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DESIGN ON MATROIDS: DIVERSITY VS. MERITOCRACY†

ISA E. HAFALIR, FUHITO KOJIMA, M. BUMIN YENMEZ, AND KOJI YOKOTE∗

Abstract. We provide optimal solutions to an institution that has dual goals of diversity

and meritocracy when choosing from a set of applications. For example, in college admis-

sions, administrators may want to admit a diverse class in addition to choosing students

with the highest qualifications. We provide a class of choice rules that maximize merit sub-

ject to attaining a diversity level. Using this class, we find all subsets of applications on

the diversity-merit Pareto frontier. In addition, we provide two novel characterizations of

matroids.

1. Introduction

To see high merit and be unable to raise it

to office, to raise it but not to give such

promotion precedence, is just destiny.

-Confucius

Meritocratic systems in which goods and political power are given to people based on

qualifications rather than their wealth or social status have been idealized since ancient

times. The Chinese philosopher Confucius argued that those who govern should do so

because of merit, not because of inherited status. The Han dynasty adopted Confucian-

ism and implemented civil service examinations to select and promote government of-

ficials (Dien, 2001). The Greek philosopher Plato, in his book The Republic, stated that

the wisest should rule, and hence rulers shall be philosopher kings. A system based on

meritocracy, however, may increase economic inequality and social and political dysfunc-

tion, the so-called meritocracy trap (Markovits, 2019). To decrease the inequities that exist

Keywords: Diversity, meritocracy, college admission, matroids, ordinal concavity.
We thank the seminar participants at Brown University, Durham University, Michigan State University,
Pennsylvania State University, Washington University in St. Louis, International Conference on Applied
Economic Theory Innovation, Iowa University Market Design Workshop, and SAET Conference. We are
grateful to Ryo Shirakawa and Ryosuke Sato for excellent research assistance. Fuhito Kojima is sup-
ported by the JSPS KAKENHI Grant-In-Aid 21H04979. Koji Yokote is supported by the JSPS KAKENHI
Grant-In-Aid 22J00145. Hafalir is affiliated with the UTS Business School, University of Technology Syd-
ney, Sydney, Australia; Kojima is with the Department of Economics, the University of Tokyo, Tokyo,
Japan; Yenmez is with the Department of Economics, Boston College, Chestnut Hill, MA, USA; Yokote
is a JSPS Research Fellow affiliated with the Graduate School of Economics, the University of Tokyo,
Tokyo, Japan. Emails: isa.hafalir@uts.edu.au, fuhitokojima1979@gmail.com, bumin.yenmez@bc.edu,
koji.yokote@gmail.com.

1

http://arxiv.org/abs/2301.00237v1


2 HAFALIR, KOJIMA, YENMEZ, AND YOKOTE

between different groups in society, affirmative action and diversity policies have been im-

plemented worldwide (Sowell, 2004). Therefore, in practice, it is crucial to find a balance

between meritocracy and diversity.

In this paper, we find optimal subsets of applications to an institution that is not only

interested in choosing applications with the most merit but also having a diverse group.

The institution ranks applications according to merit. For example, applicants may take

an exam to determine how qualified they are. American universities rank students using

SAT scores and other criteria. Meanwhile, the diversity of a group is given by an index

defined as a function of traits that applicants have. The type of a student specifies the

student’s traits and may include information about gender, race, ethnicity, socioeconomic

status, and disability status.

Our focus is on choice rules that select a subset of each possible set of applications. We

study a class of choice rules that maximize the merit of the selected group subject to at-

taining a diversity level. To do so, we start with an extreme member of this class that

maximizes diversity first and then merit among the sets that maximize diversity. Even

though this rule can be defined in very general environments, it may lack basic desirable

properties, which may make its implementation infeasible in practice. Indeed, some in-

stitutions, such as universities, get thousands of applications every year. For example, in

fall 2020, the average number of applications for the ten colleges in the US that received

the most applications was 84,865.1 Therefore, the choice rule must be implementable in a

computationally efficient way, and its outcome should not depend on the order in which

applications are evaluated, which is the path-independence property of a choice rule (Plott,

1973). To this end, we define the diversity choice rule as follows. In the first step, we find

distributions of applicant types that maximize the diversity index. In the second step, we

choose applications one by one using the merit ranking as long as the set of chosen appli-

cations has a distribution smaller than an optimal distribution found in the first step.2 By

construction, the diversity choice rule always finds a set of applications that maximizes

diversity. However, because it is myopic in the second step, it does not necessarily max-

imize the merit of the chosen set among sets that maximize diversity. To address this

problem, we consider a restriction on the diversity index under which it lexicographically

maximizes diversity and merit, and is computationally fast.

We provide a novel concept of concavity on functions with discrete domains, called or-

dinal concavity.3 Roughly, ordinal concavity requires that, from two different distributions

1See https://tinyurl.com/uv6h3jsh for more statistics from the U.S. News &World Report.
2A distribution ξ is smaller than distribution ξ̃ if every coordinate of ξ̃ is greater than or equal to the

same coordinate of ξ.
3After the circulation of our paper, we became aware of a recent work on mathematical optimization

by Chen and Li (2021) who introduce ordinal concavity while calling it semi-strict quasi M♮-concavity. While

https://tinyurl.com/uv6h3jsh


DESIGN ON MATROIDS 3

of types, when one gets closer to each other, either the value of the diversity index strictly

increases on at least one side or the value of the diversity index remains the same on both

sides. In this context, getting closer may either mean adding or subtracting one in a di-

mension that we start with or the existence of a second dimension such that we subtract

one from a dimension and add one in the other one.4 Ordinal concavity is weaker than the

two standard concavity notions used in the discrete optimization literature: M-concavity

and M♮-concavity.5 While these two are cardinal, ordinal concavity is an ordinal notion,

as it only depends on comparisons of values that the diversity index takes.

When the diversity index is ordinally concave, the diversity choice rulemaximizesmerit

among all sets of applications that attain the optimal diversity level, and its outcome can

be constructed in polynomial time (Theorem 1). To prove the first part, we show that the

set of maximal distributions in the set of optimal distributions identified in the first step

is well-behaved: Specifically, it satisfies a notion of discrete convexity called M-convexity

(Lemma 4).6 Furthermore, the myopic addition of contracts in the second step is equiv-

alent to the outcome of a procedure in the combinatorial optimization literature known

as the greedy algorithm on a matroid that we construct (Lemmas 5 and 6).7 The computa-

tional efficiency proof has two main parts. In the first part, we establish the maximizer-cut

theorem, which allows us to dissect the domain of feasible distributions in the search for

an optimal distribution (Theorem 4). Using this result, we construct the domain-reduction

algorithm that allows us to find an optimal distribution efficiently. In the second part, we

construct a modified version of the diversity choice rule, which is more computationally

tractable than our original definition, and show that finding an outcome of the diversity

choice rule takes quadratic time in the number of applications.

A desirable property of choice rules is path independence. Path independence states

that applications can be viewed in batches in any order without changing the final out-

come, an appealing property to institutions that receive many applications. Furthermore,

it guarantees the existence of a desirable matching in two-sided matching markets.8 We

show that the diversity choice rule is path independent when the diversity index is or-

dinally concave (Theorem 2). In most matching clearinghouses, the deferred-acceptance

the conditions are equivalent, Chen and Li (2021) and our paper study different problems, and the results
are logically independent.

4In discrete convex analysis there are two approaches used in this context. The stronger notion always
requires the existence of a second dimension. We use the weaker one that also allows moving towards each
other in the first dimension that one starts with. For example, the stronger definition is used in M-convexity
and the weaker one is used in M♮-convexity (see Section 3.2).

5See Appendix A for the definitions of M-concavity and M♮-concavity.
6See Section 3.2 for the definition of M-convexity.
7See Section 3.1 for the definitions of the greedy algorithm and matroids.
8See, for example, Chambers and Yenmez (2017) who study two-sided matching markets where agents

have path-independent choice rules.
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algorithm of Gale and Shapley (1962) is used to assign applicants to institutions. This

algorithm produces a desirable matching when institution choice rules satisfy path in-

dependence, and it is strategy-proof for applicants when institution choice rules further

satisfy the law of aggregate demand (Hatfield and Milgrom, 2005). The law of aggregate

demand requires that the number of applications that are chosen weakly increases when

there are more applications (in the sense of set inclusion) to choose from. The diversity

choice rule does not necessarily satisfy the law of aggregate demand even when the diver-

sity index is ordinally concave. However, if the diversity index is monotone and ordinally

concave, then the diversity choice rule satisfies the law of aggregate demand (Proposition

2).

Next, we consider the class of choice rules that maximize merit subject to achieving a

certain (exogenously given) level of diversity. We first observe that when the diversity in-

dex is capped at a level, the diversity choice rule for the modified index maximizes merit

subject to attaining the diversity level. Therefore, every choice rule in this class has the

same desirable properties as the diversity choice rule when the modified indices are ordi-

nally concave. We provide a characterization of diversity indices such that the modified

diversity index for every diversity level is ordinally concave (Proposition 4). Using this

class, we provide the trace algorithm that finds all subsets of applications on the diversity-

merit Pareto frontier and show that the trace algorithm is pseudo polynomial, which means

that the time complexity is polynomial in the largest integer present in the input data

(Theorem 3).9 The trace algorithm is useful for an institution that has the dual goals of

maximizing diversity and merit, as it presents the institution with all alternatives on the

diversity-merit Pareto frontier.

One special case of our model is when the university has a utility function over sets

of contracts.10 In this particular case, the diversity choice rule maximizes diversity on

subsets of a set of available applications. An immediate corollary of Theorem 2 is that

when the utility function over sets of applications satisfies ordinal concavity, the choice

rule constructed by maximizing the objective function satisfies path independence. This

conclusion has been shown under M♮-concavity (Eguchi et al., 2003), but the generaliza-

tion under ordinal concavity has not been established before. In Yokote et al. (2022), we

show that if a choice rule is path independent, then there exists an ordinally concave ob-

jective function such that the choice from any set of contracts is equal to the subset that

9For this result, we assume that the diversity index takes integer values. Any ordinally concave diversity
index can be replacedwith another diversity index that takes integer values and is ordinally concavewithout
changing the diversity choice rule.

10This can be modeled as a special case of our model as follows: All agents have different types and
the diversity index takes distinct values on different distributions. Therefore, the diversity choice rule is
uniquely determined by the first step that maximizes diversity.
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maximizes the objective function among all subsets.11 Our results apply to markets where

institutions have two distinct goals that may conflict with each other. We state the model

in terms of the main application of college admissions, where universities admit classes

to maximize the merit of the incoming class as well as its diversity. Other applications

include school choice, hiring by public institutions or private firms, and auctions with

distributional goals (e.g., procurement auctions and spectrum license auctions).

Our paper is related to the recent literature on market-design problems with dis-

tributional objectives. In practice, distributional objectives are typically implemented

by reserving a number of positions for target groups. In the market-design litera-

ture, reserves were introduced and analyzed by Hafalir et al. (2013), Ehlers et al. (2014),

and Echenique and Yenmez (2015). Distributional objectives play an important role in

matching problems with regional constraints (Kamada and Kojima, 2015, 2017, 2018).

Another matching market with distributional constraints is interdistrict school choice

(Hafalir et al., 2022b). Unlike these papers we do not focus on a particular policy but

model it as a function on distributions that satisfies ordinal concavity. In a recent work,

Hafalir et al. (2022a) study the implementation of diversity policies in a constrained ef-

ficient mechanism and introduce pseudo M♮-concavity.12 Like us they also represent the

distributional policy as a function but their research question is the existence of constraint

efficient mechanisms whereas we focus on the optimal choice of individual institutions

such as universities.

The most closely related paper in terms of motivation to the current work is Imamura

(2020), who introduces axioms to compare meritocracy and diversity of choice rules and

uses these axioms to characterize choice rules with reserves and quotas. Another related

paper is Kojima et al. (2018), who study two-sided matching markets with agents that

have M♮-concave utility functions and show the existence of stable matchings in a variety

ofmatchingproblemswith constraints basedonproperties ofM♮-concave utility functions.

Choice rules with reserves and quotas can be modeled as a special case of our diversity

choice rule by choosing the appropriate diversity index. We also provide two novel char-

acterizations of matroids (Lemma 1 and Proposition 1) that may be helpful in other work.

See Oxley (2006) for an introduction to matroid theory.

We introduce the model in the next section. In Section 3, we provide definitions of

mathematical concepts and two novel matroid characterizations. We study the diversity

choice rule in Section 4 and its generalization, whichmaximizesmerit subject to attaining a

11Our setting is more general than the setting of Yokote et al. (2022) and, therefore, ordinal concavity is
also necessary to get path independence.

12PseudoM♮-concavity and ordinal concavity are logically independent. Some of our results, but not all,
also hold under pseudo M♮-concavity.
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given diversity level, and the trace algorithm in Section 5. Finally, in Section 6, we conclude

the paper.

2. Model

2.1. Agents, Distributions, and Types. Let C denote a finite set of academic schools (or

colleges/divisions) in a university and S a finite set of students applying to the university.

Each school represents a major or program that students can apply to. For example, when

students are admitted as “undecided” without specifying a major or program, the set C is

a singleton.

There exist a finite set T of student types and a type function τ : S → T that specifies a

type τ(s) ∈ T for each student s ∈ S. A type specifies diversity-related traits that the uni-

versity cares about. For example, it can specify gender, race, ethnicity, sexual orientation,

disability status, veteran status, nationality, or family income.

Each application is represented by a contract specifying a school, a student, and the

terms of admissions that may include financial aid information, and the set of all con-

tracts is denoted by X . The university has amerit ranking ≻ of contracts, which is a strict

preference relation (linear order) overX .13 The correspondingweak preference is denoted

by �, that is, for each x, y ∈ X , x � y if x = y or x ≻ y.

Let contracts in set X = {x1, . . . , x|X|} ⊆ X and set Y = {y1, . . . , y|Y |} ⊆ X be enumer-

ated such that,

for each i, j ∈ {1, . . . , |X|}, i < j =⇒ xi ≻ xj , and

for each i, j ∈ {1, . . . , |Y |}, i < j =⇒ yi ≻ yj.

Then, set X merit dominates set Y if |X| ≥ |Y | and, for each i ∈ {1, . . . , |Y |},

xi � yi.
14

A distribution ξ ∈ Z|C|×|T |
+ is a vector such that the entry for school c ∈ C and type

t ∈ T is denoted by ξtc.
15 The entry ξtc is interpreted as the number of students of type

t ∈ T assigned to school c ∈ C at ξ. For a set of contracts X ⊆ X , ξ(X) ∈ Z|C|×|T |
+ denotes

the distribution induced from X so that ξtc(X) denotes the number of contracts between

a student of type t ∈ T and school c ∈ C in X . For each distribution ξ ∈ Z|C|×|T |
+ , ||ξ||

denotes the sum of coordinates of ξ. There may be feasibility constraints on distributions

such as capacity constraints for schools. The set of feasible distributions is denoted by

13Applications that are strictly less preferred than having an empty seat for the university are dropped
from X . Thus, without loss of generality, we assume that the university strictly prefers each application in
X to having an empty seat.

14Gale (1968) uses this partial order using weights of elements in a matroid to compare the outcome of
the greedy algorithm and independent sets.

15Z+ is the set of non-negative integers including zero.
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Ξ0 ⊆ Z|C|×|T |
+ . We assume that the zero vector is in Ξ0. For each school c ∈ C and type

t ∈ T , let χc,t denote the distribution where there is one type-t student at school c and

there are no other students.

Given a set of distributions Ξ and a distribution ξ ∈ Ξ, we say that ξ is maximal in Ξ if

there exists no ξ̃ ∈ Ξ \ {ξ} such that ξ̃ ≥ ξ. Therefore, the set of maximal distributions in

Ξ is given by {ξ ∈ Ξ|∄ξ′ ∈ Ξ such that ξ′ ≥ ξ and ξ′ 6= ξ}.

There exists a diversity index f : Ξ0 → R+.
16 The diversity index measures how good

a distribution of students is in terms of a diversity goal. Therefore, if f(ξ) ≥ f(ξ̃), then it

means that distribution ξ is as good as distribution ξ̃ in terms of the diversity goal. Our

analysis only depends on the ordinal content of f and not on the cardinal values it takes.

Therefore, a diversity index f and any strictly increasing transformation of f are equivalent

for our purposes.17

2.2. Choice Rules. Given a set of applications, the university must determine which sub-

set of applications to accept. Accordingly, we assume that the university is endowed with

a choice rule that governs its admissions policies.

Definition 1. A choice rule is a function C : 2X → 2X such that, for eachX ⊆ X ,

C(X) ⊆ X and ξ(C(X)) ∈ Ξ0.

A choice rule must be such that the distribution of a chosen set is feasible. Next, we

consider a highly desirable property of choice rules.

Definition 2. A choice rule C satisfies path independence, if, for eachX,X ′ ⊆ X ,

C(X ′ ∪X) = C(C(X ′) ∪X).18

Path independence guarantees that applications can be viewed in batches in any or-

der without changing the final outcome, thereby implying that the university is applying

consistent admissions policies regardless of the sequence or composition of the batches

that are considered during the admissions process. Therefore, it is a desirable property

in college admissions (and other applications). Path independence is equivalent to the

conjunction of the substitutes condition and a mild consistency axiom routinely used in

matching theory.19

16R+ is the set of non-negative real numbers including zero.
17A function g : R → R is strictly increasing if, for each x, y ∈ R such that x > y, we have g(x) > g(y). We

say that a function h : Ξ0 → R+ is a strictly increasing transformation of f if, for each ξ ∈ Ξ0, h(ξ) = g(f(ξ))
where g is a strictly increasing function.

18Plott (1973) introduces path independence as an axiom of rationality in a model of social choice. See
Chambers and Yenmez (2017) for an application of path independence in a matching context.

19See the proof of Theorem 2 for the definitions of these two notions.
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Definition 3. A choice rule C satisfies the law of aggregate demand if, for each X ′, X ⊆ X

X ′ ⊇ X =⇒ |C(X ′)| ≥ |C(X)|.20

The law of aggregate demand states that when a university gets more applications, the

number of chosen applications cannot decrease.

In the context of assigning students to schools in a centralized clearinghouse, path in-

dependence guarantees that the most commonly used method, the deferred-acceptance

algorithm, works well, e.g., it produces the student-optimal stablematching; and if the law

of aggregate demand is also satisfied, it is strategy-proof (Hatfield and Milgrom, 2005).21

3. Mathematical Preliminaries

3.1. Matroids and the Greedy Rule. In this section, we first follow Oxley (2006) to intro-

duce some basic definitions. Then we provide two novel characterizations of matroids.

A matroid is a pair (X ,F) where X is a finite set of contracts and F is a collection of

subsets of X that satisfies the following three properties.

I1: ∅ ∈ F .

I2: If X ∈ F andX ′ ⊆ X , then X ′ ∈ F .

I3: If X1, X2 ∈ F and |X1| < |X2|, then there is x ∈ X2 \X1 such that X1 ∪ {x} ∈ F .

Set X is called the ground set of the matroid. Every set in F is called an independent

set. An independent set X is called a base if no proper superset of X is independent. I3

implies that all bases of a matroid have the same cardinality. In addition, the set of bases

B is characterized by the following two properties.

B1: B is non-empty.

B2: IfX1 andX2 are in B and x1 ∈ X1 \X2, then there exists an element x2 ofX2 \X1

such that (X1 \ {x1}) ∪ {x2} ∈ B.

More precisely, if (X ,F) is amatroid, then the set of its bases satisfies B1 and B2; moreover,

if a collection of subsets B satisfies B1 and B2, then there exists a matroid of which B is the

set of bases. The stronger version of B2 where the implication is (X1 \ {x1}) ∪ {x2} ∈ B

and (X2 \ {x2})∪ {x1} ∈ B also holds (Brualdi, 1969). We next consider a weaker version

of B2 that we call B2’.

B2’: IfX1 andX2 are in B and x1 ∈ X1 \X2, then there exist an element x2 ofX2 \X1

and Y ∈ B such that (X1 \ {x1}) ∪ {x2} ⊆ Y .

20Hatfield and Milgrom (2005) introduce the law of aggregate demand in a matching market with con-
tracts. Alkan and Gale (2003) calls this property size monotonicity in a matching context without contracts.

21In this context, only students are strategic agents. Therefore, a direct revelation mechanism is strategy-
proof if reporting their true preference ranking over schools is a weakly dominant strategy for each student.
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That is, we weaken the condition B2 by requiring (X1 \ {x1}) ∪ {x2} is only a subset of an

element of B.

In the next lemma, we provide a new characterization for the set of bases of a matroid.

Lemma 1. Let B be a collection of subsets of X . Then B is the collection of bases of a matroid on

X if, and only if, B1 and B2’ hold.

As already mentioned, it is well known that B1 and B2 provide a characterization for

the set of bases. In our proof, we show that B1 and B2’ imply B2. Therefore, B1 and B2’

provide another characterization of the set of bases, which is easier to check than B1 and

B2 since B2’ is weaker than B2. We use this characterization in our proofs, and we note

that this is a novel characterizationwhichmay be of independent interest and prove useful

elsewhere.

The following is a well-known algorithm, referred to as the greedy algorithm in the

combinatorial-optimization literature. To define it, we assume that there exists a weight

function on the set of contracts that assigns a distinct real number to every contract. By

changing the set of available contracts, we get a well-defined choice rule. Therefore, we

refer to it as the greedy rule.

Greedy Rule.

Input: Let X be a set of contracts and F be a collection of subsets of X .

Step 1: Set X0 = ∅ and k = 0.

Step 2: If there exist x ∈ X \ Xk and Y ∈ F such that Xk ∪ {x} ⊆ Y , then choose

such a contract xk+1 with the highest non-negative weight, letXk+1 = Xk ∪{xk+1},

and go to Step 3.22 Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.

Step 4: Return Xk+1 and stop.

When (X ,F) is a matroid, the greedy rule produces an independent set that maximizes

the total weight among all independent sets that can be chosen. We next provide a new

characterization of matroids using properties of the greedy rule.

Proposition 1. Let F be a nonempty collection of subsets of X . The following statements are

equivalent.

(1) (X ,F) is a matroid.

(2) For all weight functions on X , the greedy rule satisfies path independence.

(3) For all weight functions on X , the greedy rule satisfies path independence and the law of

aggregate demand.

22Amore common definition of the greedy rule requiresXk ∪ {x} ∈ F instead of the existence of Y ∈ F
with Xk ∪ {x} ⊆ Y . Clearly, that definition is equivalent to the present definition if (X,F) satisfies I2, and
hence in particular, if it is a matroid.
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If (X ,F) is a matroid, then the greedy rule satisfies path independence (Fleiner, 2001)

and the law of aggregate demand (Yokoi, 2019). Therefore, (1) implies (3). Furthermore,

(3) implies (2) trivially. In our proof, we show that if the greedy rule satisfies path in-

dependence for all weight functions on X , then (X ,F) is a matroid using our matroid

characterization above (Lemma 1), completing the proof.

3.2. Convexity for Discrete Sets. We use two notions of convexity for discrete sets. See

Murota (2003) for intuition and details. The first convexity notion is M-convexity.23

Definition 4. A set of distributionsΞ isM-convex if, ξ, ξ̃ ∈ Ξ and ξtc > ξ̃tc for some (c, t) ∈ C×T ,

then there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

The second convexity notion is a weakening of M-convexity.

Definition 5. A set of distributionsΞ isM♮-convex if, ξ, ξ̃ ∈ Ξ and ξtc > ξ̃tc for some (c, t) ∈ C×T ,

then either

(i) ξ − χc,t ∈ Ξ and ξ̃ + χc,t ∈ Ξ, or

(ii) there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

In the discrete convex analysis literature, χ∅ is used to denote the distribution with

zero coordinates. The notation allows for more compact formulations. For example, M♮-

convexity can be written as: A set of distributions Ξ is M♮-convex if, ξ, ξ̃ ∈ Ξ and ξtc > ξ̃tc
for some (c, t) ∈ C × T , then there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt

′

c′ < ξ̃t
′

c′ whenever

(c′, t′) 6= ∅) such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

We use the notation χ∅ in the subsequent parts of the paper.

The following lemma shows that a similar relation to the one between independent sets

and bases also holds between M♮-convex sets and M-convex sets.24

Lemma 2. The set of maximal distributions in an M♮-convex set is M-convex.

23The letter M in the term M-convex set comes from the word matroid.
24Theorem 2.3 in Fujishige (2005) proves that the set of maximal elements in an integral g-polymatroid is

an integral base polyhedron. An integral g-polymatroid is a convex hull of anM♮-convex set and an integral
base polyhedron is a convex hull of an M-convex set. One can prove Lemma 2 by using this result. In
Appendix C, we provide an independent proof based on Murota and Shioura (2018).
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4. A Lexicographic Approach to Diversity and Merit

In this section, we introduce ordinal concavity and a new choice rule that lexicographi-

cally maximizes diversity first and merit second;25 provide a sketch of Theorem 1 by mak-

ing connections to notions of discrete convexity, matroid theory, and the greedy rule; and

establish some further desired properties of this choice rule.

4.1. Diversity Choice Rule. In the following choice rule, we first maximize the diversity

index among subsets of any given set of applications. Then we choose applications ac-

cording to their merit ranking one by one as long as the chosen set of contracts can be

completed to a subset of applications maximizing diversity.

Diversity Choice Rule C
d.

Input: Let X be a set of contracts.

Step 1: max
ξ∈Ξ0

f(ξ) subject to 0 ≤ ξ ≤ ξ(X). Let Ξ∗(X) be the set of distributions that

solve this maximization problem. Set X0 = ∅ and k = 0.

Step 2: If there exist x ∈ X \ Xk and ξ ∈ Ξ∗(X) such that ξ(Xk ∪ {x}) ≤ ξ, then

choose such a contract xk+1 of highest merit, let Xk+1 = Xk ∪ {xk+1}, and go to

Step 3. Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.

Step 4: Return Xk and stop.

The algorithm ends at a finite index k since the number of contracts is finite.

By construction, the diversity choice rule always produces an outcome that maximizes

diversity among subsets of the set of applications. However, Step 2 of the diversity choice

rule is myopic in choosing contracts, so it need not produce an outcome that maximizes

merit among the sets that maximize diversity. To address this problem, we make the fol-

lowing assumption on the diversity index.

Definition 6. The diversity index f : Ξ0 → R+ is ordinally concave if, for each ξ, ξ̃ ∈ Ξ0

and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ (C × T ) ∪ {∅} (with ξt

′

c′ < ξ̃t
′

c′ whenever

(c′, t′) 6= ∅) such that

(i) f(ξ − χc,t + χc′,t′) > f(ξ), or

(ii) f(ξ̃ + χc,t − χc′,t′) > f(ξ̃), or

(iii) f(ξ̃ + χc,t − χc′,t′) = f(ξ̃) and f(ξ − χc,t + χc′,t′) = f(ξ).

Each condition in the definition above not only imposes the stated inequality or equa-

tions, but also that the arguments of f are in the domain Ξ0.

25In Section 5, we generalize this admissions policy so that the university maximizes merit subject to
attaining a diversity level.



12 HAFALIR, KOJIMA, YENMEZ, AND YOKOTE

To our knowledge, ordinal concavity is new to the economics literature. In Appendix A,

we show that ordinal concavity is weaker than the existing discrete concavity notions.26

f(ξ)

f(ξ − 1)

ξ̃ ξ − 1 ξ

(i) f(ξ − 1) > f(ξ).

f(ξ̃)

f(ξ̃ + 1)

ξ̃ ξ̃ + 1 ξ

(ii) f(ξ̃ + 1) > f(ξ̃).

f(ξ) = f(ξ − 1)

f(ξ̃) = f(ξ̃ + 1)

ξ̃ ξ̃ + 1 ξ − 1 ξ

(iii) f(ξ−1) = f(ξ) and f(ξ̃+1) = f(ξ̃).

Figure 1. Three possible implications of ordinal concavity for univariate
functions.

To give the intuition for ordinal concavity, let us consider a special case when there

are only one school and one type. Hence, a distribution specifies how many students are

assigned to the university. For simplicity, take Ξ0 = Z+. Consider ξ, ξ̃ ∈ Z+ such that

ξ > ξ̃. Since ξ > ξ̃ ordinal concavity implies that either

(i) f(ξ − 1) > f(ξ), or

(ii) f(ξ̃ + 1) > f(ξ̃), or

(iii) f(ξ − 1) = f(ξ) and f(ξ̃ + 1) = f(ξ̃).

26As mentioned in footnote 3, we recently became aware of Chen and Li (2021) who introduce semi-
strict quasi M♮-concavity, which is equivalent to ordinal concavity. Meanwhile, Chen and Li (2021) focus on
optimization problems as opposed to economics problems, and their results are logically unrelated to ours.
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In words, when we move from ξ and ξ̃ towards each other by one, either the value of f

increases on at least one side or the value of f stays the same on both sides. We illustrate

these three possibilities in Figure 1.27 For example, if f is a concave or strictly increasing (or

decreasing) function on the real line, then its restriction on integers is ordinally concave.

It is also satisfied when f represents a single-peaked preference relation.

xt
c

xt′

c′

ξξ − χc,t

ξ̃ ξ̃ + χc,t

xt
c

xt′

c′

ξ

ξ − χc,t + χc′,t′

ξ̃

ξ̃ + χc,t − χc′,t′

Figure 2. Two possible directions for multivariate functions.

When there aremore schools and types so that distributions aremultidimensional, mov-

ing closer to each othermaymean eithermoving in one direction as in the one-dimensional

case above, or it may mean the existence of another dimension so that from one distribu-

tion, we remove one in one direction and add one in the other direction and we do the

opposite operations on the other distribution. We show both possible ways in Figure 2.

Our first result shows that, when f is ordinally concave, the diversity choice rule lex-

icographically maximizes diversity first and merit second in a computationally efficient

way.

Theorem 1. Suppose that the diversity index f is ordinally concave.28 Then, for each set of con-

tractsX ⊆ X ,

(i) Cd(X) maximizes the diversity index f among subsets of X ,

(ii) Cd(X) merit dominates each subset of X that maximizes the diversity index f , and

(iii) Cd(X) can be calculated in O(|C| × |T | × |X|2), assuming f can be evaluated in a constant

time.

27It is easy to verify that condition (iii) can happen only when f(ξ) = f(ξ̃) in the special case when
|C| = |T | = 1.

28By inspection of the proof, one can verify that the conclusions of parts (i) and (ii) of the result hold
under a weaker condition than ordinal concavity. More specifically, these conclusions hold if one of the

conditions in the definition of ordinal concavity holds when f(ξ) = f(ξ̃).
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Next, we provide examples of ordinally concave diversity indices. The first is a simple

illustrative example that we use throughout the paper.

Example 1. Suppose that there are three students of different types and one school, say c.

There is only one contract between each student and the university. Denote these contracts

by x, y, and z. The university has a capacity of two, so Ξ0 = {ξ : ||ξ|| ≤ 2} is the set of

feasible distributions.

Let the diversity index f be defined as follows:

f(ξ(∅)) = 0, f(ξ({x})) = 1, f(ξ({y})) = 1, f(ξ({z})) = n,

f(ξ({x, y})) = 1, f(ξ({x, z})) = 5, and f(ξ({y, z})) = 5

where n ≥ 5.29 To see that f is ordinally concave, we need to consider different cases de-

pending on the value of ξ in the definition. Here, we only consider the first of several cases

for illustration, namely the case with ξ = ξ({x, y}), whereas in Appendix C we provide a

full proof.

Let ξ = ξ({x, y}). Let t ∈ T be the type of the student associated with contract x and

t′ ∈ T be the type of the student associated with contract z. If ξ̃t
′

c = 0, then ξ̃ = ξ(∅) or

ξ̃ = ξ({y}). For ξ̃ = ξ(∅), we have f(ξ̃ + χc,t) > f(ξ̃). Therefore, condition (ii) in the

definition of ordinal concavity is satisfied. For ξ̃ = ξ({y}), we have f(ξ − χc,t) = f(ξ)

and f(ξ̃ + χc,t) = f(ξ̃). Therefore, condition (iii) in the definition of ordinal concavity is

satisfied. If ξ̃t
′

c = 1, then ξ̃ = ξ({z}) or ξ̃ = ξ({y, z}). For both values of ξ̃, f(ξ−χc,t+χc,t′) >

f(ξ), which means that condition (i) in the definition of ordinal concavity is satisfied.

In the second example, we consider settings in which a number of seats are reserved for

each student type at each school.

Example 2 (Saturated Diversity). For each school c ∈ C and type t ∈ T , let rtc ∈ Z+ be the

number of reserved seats for type-t students at school c. Suppose that Ξ0 is an M♮-convex

set. Then, for each ξ ∈ Ξ0,

f s(ξ) =
∑

(c,t)∈C×T

min{ξtc, r
t
c},

is an ordinally concave function.

The next example generalizes reservations so that the marginal value of each type of

student at every school is non-increasing.

Example 3 (Marginally DecreasingDiversity). For each school c ∈ C and type t ∈ T , let gc,t be

a univariate concave function. Suppose that Ξ0 is an M♮-convex set. Then, for each ξ ∈ Ξ0,

fm(ξ) =
∑

(c,t)∈C×T

gc,t(ξ
t
c)

29We consider different values of n in the subsequent sections to illustrate different results.
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is an ordinally concave function.

We further generalize the example so that diversity also depends on the number of mi-

nority students at the university level.

Example 4 (University Diversity). Let M ⊆ T be a set of minority types. For each school

c ∈ C and type t ∈ T , let gc,t be a univariate concave function. Likewise, let h be a univariate

concave function. Suppose that Ξ0 is an M♮-convex set. Then, for each ξ ∈ Ξ0,

fu(ξ) = h





∑

(c,t)∈C×M

ξtc



+
∑

(c,t)∈C×T

gc,t(ξ
t
c)

is an ordinally concave function.

The diversity indices defined in Examples 2-4 satisfy ordinal concavity (see Appendix

A).

4.2. Sketch of the Proof of Theorem 1. The first statement in Theorem 1 that the diver-

sity choice rule outcome maximizes diversity among all subsets of the set of applications

follows by construction. Therefore, we illustrate the proofs for the second and third state-

ments in Theorem 1. We provide a high-level explanation of our proofs here and also

illustrate each step of the construction in the diversity choice rule using Example 1. Sec-

tion 5 has more illustrations.

Fix a set of contracts X ⊆ X . The proof that Cd(X) maximizes merit among all subsets

of X that maximize diversity has three main steps and uses discrete convexity notions as

well as matroid theory.

Step 1: The set of maximal distributions in Ξ∗(X) is an M-convex set.

First, we study the structure of Ξ∗(X) that we find in the diversity choice rule construc-

tion. We show that if the diversity index f is ordinally concave, then Ξ∗(X) satisfies M♮-

convexity. Since the diversity choice rule produces an outcome that is maximal in Ξ∗(X),

we focus on maximal distributions in Ξ∗(X). By Lemma 2, the set of maximal distribu-

tions in anM♮-convex set is M-convex; therefore, the set of maximal distributions in Ξ∗(X)

is M-convex (Lemma 4).

Consider Example 1. Let n = 5 and X = {x, y, z}. For the first step, we maximize f on

Ξ0 = {ξ : ||ξ|| ≤ 2} and get Ξ∗(X) = {ξ({z}), ξ({x, z}), ξ({y, z})}, which is an M♮-convex

set. The set of maximal distributions in Ξ∗(X) is equal to {ξ({x, z}), ξ({y, z})}, which is an

M-convex set.

Step 2: Let F(X) ≡ {Y ⊆ X|ξ(Y ) ≤ ξ for some ξ ∈ Ξ∗(X)}. (X,F(X)) is a matroid.

Next, we consider subsets of X that have a distribution less than or equal to a distribu-

tion in Ξ∗(X), and, hence, these sets have a distribution less than or equal to a maximal
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distribution in Ξ∗(X). F(X) is the collection of such sets. Depending on the merit rank-

ing, the diversity choice rule can produce anymaximal set inF(X) because in Step 2 of the

diversity choice rule construction contracts are chosen so that the outcome has a maximal

distribution in Ξ∗(X). Therefore, the structure of maximal sets in F(X) plays a crucial

role. We show M-convexity of the set of maximal distributions in Ξ∗(X) implies that the

maximal sets in F(X) satisfy the base axioms B1 and B2’, which we provide in Lemma 1,

so (X,F(X)) is a matroid (Lemma 5).

In Example 1, when n = 5 and X = {x, y, z}, the set of maximal distributions in Ξ∗(X)

is equal to {ξ({x, z}), ξ({y, z})}. Therefore, the collection of maximal sets in F(X) is equal

to {{x, z}, {y, z}}, which satisfy the base axioms. Hence, (X,F(X)) is a matroid.

Step 3: The greedy rule on (X,F(X)) produces Cd(X).

Finally, we show that the greedy rule on matroid (X,F(X)) produces Cd(X) (Lemma

6). Thus, Cd(X) is a base of the matroid (X,F(X)). Gale (1968) shows that the greedy

rule outcome merit dominates any independent set. Therefore, Cd(X) merit dominates

any set in F(X), which includes subsets of X that maximize diversity.

In Example 1, when n = 5 andX = {x, y, z}, the greedy rule on (X,F(X))may produce

{x, z} and {y, z} depending on the relative merit ranking of {x} and {y}. Therefore, if

x ≻ y, then the diversity choice rule produces {x, z}, and, if y ≻ x, then the diversity

choice rule produces {y, z}.

The proof of the third statement in Theorem 1 works in two main steps. In the first

step, we generalize a technique used in discrete convex analysis to our setting to find a

distribution that maximizes the diversity index. Step 1 of the diversity choice rule involves

the problem of finding a distribution in Ξ∗(X), i.e., a maximizer of f(ξ) subject to ξ ∈ Ξ0

and 0 ≤ ξ ≤ ξ(X). Clearly, checking all distributions is computationally hard because

the size of the domain depends exponentially on the number of colleges and types (recall

Ξ0 ⊆ Z|C|×|T |
+ ). We instead consider the so-called domain-reduction algorithm.

We illustrate the algorithm in Example 1. Let n = 5 and X = {x, y, z}. Since

|C| × |T | = 3, we identify Z|C|×|T |
+ with Z3

+ and assume that ξ({x}) = (1, 0, 0), ξ({y}) =

(0, 1, 0), and ξ({z}) = (0, 0, 1). The algorithm starts from ξ = (0, 0, 0) and iteratively

updates ξ until it reaches a maximizer of f . In every iteration, we identify a direction

d ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} in which f(ξ + d) is maximized. By the definition of f ,

f((0, 0, 0) + d) =







1 if d = (1, 0, 0) or (0, 1, 0),

5 if d = (0, 0, 1).

The maximum function value is attained when (0, 0, 0) moves toward the direction d =

(0, 0, 1), so we update ξ = (0, 0, 0) to ξ + d = (0, 0, 1). Importantly, d = (0, 0, 1) being a
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solution to the maximization problem implies that there exists a maximizer ξ∗ of f with

ξ∗ ≥ (0, 0, 1) due to the maximizer-cut theorem (Theorem 4) that we establish for ordinally

concave functions.30 In words, we can “cut off” distributions that have zero as their third

coordinate and reduce the set of distributions we search for from {ξ : ξ ≥ (0, 0, 0)} to

{ξ : ξ ≥ (0, 0, 1)}.

The algorithm terminateswhen ξ does not increase in anydirection, which is interpreted

as ξ locally maximizing diversity. We prove that local maximization implies global maxi-

mization, i.e., the final distribution ξ is a global maximizer and, hence, included in Ξ∗(X)

(Lemma 10).31 At each iteration, the number of directions that we search for is |C| × |T |.

Furthermore, since the domain for maximization is restricted to {ξ : 0 ≤ ξ ≤ ξ(X)} and

shrinks in every iteration, the number of iterations is at most ||ξ(X)||, which is bounded

by |X|, a linear function of the number of applications. Hence, the domain-reduction al-

gorithm finds a maximizer in O(|C| × |T | × |X|).

The domain-reduction algorithm finds onemaximizer, but Step 2 of the diversity choice

rule searches for all maximizers. It turns out that the process of checking all maximizers

can be simplified to checking only local distributions around a maximizer (Lemma 12),

which is more computationally tractable. Building upon this finding, we develop a mod-

ified version of the diversity choice rule and show that the new choice rule produces the

same outcome as the original one (Lemma 13) and can be calculated inO(|C|×|T |×|X|2).

4.3. Path Independence and the Law of Aggregate Demand. In this section, we investi-

gate further desirable properties of the diversity choice rule. We first establish the follow-

ing result.

Theorem 2. Suppose that the diversity index f is ordinally concave. Then the diversity choice rule

Cd satisfies path independence.

Even though the diversity choice rule satisfies path independence when the diversity

index f is ordinally concave, it need not satisfy the lawof aggregate demand. We show this

claim simply by providing an example. Let Cd be the diversity choice rule corresponding

to the diversity index in Example 1 when n > 5 for a merit ranking of contracts. Then

Cd({x, y, z}) = {z} and Cd({x, y}) = {x, y}

30We verify the maximizer-cut theorem in the current example. The maximizers of f are

(0, 0, 1)(= ξ({z})), (1, 0, 1)(= ξ({x, z})), (0, 1, 1)(= ξ({y, z})),

showing that there exists a maximizer with the third coordinate being one (each maximizer satisfies the
condition).

31This implication is reminiscent of the same property under the standard concavity for univariate con-
tinuous functions. In the formal proof, we show that the final distribution ξ is a maximal distribution in
Ξ∗(X) (Lemma 11).
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show that Cd does not satisfy the law of aggregate demand because
∣

∣Cd({x, y, z})
∣

∣ <
∣

∣Cd({x, y})
∣

∣ .

To get the law of aggregate demand, we make the following monotonicity assumption

on the diversity index.

Definition 7. The diversity index f : Ξ0 → R+ is monotone if f(ξ) ≥ f(ξ̃) for each ξ, ξ̃ ∈ Ξ0

with ξ ≥ ξ̃.

Monotonicity means that increasing any coordinate of a feasible distribution weakly in-

creases diversity as long as the new distribution is also feasible. In Example 1, when n > 5,

monotonicity fails because f(ξ({z})) > f(ξ({x, z})), however, monotonicity holds when

n = 5. In our other examples in Section 4.1, monotonicity is either satisfied without mak-

ing any assumptions or satisfied by making some additional assumptions: In Example 2,

the saturated diversity index f s satisfies monotonicity. In Example 3, the marginally de-

creasing diversity index fm satisfies monotonicity if, for each school c ∈ C and type t ∈ T ,

gc,t is increasing. Finally, in Example 4, university diversity index fu satisfies monotonicity

if h and, for each school c ∈ C and type t ∈ T , gc,t are increasing.

Assuming the monotonicity of the diversity index, in addition to ordinal concavity, de-

livers the law of aggregate demand for the diversity choice rule.32

Proposition 2. Suppose that the diversity index f is ordinally concave and monotone. Then the

diversity choice rule Cd satisfies the law of aggregate demand. In particular, for each X ⊆ X and

x ∈ X \X , one of the following holds:

(i) Cd(X ∪ {x}) = Cd(X),

(ii) Cd(X ∪ {x}) = Cd(X) ∪ {x}, or

(iii) Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X).

Wenote that a choice rule satisfies path-independence and the law of aggregate demand

if, and only if, the requirement that one of the three displayed equations holds for each

X ⊆ X and x ∈ X \X .

5. Maximizing Merit Subject to a Diversity Level

Auniversity administrationmaywant to maximizemerit of an incoming freshman class

subject to attaining a given diversity level instead of lexicographically maximizing these

two objectives. In this section, we introduce a class of choice rules, parameterized by the

diversity level, that achieves this goal. Using this class, we provide an algorithm that

produces the diversity-merit Pareto frontier.

32The same result holds when the diversity index satisfies M♮-concavity without assuming monotonicity.
The proof is available from the authors.
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5.1. Maximizing Merit Subject to a Target Diversity Level. Let λ ∈ R+ be a target di-

versity level. For a given set of applications X ⊆ X , our goal is to choose X ′ ⊆ X that

maximizes merit subject to f(ξ(X ′)) ≥ min{f(ξ(Cd(X))), λ}. That is, we want the cho-

sen set to have a diversity of at least λ if it is attainable (while achieving the maximum

diversity level otherwise).

Key to our analysis is to formulate a new diversity index so that the diversity choice rule

developed in the previous section for the new index maximizes merit subject to achieving

the diversity level. Specifically, consider the following modification of the original diver-

sity index f , denoted as fλ: for each ξ ∈ Ξ0,

fλ(ξ) = min{f(ξ), λ}.

Therefore, fλ : Ξ0 → R+ is the diversity index that flattens the top part of the diversity

index f by λ. For each X ′ ⊆ X , f(ξ(X ′)) ≥ min{f(ξ(Cd(X))), λ} is equivalent to ξ(X ′) ∈

argmax
ξ∈Ξ0

fλ(ξ), so our goal is to choose X ′ ⊆ X that maximizes merit subject to ξ(X ′) being

an optimum of fλ. This is exactly what the diversity choice rule does when it is defined

using the diversity index fλ, which we denote by Cd
λ. For example, if λ ≥ f(ξ(Cd(X)),

then Cd
λ(X) = Cd(X). If λ = 0, then Cd

λ maximizes the merit ranking subject to attaining a

feasible distribution in Ξ0.

If fλ is ordinally concave, then the desirable properties of Cd established in Theorems 1

and 2 hold for Cd
λ as well. Unfortunately, ordinal concavity of f does not necessarily imply

ordinal concavity of fλ, as illustrated in the following example.

Example 5. Let C = {c}, T = {t, t′}, Ξ0 = {0, 1}2 ⊆ Z2
+, ξ({x}) = (1, 0), and ξ({y}) = (0, 1).

Let X = {x, y} and the diversity index f be defined as follows:

f(ξ(∅)) = 1, f(ξ({x})) = 0, f(ξ({y})) = 2, and f(ξ({x, y})) = 1.

It is easy to see that f is ordinally concave. For λ = 1,

fλ(ξ(∅)) = 1, fλ(ξ({x})) = 0, fλ(ξ({y})) = 1, and fλ(ξ({x, y})) = 1.

Consider ξ({x, y}), ξ(∅), and t ∈ T with χc,t = ξ({x}). Since

fλ(ξ({x, y})) = 1 = fλ(ξ({y})) and

fλ(ξ(∅)) = 1 > 0 = fλ(ξ({x})),

fλ violates ordinal concavity.

To guarantee that fλ is ordinally concave for each λ, we explore other concavity condi-

tions.
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Definition 8 (Hafalir et al. (2022a)). The diversity index f : Ξ0 → R+ is pseudo M♮-concave

if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ (C × T ) ∪ {∅} (with

ξt
′

c′ < ξ̃t
′

c′ whenever (c
′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)}.

Pseudo M♮-concavity is similar in spirit to ordinal concavity in the sense that both con-

ditions require the value of f to increase when ξ and ξ̃ move toward each other (recall the

interpretation of Definition 6). One can check that the first two statements in Theorem 1

also hold under pseudo M♮-concavity.

Pseudo M♮-concavity of f is logically independent of ordinal concavity of f ,33 but it is

related to the ordinal concavity of fλ for each λ ≥ 0.

Proposition 3. If fλ is ordinally concave for each λ ≥ 0, then f is pseudo M♮-concave.

Unfortunately, the converse of Proposition 3 is false, as illustrated in the following ex-

ample.

Example 6. Let C = {c}, T = {t}, and Ξ0 = {0, 1, 2} ⊆ Z+. We identify Z|C|×|T |
+ with Z+.

Define f : Ξ0 → R as

f(0) = 0, f(1) = 0, and f(2) = 1.

It is easy to see that f satisfies pseudoM♮-concavity. However, fλ violates ordinal concavity

whenever λ ≥ 1 (in which case fλ = f).34 To see this point, let ξ = 2 and ξ̃ = 0. Since

1 = fλ(ξ) > fλ(ξ − χc,t) = fλ(1) = 0 and

0 = fλ(ξ̃) = fλ(ξ̃ + χc,t) = fλ(1) = 0,

fλ violates ordinal concavity.

To guarantee the equivalence to ordinal concavity of fλ for each λ ≥ 0, we strengthen

pseudo M♮-concavity as follows.

Definition 9. The diversity index f : Ξ0 → R+ is pseudo M♮-concave+ if, for each ξ, ξ̃ ∈ Ξ0

and (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ (C × T ) ∪ {∅} (with ξt

′

c′ < ξ̃t
′

c′ whenever

(c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)}.

Moreover,

33The diversity index in Example 5 satisfies ordinal concavity but violates pseudo M♮-concavity. The
diversity index in Example 6 below satisfies pseudo M♮-concavity but violates ordinal concavity.

34Therefore, this example in fact shows that pseudo M♮-concavity of f does not imply ordinal concavity
of f .
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(A) If f(ξ) > f(ξ − χc,t + χc′,t′) and f(ξ̃) = f(ξ̃ + χc,t − χc′,t′) hold, then there exists (c′′, t′′) ∈

(C × T ) ∪ {∅} (with ξt
′′

c′′ < ξ̃t
′′

c′′ whenever (c
′′, t′′) 6= ∅) such that

f(ξ̃) < f(ξ̃ + χc,t − χc′′,t′′).

(B) If f(ξ̃) > f(ξ̃ + χc,t − χc′,t′) and f(ξ) = f(ξ − χc,t + χc′,t′) hold, then there exists (c′′, t′′) ∈

(C × T ) ∪ {∅} (with ξt
′′

c′′ < ξ̃t
′′

c′′ whenever (c
′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

By the displayed weak inequality in the definition, the if-clause of (A) is true only if

f(ξ) > f(ξ̃) and that of (B) is true only if f(ξ̃) > f(ξ). Hence, the if-clause concerns the

casewhen the higher value of f decreases and the lower value of f remains the samewhen

ξ and ξ̃ move towards each other, as in the case of Example 6. In such a case, pseudo M♮-

concavity+ requires that there is another coordinate (c′′, t′′) for which the lower value of f

strictly increases as indicated by the displayed strict inequality.

One might find the definition of pseudo-M♮-concavity+ complicated. In Appendix B,

we introduce a new condition that implies pseudo M♮-concavity+ and is more easily in-

terpretable due to its analogy to the notion of quasi-concavity, an important assumption

on utility functions in the analysis of markets with continuous commodities. In the sub-

sequent analysis, we focus on pseudo M♮-concavity+ because it allows us to establish an

equivalence result and accommodate a canonical example of f in Section 4, as formalized

below.

Proposition 4. Function fλ is ordinally concave for each λ ≥ 0 if, and only if, f is pseudo M♮-

concave+.

Now we present two diversity indices that are pseudo M♮-concave+.

Claim 1. The diversity index f in Example 1 is pseudo M♮-concave+.

Claim 2. The saturated diversity f s in Example 2 is pseudo M♮-concave+ if Ξ0 = {ξ ∈ Z|C|×|T |
+ |

∑

(c,t)∈C×T ξtc ≤ q} for some q ∈ Z+.

Claim 2 implies that the analysis of this section is applicable to the choice rule of a single

school with saturated diversity and a capacity constraint. In Appendix C, we provide

proofs of Claims 1 and 2 as well as a counterexample to Claim 2 when Ξ0 is not given as

in the statement. We note that the diversity indices in Examples 3 and 4 violate pseudo

M♮-concavity+.

We obtain the following corollary by combining Proposition 4 and Theorem 1.

Corollary 1. Suppose that the diversity index f is pseudoM♮-concave+. Then, for each λ ≥ 0 and

set of contracts X ⊆ X ,
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(i) Cd
λ(X) maximizes the diversity index fλ among subsets of X . In particular, if λ ≤

f(ξ(Cd(X))), then Cd
λ(X) attains diversity level of at least λ.

(ii) Cd
λ(X) merit dominates each subset X ′ of X with f(ξ(X ′)) ≥ λ, and

(iii) Cd
λ(X) can be calculated in O(|C| × |T | × |X|2) time, assuming f can be evaluated in a

constant time.

Proof. Fix λ. By Proposition 4, fλ is ordinally concave. Hence, the claims follow from

Theorem 1. �

Hence, if f is pseudo M♮-concave+, then Cd
λ maximizes merit subject to attaining a di-

versity level of at least λ, and its outcome can be constructed in quadratic time in the num-

ber of contracts. Under the weaker notion of pseudo M♮-concavity, the first two parts of

Corollary 1 continue to hold because pseudo M♮-concavity of f implies that, for each λ, fλ

satisfies pseudo M♮-concavity. Recall that the first two statements in Theorem 1 continue

to hold under pseudo M♮-concavity.

5.2. Diversity-Merit Pareto Frontier. A university administration may not have a partic-

ular target level of diversity in mind but may want to know the diversity-merit Pareto

frontier and choose the incoming class from the Pareto frontier. Therefore, identifying the

Pareto frontier is important, especially for institutions that do not have a target diversity

level. In this section, we provide an algorithm to find the diversity-merit Pareto frontier

by using the choice rule developed in Section 5.1.

For a given set of applicationsX , we define the diversity-merit Pareto frontier ofX , P(X),

as follows:

P(X) = {Y ⊆ X :6 ∃Z ⊆ X s.t. Z 6= Y, Z merit dominates Y, and f(ξ(Z)) ≥ f(ξ(Y ))}.

Throughout this section, we assume that the diversity index f takes integer values. We

introduce a new algorithm that traces the diversity-merit Pareto frontier. The algorithm

takes a set of contracts X ⊆ X as input and produces a collection of subsets of X .

Trace Algorithm.

Input: Let X be a set of contracts.

Step 1: Set k = 0, λ0 = 0, and X0 = ∅.

Step 2: Let Xk+1 = Xk ∪ {Cd
λk
(X)}. If Cd

λk
(X) = Cd(X), go to Step 4. Otherwise, set

λk+1 = f(Cd
λk
(X)) + 1 and go to Step 3.

Step 3: Add 1 to k and go to Step 2.

Step 4: Return Xk+1 and stop.

Since X is finite, the diversity index f can take only a finite number of values. There-

fore, the algorithm ends at some finite k because Cd(X) maximizes the diversity index
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among subsets ofX , and it merit dominates any subset with a diversity index of ξ(Cd(X))

(Theorem 1).

Let α be the maximum value that the diversity index f takes. The main result of this

section is the following.

Theorem 3. Suppose that f is pseudo M♮-concave+. Then, for each X ⊆ X , the trace algorithm

outcome is the diversity-merit Pareto frontierP(X). The time complexity of the algorithm isO(α×

|C| × |T | × |X|2), assuming f can be evaluated in a constant time.

Hence, the trace algorithm finds all subsets of the set of applications that generate the

diversity-merit Pareto frontier. The computational part states that the trace algorithm is

pseudo polynomial in the sense that the time complexity is polynomial in the largest integer

present in the input data describing the matching problem. We observe that the first part

of the result that the trace algorithm finds the diversity-merit Pareto frontier also holds

under pseudo M♮-concavity.

Now, we illustrate the trace algorithm.

Example 7. Consider the setting in Example 1 and suppose that n ≥ 6. Suppose that the

university is considering the set of applications X = {x, y, z} and the merit ranking of

contracts is x ≻ y ≻ z. Note that the diversity choice rule outcome is Cd(X) = {z}.

At the beginning of the algorithm k = 0, λ0 = 0, and X0 = ∅. Therefore, we need

to calculate Cd
λ0
(X). For λ0 = 0, fλ0

assigns zero to all sets. Hence, the set of maximal

distributions in the set of maximizers of fλ0
is

{ξ({x, y}), ξ({x, z}), ξ({y, z})},

and thus, Cd
λ0
(X) = {x, y}. Since Cd

λ0
(X) 6= Cd(X) = {z}, we set X1 = X0 ∪ {Cd

λ0
(X)} =

{{x, y}} and λ1 = f(ξ({x, y})) + 1 = 2.

In the second iteration we have k = 1, λ1 = 2, and X1 = {{x, y}}. Hence, we need to

find Cd
λ1
(X). For λ1 = 2, fλ1

assigns two to all sets with a diversity index (with respect to

f) of at least two. Therefore, the set of maximal distributions in the set of maximizers for

the diversity index fλ1
is

{ξ({x, z}), ξ({y, z})},

and thus Cd
λ1
(X) = {x, z}. Since Cd

λ1
(X) 6= Cd(X) = {z}, we set X2 = X1 ∪ {Cd

λ1
(X)} =

{{x, y}, {x, z}} and λ2 = f(ξ({x, z})) + 1 = 6.

In the third iteration we have k = 2, λ2 = 6, andX2 = {{x, y}, {x, z}}. Hence, we need to

construct Cd
λ2
(X). For λ2 = 6, fλ2

assigns six to all sets with a diversity index (with respect

to f) of at least six. Therefore, the set of maximal distributions in the set of maximizers

for the diversity index fλ2
is

{ξ({z})},
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{x, y}

{x, z}

{z}

5 n1

{y, z}{x}

{y}

diversity

merit

Figure 3. The filled nodes are on the diversity-merit Pareto frontier in Ex-
ample 7 when n > 5.

which implies that we get {z}, so Cd
λ2
(X) = {z}. Since Cd

λ2
(X) = Cd(X) = {z}, we set

X3 = X2 ∪ {Cd
λ2
(X)} = {{x, y}, {x, z}, {z}} and return this as the outcome of the trace

algorithm. The outcome generates all the sets in the diversity-merit Pareto frontier by

Theorem 3; see Figure 3.

6. Conclusion

When institutions hire workers or admit students, they often have dual objectives of di-

versity and meritocracy that may conflict with each other. In this context, we have identi-

fied a class of institutional choice rules that maximizemerit subject to attaining a diversity

level in a computationally efficient way. We have also introduced the trace algorithm to

find the diversity-merit Pareto frontier. We anticipate that our results will be useful in

markets where there are dual objectives.

We assume that the diversity of a group of agents is measured by an index satisfying

ordinal concavity, a notion of discrete concavity that we introduce. Since ordinal concav-

ity allows greedy algorithm to be effectively used in the contexts of discrete optimizations

problems (which are faced frequently in economics, operations research and computer

science), our novel notion and its desirable properties may prove useful in other applica-

tions in the future.

Lastly, our analysis has highlighted an intimate connection between the theories of dis-

crete convexity and matroids. For instance, we have provided two novel characterizations
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of matroids, which are important results by themselves. Moreover, we introduced and an-

alyzed different concavity notions such as pseudo M♮-concavity+. We envision that those

concavity notions may prove useful in other studies.

Appendix A. Concavity Notions for Discrete Functions

There are two notions of concavity for discrete functions that are commonly used in

discrete mathematics. The first one is M-concavity.

Definition 10. A function f isM-concave if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc,

there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).

A weaker version of M-concavity is also used.

Definition 11. A function f isM♮-concave if, for each ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C×T with ξtc > ξ̃tc,

there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt
′

c′ < ξ̃t
′

c′ whenever (c
′, t′) 6= ∅) such that

f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).

Even though our ordinal concavity is an ordinal concept, M-concavity andM♮-concavity

both depend on the cardinal values that the diversity index takes. Furthermore, both M♮-

concavity and M-concavity imply ordinal concavity.

Proposition 5. If a function is M♮-concave, then it is ordinally concave. There exists an ordinally

concave function that is not M♮-concave.

The diversity indices defined in Examples 2-4 satisfy M♮-concavity (see page 140 of

Murota (2003)). Therefore, by Proposition 5, they also satisfy ordinal concavity.

The following result is immediate from this proposition.

Corollary 2. If a function is M-concave, then it is ordinally concave.

Appendix B. Semi-strict Pseudo M♮-concavity

In this appendix, we provide a new definition of concavity, which implies that for each

λ, fλ is ordinally concave. Furthermore, this notion of concavity has a clear interpretation.

Definition 12. The diversity index f : Ξ0 → R+ is semistrictly pseudoM♮-concave if, for each

ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc, then there exists (c′, t′) ∈ (C ×T )∪ {∅} (with ξt
′

c′ < ξ̃t
′

c′

whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},

with strict inequality holding whenever f(ξ) 6= f(ξ̃) and ξ − χc,t + χc′,t′ 6= ξ̃.
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The difference from pseudo M♮-concavity is that the increase in the minimum value

must be strict if the two function values are different and the two distributions do not

coincide with each other as a result of moving toward each other.35 One can verify that

semistrict pseudo M♮-concavity implies pseudo M♮-concavity+.36

Semistrict pseudoM♮-concavity can be viewed as a discrete analogue of a variant of quasi

concavity, which has been studied extensively in microeconomic analysis.37 We say that a

continuous function f : R|C|×|T | → R is semistrictly quasi concave,38 if for each ξ, ξ̃ ∈ R|C|×|T |

and λ ∈ (0, 1),

min{f(ξ), f(ξ̃)} ≤ f(λξ + (1− λ)ξ̃),

with strict inequality holding whenever f(ξ) 6= f(ξ̃). Both semistrict pseudoM♮-concavity

and semistrict quasi concavity state that the minimum function value increases, with the

increase being strict whenever the original function values are different.39

Appendix C. Main Proofs

In this section, we include the proofs of our main result.

For each contract x ∈ X , the school associated with the contract is denoted by γ(x) ∈ C

and the student associated with the contract is denoted by σ(x) ∈ S.

Proof of Lemma 1. The collection of bases of a matroid satisfies B1 and B2. Furthermore,

B2 impliesB2’. Therefore, the collection of bases of amatroid satisfies B1 and B2’. To finish

the proof, we need to show that B1 and B2’ imply B2.

35Note that ξ − χc,t + χc′,t′ 6= ξ̃ is equivalent to {ξ, ξ̃} ∩ {ξ − χc,t + χc′,t′ , ξ̃ + χc,t − χc′,t′} = ∅.
36The converse of this implication does not hold. Let C = {c} and T = {t, t′}; we identify Z

|C|×|T |
+ with

Z2
+. Let f : Ξ0 → R+ be such that

Ξ0 = {(0, 0), (0, 1), (1, 0), (1, 1)} ⊆ Z2
+, f(0, 0) = f(1, 0) = 0, f(0, 1) = f(1, 1) = 1.

This function satisfies pseudo M♮-concavity+ but violates semistrict pseudo M♮-concavity. For ξ = (1, 1),

ξ̃ = (0, 0), and (c, t) with χc,t = (1, 0),

f(ξ) = f(ξ − χc,t) = 1, f(ξ̃) = f(ξ̃ + χc,t) = 0,

showing that the minimum function value does not strictly increase although f(ξ) 6= f(ξ̃) and ξ − χc,t 6= ξ̃.
37In a market model with continuous commodities, if a preference relation over the commodity space

is convex, then any utility function representing the preference relation is quasi concave; see Section 3.C of
Mas-Colell et al. (1995).

38Precisely speaking, semistrict quasi concavity is defined for a possibly discontinuous function as fol-

lows: for each ξ, ξ̃ ∈ R|C|×|T | and λ ∈ (0, 1), min{f(ξ), f(ξ̃)} < f(λξ + (1 − λ)ξ̃) whenever f(ξ) 6= f(ξ̃). If f
is continuous, this condition is equivalent to the one in the main text.

39There is a subtle difference between continuous and discrete domains. For each ξ, ξ̃ ∈ R|C|×|T | with
ξ 6= ξ̃, it always holds that λξ + (1 − λ)ξ̃ 6= ξ̃ if λ ∈ (0, 1). In a discrete domain, however, it is possible that

ξ − χc,t + χc′,t′ = ξ̃. Hence, we add a condition that these two distributions are distinct in the definition of
semistrict pseudo M♮-concavity.
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Suppose, for contradiction, that B2 does not hold. Then, there exist X1, X2 ∈ B and

x1 ∈ X1 \ X2 such that for each x ∈ X2 \ X1 we have (X1 \ {x1}) ∪ {x} 6∈ B. B2’ implies

that there exist x2 ∈ X2 \ X1 and Y ∈ B such that (X1 \ {x1}) ∪ {x2} ⊆ Y . Note that we

also have (X1 \ {x1}) ∪ {x2} 6∈ B since x2 ∈ X2 \X1 and, therefore, we can take x = x2 in

(X1 \ {x1}) ∪ {x} 6∈ B. Furthermore, since B2’ implies that there cannot be two sets in B

such that one is a proper subset of the other, X1 is not a subset of Y . Therefore, x1 /∈ Y

because otherwise X1 would be a proper subset of Y .

Let Z = Y \ (X1 \ {x1}). Then Z = Y \ X1 since Y does not include x1. Furthermore,

x2 ∈ Y and x2 /∈ X1 imply that x2 ∈ Z.

Now let X∗
1 = Y and X∗

2 = X1. We have

(i) X∗
1 , X

∗
2 ∈ B,

(ii) X∗
1 \X

∗
2 = Y \X1 = Z, and

(iii) X∗
2 \X

∗
1 = X1 \ Y = {x1}.

By B2’, since x2 ∈ X∗
1 \X

∗
2 = Z, there exists y ∈ X∗

2 \X
∗
1 = {x1} such that (X∗

1 \{x2})∪{y} ⊆

Y ′ for some Y ′ ∈ B. However, y = x1 implies (X∗
1 \ {x2}) ∪ {y} = (Y \ {x2}) ∪ {x1} ⊇ X1.

Since Y ′ ⊇ X1 and Y ′, X1 ∈ B, B2’ implies that Y ′ = X1. Hence,

X1 = Y ′ ⊇ (Y \ {x2}) ∪ {x1},

which implies that Y = (X1 \{x1})∪{x2} because, by construction, Y ⊇ (X1 \{x1})∪{x2}

and x1 /∈ Y . This is a contradiction since (X1 \ {x1})∪{x2} /∈ B and Y ∈ B. Hence, B1 and

B2’ imply B2. Therefore, B1 and B2’ provide a characterization of the collection of bases

of a matroid. �

Proof of Lemma 2. In their Proposition 3.1, Murota and Shioura (2018) provide an equiv-

alent condition for M♮-convexity.

Lemma 3. A set of distributions Ξ is M♮-convex if and only if, for each ξ, ξ̃ ∈ Ξ,

(i) ||ξ|| > ||ξ̃|| implies that there exists (c, t) ∈ C × T with ξtc > ξ̃tc such that ξ − χc,t ∈ Ξ and

ξ̃ + χc,t ∈ Ξ, and

(ii) ||ξ|| = ||ξ̃|| implies that for each (c, t) ∈ C × T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ C × T

with ξt
′

c′ < ξ̃t
′

c′ such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

LetΞ be a finite and non-emptyM♮-convex set andM the set of maximal distributions in

Ξ. Then there exists at least one distribution in M. If there exists exactly one distribution

in M, then it is trivially M-convex. For the rest of the proof, suppose that M has at least

two distributions.

Let ξ, ξ̃ ∈ M be distinct. Without loss of generality assume that ||ξ|| ≥ ||ξ̃||.
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If ||ξ|| > ||ξ̃||, then, by Lemma 3, there exists (c, t) ∈ C × T with ξtc > ξ̃tc such that

ξ − χc,t ∈ Ξ and ξ̃ + χc,t ∈ Ξ. However, ξ̃ + χc,t ∈ Ξ contradicts the assumption that ξ̃ is

maximal in Ξ. Therefore, we must have ||ξ|| = ||ξ̃||, which implies that every distribution

in M has the same sum of coordinates. Furthermore, every distribution in Ξ that has the

same sum of coordinates also has to be maximal.

By Lemma 3, for each (c, t) ∈ C×T with ξtc > ξ̃tc, there exists (c
′, t′) ∈ C×T with ξt

′

c′ < ξ̃t
′

c′

such that

ξ − χc,t + χc′,t′ ∈ Ξ and ξ̃ + χc,t − χc′,t′ ∈ Ξ.

The equations above imply that both distributions are also maximal in Ξ because ||ξ −

χc,t + χc′,t′|| = ||ξ|| and ||ξ̃ + χc,t − χc′,t′|| = ||ξ̃||. Therefore, we get ξ − χc,t + χc′,t′ ∈ M and

ξ̃ + χc,t − χc′,t′ ∈ M, which establishes that M is an M-convex set. �

Proof of Theorem 1. We first prove parts (i) and (ii) using the following lemmas.

Lemma4. Suppose that the diversity index f is ordinally concave. For each set of contractsX ⊆ X ,

the set of maximal distributions in Ξ∗(X) is M-convex.

Proof of Lemma 4. Let ξ, ξ̃ ∈ Ξ∗(X) be two distinct distributions, c ∈ C a school, and t ∈ T

a type such that ξtc > ξ̃tc. By ordinal concavity, either (i)

f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃)

or (ii) there exist school c′ ∈ C and type t′ ∈ T with ξt
′

c′ < ξ̃t
′

c′ such that

f(ξ − χc,t + χc′,t′) = f(ξ) and f(ξ̃ + χc,t − χc′,t′) = f(ξ̃).

If (i) holds, then ξ − χc,t ∈ Ξ∗(X) and ξ̃ + χc,t ∈ Ξ∗(X). Otherwise, if (ii) holds, then

ξ − χc,t + χc′,t′ ∈ Ξ∗(X) and ξ̃ + χc,t − χc′,t′ ∈ Ξ∗(X). Therefore, Ξ∗(X) is an M♮-convex set.

We finish the proof by using Lemma 2: M♮-convexity of Ξ∗(X) implies that the set of

maximal distributions in Ξ∗(X) is M-convex. �

Recall the definition of F(X) ≡ {Y ⊆ X|ξ(Y ) ≤ ξ for some ξ ∈ Ξ∗(X)}.

Lemma5. Suppose that the diversity index f is ordinally concave. For each set of contractsX ⊆ X ,

(X,F(X)) is a matroid.

Proof of Lemma 5. We show that the maximal sets in F(X) satisfy B1 and B2’, which to-

gether with Lemma 1 implies that they are the bases of a matroid. Since F(X) satisfies I2,

F(X) is the collection of subsets of the bases, which implies that (X,F(X)) is a matroid

(see Theorem 1.2.3 of Oxley (2006)). SinceX is a finite set, Ξ∗(X) is nonempty. Therefore,

B1 is satisfied.
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We now show B2’. Let X1 and X2 be two distinct maximal sets in F(X). Then, by

construction, ξ(X1) and ξ(X2) are maximal distributions in Ξ∗(X). We consider two cases

in the rest of the proof.

In the first case, for each school c ∈ C and type t ∈ T , ξtc(X1) = ξtc(X2). Since X1 6=

X2, |X1 \ X2| > 0. Then, for each x1 ∈ X1 \ X2, there exists x2 ∈ X2 \ X1 such that

γ(x1) = γ(x2) and τ(σ(x1)) = τ(σ(x2)). Therefore, ξ((X1 \ {x1}) ∪ {x2}) = ξ(X1) and

so f(ξ((X1 \ {x1}) ∪ {x2}) = f(ξ(X1)), which implies that (X1 \ {x1}) ∪ {x2} ∈ F(X).

Therefore, B2’ is satisfied.

In the second case, there exist school c ∈ C and type t ∈ T such that ξtc(X1) > ξtc(X2).

Since ξ(X1), ξ(X2) ∈ Ξ∗(X) and the set of maximal distributions in Ξ∗(X) is an M-convex

set (Lemma 2), there exist school c′ ∈ C and type t′ ∈ T with ξt
′

c′(X1) < ξt
′

c′(X2) such that

ξ(X1) − χc,t + χc′,t′ ∈ Ξ∗(X) and ξ(X2) + χc,t − χc′,t′ ∈ Ξ∗(X). Since ξtc(X1) > ξtc(X2) and

ξt
′

c′(X1) < ξt
′

c′(X2), there exist x1 ∈ X1\X2 and x2 ∈ X2\X1 such that γ(x1) = c, τ(σ(x1)) = t,

γ(x2) = c′, and τ(σ(x2)) = t′. Therefore,

ξ((X1 \ {x1}) ∪ {x2}) = ξ(X1)− χc,t + χc′,t′ ∈ Ξ∗(X),

which implies that (X1 \ {x1}) ∪ {x2} ∈ F(X). Therefore, B2’ is satisfied.

In both cases, we have shown B1 and B2’ and (X,F(X)) is a matroid. �

Lemma 6. Suppose that the diversity index f is ordinally concave. Then, for each set of contracts

X ⊆ X , the greedy rule on matroid (X,F(X)) produces Cd(X)when the set of available contracts

isX .40

Proof of Lemma 6. We show by induction that Cd and the greedy rule choose the same set

of contracts for each index k used in the definitions of both choice rules and terminate at

the same index. LetXk be defined as in the construction of Cd(X) andX ′
k be analogously

defined for the greedy rule. For k = 0, we have Xk = ∅ = X ′
k. By mathematical induction

hypothesis, suppose that Xj = X ′
j for each j = 0, . . . , k. We now show the hypothesis for

j = k + 1.

By the induction hypothesis, {x ∈ X \Xk|∃ξ ∈ Ξ∗(X) s.t. ξ(Xk ∪ {x}) ≤ ξ} used in the

construction of Cd is the same as {x ∈ X \ X ′
k|∃Y ⊆ F(X) s.t. X ′

k ∪ {x} ⊆ Y } used in

the greedy rule description. Therefore, either both algorithms terminate at index k and

produce Xk = X ′
k or the same contract x is chosen so that Xk+1 = X ′

k+1. This finishes the

proof of the mathematical induction hypothesis.

Therefore, the greedy rule on matroid (X,F(X)) produces Cd(X). �

Now, we finish the proofs of parts (i) and (ii). By Lemma 6, Cd(X) is a base of the

matroid (X,F(X)). Therefore, by construction of F(X), ξ(Cd(X)) ∈ Ξ∗(X), which means

40To dfine the greedy rule, we set a weight function in such a way that a contract with a higher merit has
a higher weight.
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that Cd(X) maximizes the diversity index f among subsets of X . Furthermore, by (Gale,

1968), Cd(X)merit dominates each set inF(X), which includes all subsets ofX that max-

imizes the diversity index.

We continue with the proof of part (iii). We prove the result in a number of steps.

Step 1: We prove the so-called maximizer-cut theorem for ordinally concave functions.41

Lemma 7. Let f be ordinally concave, ξ ∈ Ξ0, (c, t) ∈ (C ×T )∪{∅}, and (c′, t′) ∈ (C ×T )∪{∅}

be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃′,t̃′)∈(C×T )∪{∅}

f(ξ − χc̃′ t̃′ + χc,t).

Then, there exists ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ ξt
′

c′ − 1 + (χc,t)
t′

c′ .

Proof of Lemma 7. Let ξ′ = ξ − χc′,t′ + χc,t. Suppose, for contradiction, that there does not

exist ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ (ξ′)t
′

c′ . Let ξ
∗ be an element of argmax

ξ∈Ξ0

f(ξ) that mini-

mizes the (c′, t′) coordinate. By assumption, we have (ξ∗)t
′

c′ > (ξ′)t
′

c′ . By ordinal concavity,

there exists (c′′, t′′) ∈ (C × T ) ∪ {∅} (with (ξ′)t
′′

c′′ > (ξ∗)t
′′

c′′ if (c
′′, t′′) 6= ∅) such that

(1) f(ξ∗ − χc′,t′ + χc′′,t′′) > f(ξ∗) or

(2) f(ξ′ + χc′,t′ − χc′′,t′′) > f(ξ′) or

(3) f(ξ∗ − χc′,t′ + χc′′,t′′) = f(ξ∗) and f(ξ′ + χc′,t′ − χc′′,t′′) = f(ξ′).

If condition (3) holds, then ξ∗−χc′,t′+χc′′,t′′ ∈ argmax
ξ∈Ξ0

f(ξ) and (ξ∗−χc′,t′+χc′′,t′′)
t′

c′ < (ξ∗)t
′

c′ ,

a contradiction to the choice of ξ∗. Condition (1) is impossible because ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ).

If condition (2) holds,

f(ξ − χc′′,t′′ + χc,t) = f(ξ′ + χc′,t′ − χc′′,t′′) > f(ξ′) = f(ξ − χc′,t′ + χc,t),

a contradiction to the choice of (c′, t′). �

Lemma 8. Let f be ordinally concave, ξ ∈ Ξ0 with ξ /∈ argmax
ξ∈Ξ0

f(ξ), and (c, t), (c′, t′) ∈ (C ×

T ) ∪ {∅} be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃′,t̃′)∈(C×T )∪{∅}

max
(c̃,t̃)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

Then, (c, t) 6= ∅ or (c′, t′) 6= ∅ holds.

Proof of Lemma 8. Suppose, for contradiction, that (c, t) = (c′, t′) = ∅, i.e.,

f(ξ) = max
(c̃′,t̃′)∈(C×T )∪{∅}

max
(c̃,t̃)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

41The maximizer-cut theorem is originally proved for M-convex functions under the name of minimizer-
cut theorem; see Theorem 6.28 of Murota (2003). Our proof relies on Murota’s proof. Roughly speaking, this
theorem states that we can “cut” non-maximizers from the domain containing a maximizer of f .
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Let ξ∗ be an element of argmax
ξ∈Ξ0

f(ξ) that minimizes
∑

(c̃,t̃) |(ξ
∗)t̃c̃−ξ t̃c̃|. Since ξ /∈ argmax

ξ∈Ξ0

f(ξ),

there exists (c′′, t′′) ∈ C × T with (ξ∗)t
′′

c′′ 6= ξt
′′

c′′ . Suppose that (ξ∗)t
′′

c′′ > ξt
′′

c′′ (the other case

(ξ∗)t
′′

c′′ < ξt
′′

c′′ can be handled analogously). By ordinal concavity, there exists (c′′′, t′′′) ∈

(C × T ) ∪ {∅} (with ξt
′′′

c′′′ > (ξ∗)t
′′′

c′′′ if (c
′′′, t′′′) 6= ∅) such that

(1) f(ξ∗ − χc′′,t′′ + χc′′′,t′′′) > f(ξ∗) or

(2) f(ξ + χc′′,t′′ − χc′′′,t′′′) > f(ξ) or

(3) f(ξ∗ − χc′′,t′′ + χc′′′,t′′′) = f(ξ∗) and f(ξ + χc′′,t′′ − χc′′′,t′′′) = f(ξ).

If condition (3) holds, then ξ∗ − χc′′,t′′ + χc′′′,t′′′ ∈ argmax
ξ∈Ξ0

f(ξ) and

∑

(c̃,t̃)

|(ξ∗ − χc′′,t′′ + χc′′′,t′′′)
t̃
c̃ − ξ t̃c̃| <

∑

(c̃,t̃)

|(ξ∗)t̃c̃ − ξ t̃c̃|,

which is a contradiction to the choice of ξ∗. Condition (1) is impossible because ξ∗ ∈

argmax
ξ∈Ξ0

f(ξ). If condition (2) holds, we obtain a contradiction to the assumption made in

the beginning of the proof. �

Theorem 4 (Maximizer-cut theorem). Let f be ordinally concave, ξ ∈ Ξ0 with ξ 6∈

argmax
ξ∈Ξ0

f(ξ), and (c, t), (c′, t′) ∈ (C × T ) ∪ {∅} be such that

f(ξ − χc′,t′ + χc,t) = max
(c̃,t̃),(c̃′,t̃′)∈(C×T )∪{∅}

f(ξ − χc̃′,t̃′ + χc̃,t̃).

Then, (c, t) 6= ∅ or (c′, t′) 6= ∅ holds and the following statements hold:

(i) If (c, t) 6= ∅ and (c′, t′) = ∅, then there exists ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ ξtc + 1,

(ii) If (c, t) = ∅ and (c′, t′) 6= ∅, then there exists ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) with (ξ∗)t
′

c′ ≤ ξt
′

c′ − 1,

(iii) If (c, t) 6= ∅ and (c′, t′) 6= ∅, then there exists ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ ξtc + 1 and

(ξ∗)t
′

c′ ≤ ξt
′

c′ − 1.

Proof of Theorem 4. Note that (c, t) 6= ∅ or (c′, t′) 6= ∅ follows from Lemma 8.

Proof of (i): Let ξ′ = ξ + χc,t. Suppose, for contradiction, that there does not exist ξ∗ ∈

argmax
ξ∈Ξ0

f(ξ) with (ξ∗)tc ≥ (ξ′)tc. Let ξ
∗ be an element of argmax

ξ∈Ξ0

f(ξ) that maximizes the

(c, t) coordinate. By assumption, we have (ξ∗)tc < (ξ′)tc. By ordinal concavity, there exists

(c′′, t′′) ∈ (C × T ) ∪ {∅} (with (ξ∗)t
′′

c′′ > (ξ′)t
′′

c′′ if (c
′′, t′′) 6= ∅) such that

(1) f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) or

(2) f(ξ∗ + χc,t − χc′′,t′′) > f(ξ∗) or

(3) f(ξ′ − χc,t + χc′′,t′′) = f(ξ′) and f(ξ∗ + χc,t − χc′′,t′′) = f(ξ∗).
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If condition (3) holds, then ξ∗ + χc,t −χc′′,t′′ ∈ argmax
ξ∈Ξ0

f(ξ) and (ξ∗ +χc,t − χc′′,t′′)
t
c > (ξ∗)tc,

a contradiction to the choice of ξ∗. Condition (2) is impossible because ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ).

If condition (1) holds,

f(ξ + χc′′,t′′) = f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) = f(ξ + χc,t),

which is a contradiction to the choices of (c, t) and (c′, t′).

Proof of (ii): The proof is similar to that for (i).

Proof of (iii): Let ξ′ = ξ − χc′,t′ + χc,t. By Lemma 7, there exists ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ) such

that (ξ∗)t
′

c′ ≤ (ξ′)t
′

c′ ; we assume ξ∗ maximizes (ξ∗)tc among all such vectors. Suppose, for

contradiction, that (ξ∗)tc ≥ (ξ′)tc is not satisfied, i.e., (ξ∗)tc < (ξ′)tc. By ordinal concavity,

there exists (c′′, t′′) ∈ (C × T ) ∪ {∅} (with (ξ∗)t
′′

c′′ > (ξ′)t
′′

c′′ if (c
′′, t′′) 6= ∅) such that

(1) f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) or

(2) f(ξ∗ + χc,t − χc′′,t′′) > f(ξ∗) or

(3) f(ξ′ − χc,t + χc′′,t′′) = f(ξ′) and f(ξ∗ + χc,t − χc′′,t′′) = f(ξ∗).

Suppose that condition (3) holds, which implies ξ∗ + χc,t − χc′′,t′′ ∈ argmax
ξ∈Ξ0

f(ξ). By

Lemma 8, we have (c, t) 6= (c′, t′) and hence (ξ∗ + χc,t − χc′′,t′′)
t′

c′ ≤ (ξ∗)t
′

c′ . Together with

(ξ∗ + χc,t − χc′′,t′′)
t
c > (ξ∗)tc, we obtain a contradiction to the choice of ξ∗. Condition (2) is

impossible because ξ∗ ∈ argmax
ξ∈Ξ0

f(ξ). If condition (1) holds,

f(ξ − χc′,t′ + χc′′,t′′) = f(ξ′ − χc,t + χc′′,t′′) > f(ξ′) = f(ξ − χc′,t′ + χc,t),

which is a contradiction to the choices of (c, t) and (c′, t′). �

Two remarks on Theorem 4 are in