show that ξ−χt
c ∈ ΞE and

ξ̃ + χt
c ∈ ΞE .

ξ − χt
c and ξ̃ + χt

c satisfying the capacity constraints and the exchange-

feasibility constraints follows from the same arguments as in Case 1 in the

proof of Proposition 3. Moreover, ξ − χt
c and ξ̃ + χt

c satisfying the ceiling

constraints and the floor constraints follows from the same arguments as in

Case 1 in the proof of Proposition 2.
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Case 2: Suppose nc(ξ̃) = qc, then we argue that there exists t′ 6= t such that

ξt
′

c < ξ̃t
′

c . This follows from the facts that nc(ξ̃) = qc ≥ nc(ξ) and ξtc > ξ̃tc. We

show that ξ − χt
c + χt′

c ∈ ΞDE and ξ̃ + χt
c − χt′

c ∈ ΞDE .

ξ − χt
c + χt′

c and ξ̃ + χt
c − χt′

c satisfying the capacity constraints and the

exchange-feasibility constraints follow from the same arguments as in Case

2 in the proof of Proposition 3. Moreover, ξ − χt
c and ξ̃ + χt

c satisfying the

ceiling constraints and the floor constraints follow from the same arguments

as in Case 2 in the proof of Proposition 2.

Case 3: Suppose nd(ξ) = kd, then, for this case, we first note that nd(ξ) ≤

nd(ξ̃). Next, we consider two subcases of this case: nc(ξ) ≤ nc(ξ̃) (Subcase

3.1), and nc(ξ) > nc(ξ̃) (Subcase 3.1).

Subcase 3.1: Suppose nc(ξ) ≤ nc(ξ̃). Then similar to Case 2 above, it fol-

lows that there exists t′ 6= t such that ξt
′

c < ξ̃t
′

c . Then one can verify that

ξ − χt
c + χt′

c ∈ ΞDE and ξ̃ + χt
c − χt′

c ∈ ΞDE .

Subcase 3.2: Suppose nc(ξ) > nc(ξ̃), then we first observe that there exists

a c′ 6= c with d(c′) = d such that nc′(ξ) < nc′(ξ̃). This is because, otherwise,

we cannot have nd(ξ) ≤ nd(ξ̃). Next, we observe that nc′(ξ) < nc′(ξ̃) implies

that ξt
′

c′ < ξ̃t
′

c′ for some t′. We show that ξ−χt
c+χt′

c′ ∈ ΞDE and ξ̃+χt
c−χt′

c′ ∈ ΞDE

First, we note that ξ−χt
c +χt′

c′ and ξ̃+χt
c −χt′

c′ satisfying the capacity con-

straints and the exchange-feasibility constraints follow from the same argu-

ments as in Subcase 3.1 in the proof of Proposition 3. Finally, we argue the

following:

Ceiling and floor constraints for ξ−χt
c+χt′

c′ : ξ−χt
c+χt′

c′ satisfies the ceiling and

floor constraints since (i) ξtc > ξ̃tc implies ξtc > ptc, hence ξ
t
c(ξ − χt

c + χt′

c′) ≥ ptc,

and (ii) ξt
′

c′ < ξ̃t
′

c′ implies ξt
′

c′ < qt
′

c′ , hence ξ
t
c(ξ − χt

c + χt′

c′) ≤ qtc.

Ceiling and floor constraints for ξ̃+χt
c−χt′

c′ : ξ̃+χt
c−χt′

c′ satisfies the ceiling and

floor constraints since (i) ξtc > ξ̃tc implies qtc > ξ̃tc, hence ξ
t
c(ξ̃ + χt

c − χt′

c′) ≤ qtc,

and (ii) ξt
′

c′ < ξ̃t
′

c′ implies ξt
′

c′ > pt
′

c′ , hence ξ
t
c(ξ̃ + χt

c − χt′

c′) ≥ ptc.

Hence, we established that ΞDE is M♮-convex.

The result then follows from Theorem 1 and Lemmas 1 and 2 because ΞDE

is M♮-convex. �
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Proof of Proposition 5. We show that the balanced-exchange policy

ΞB =







ξ ∈ Ξ0|
∑

t,c:d(c)=d

ξtc = kd for all d ∈ D







is M-convex; therefore, it is also M♮-convex.

For a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C, and

(2)
∑

t,c:d(c)=d ξ
t
c = kd the balanced-exchange constraint for district d ∈ D.

Suppose that there exist ξ, ξ̃ ∈ ΞB and (c, t) ∈ C × T with ξtc > ξ̃tc. Let us

denote d(c) by d.

Firstly, note that nd(ξ) = nd(ξ̃) = kd. Next, we consider two cases: nc(ξ) ≤

nc(ξ̃) (Case 1) and nc(ξ) > nc(ξ̃) (Case 2).

Case 1: Suppose nc(ξ) ≤ nc(ξ̃), then we argue that there exist t′ 6= t such

that ξt
′

c < ξ̃t
′

c . This follows from the facts that nc(ξ̃) ≥ nc(ξ) and ξtc > ξ̃tc. Then,

both ξ − χt
c +χt′

c and ξ̃ +χt
c − χt′

c clearly satisfy both the capacity constraints

and the balanced-exchange constraints. This is because, nc and nd values

among ξ and ξ − χt
c + χt′

c remain the same, and nc and nd values among ξ̃

and ξ̃+χt
c−χt′

c remain the same. Thus, ξ−χt
c+χt′

c ∈ ΞB and ξ̃+χt
c−χt′

c ∈ ΞB .

Case 2: Suppose nc(ξ) > nc(ξ̃), then we first argue that there exists a c′ 6= c

with d(c′) = d such that nc′(ξ) < nc′(ξ̃). This is because, otherwise, we cannot

have nd(ξ) = nd(ξ̃). Next, we observe that nc′(ξ) < nc′(ξ̃) implies that ξt
′

c′ < ξ̃t
′

c′

for some t′. Then, we show that ξ − χt
c + χt′

c′ ∈ ΞB and ξ̃ + χt
c − χt′

c′ ∈ ΞB .

Balanced-exchange constraints: Both ξ−χt
c +χt′

c′ and ξ̃+χt
c−χt′

c′ clearly satisfy

the balanced-exchange constraints, as nd values among ξ and ξ − χt
c + χt′

c

remain the same, and nd values among ξ̃ and ξ̃ + χt
c − χt′

c remain the same.

Capacity constraints for ξ − χt
c + χt′

c′ : ξ − χt
c + χt′

c′ clearly satisfies the capacity

constraint for c and it also satisfies the capacity constraint for c′ since nc′(ξ) <

nc′(ξ̃) ≤ qc′ . It also satisfies the capacity constraints for other schools since ξ

satisfies the capacity constraints for other schools.

Capacity constraints for ξ̃ + χt
c − χt′

c′ : ξ̃ + χt
c − χt′

c′ clearly satisfies the capacity

constraint for c′ and it also satisfies the capacity constraint for c since nc(ξ̃) <
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nc(ξ) ≤ qc. It also satisfies the capacity constraints for other schools since ξ̃

satisfies the capacity constraints for other schools.

Thus, ξ − χt
c + χt′

c′ ∈ ΞB and ξ̃ + χt
c − χt′

c′ ∈ ΞB .

Hence, we established that ΞB is M-convex and hence, M♮-convex.

The result then follows from Theorem 1 and Lemmas 1 and 2 because ΞB

is M♮-convex. �

Proof of Proposition 6. Weshow that the combination of school-level diversity

and balanced-exchange policies

ΞDB =







ξ ∈ Ξ0 | qtc ≥ ξtc ≥ ptc , ∀(c, t) ∈ C × T and
∑

t,c:d(c)=d

ξtc = kd , ∀d ∈ D







.

is M-convex; therefore, it is also M♮-convex.

As in Propositions 2 and 5, for a distribution ξ ∈ N
|C|×|T |, let us call

(1) qc ≥
∑

t ξ
t
c (equivalently, qc ≥ nc(ξ)) the capacity constraint for school

c ∈ C,

(2) qtc ≥ ξtc the ceiling constraint for school c ∈ C and type t ∈ T

(3) ξtc ≥ ptc the floor constraint for school c ∈ C and type t ∈ T , and

(4)
∑

t,c:d(c)=d ξ
t
c = kd the balanced-exchange constraint for district d ∈ D.

Suppose that there exist ξ, ξ̃ ∈ ΞDB and (c, t) ∈ C × T with ξtc > ξ̃tc. Let us

denote d(c) by d. Firstly, note that nd(ξ) = nd(ξ̃) = kd. Next, we consider two

cases: nc(ξ) ≤ nc(ξ̃) (Case 1) and nc(ξ) > nc(ξ̃) (Case 2).

Case 1: Suppose nc(ξ) ≤ nc(ξ̃), then we argue that there exist t′ 6= t such

that ξt
′

c < ξ̃t
′

c . This follows from the facts that nc(ξ̃) ≥ nc(ξ) and ξtc > ξ̃tc. Then,

both ξ − χt
c + χt′

c and ξ̃ + χt
c − χt′

c satisfying the capacity constraints and the

balanced-exchange constraints follow from the same arguments as Case 1 in

the proof of Proposition 5. Finally, ξ − χt
c + χt′

c and ξ̃ + χt
c − χt′

c satisfying

the ceiling and floor constraints follow from the same arguments in Case 2

of Proposition 2.

Thus, ξ − χt
c + χt′

c ∈ ΞDB and ξ̃ + χt
c − χt′

c ∈ ΞDB.

Case 2: Suppose nc(ξ) > nc(ξ̃), we first argue that there exists a school

c′ 6= c with d(c′) = d such that nc′(ξ) < nc′(ξ̃). This is because, otherwise, we
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cannot have nd(ξ) ≤ nd(ξ̃). Next, we observe that nc′(ξ) < nc′(ξ̃) implies that

ξt
′

c′ < ξ̃t
′

c′ for some t′.

Then, both ξ − χt
c + χt′

c′ and ξ̃ + χt
c − χt′

c′ satisfying the capacity constraints

and the balanced-exchange constraints follow from the same arguments as

Case 2 in the proof of Proposition 5. Finally, ξ − χt
c + χt′

c′ and ξ̃ + χt
c − χt′

c′

satisfying the ceiling and floor constraints follow from the same arguments

in Subcase 3.2 of Proposition 4.

Thus, ξ − χt
c + χt′

c′ ∈ ΞDB and ξ̃ + χt
c − χt′

c′ ∈ ΞDB .

Hence, we established that ΞDB is M-convex. The result then follows from

Theorem 1 and Lemmas 1 and 2 because ΞDB is M-convex, and, therefore,

M♮-convex. �




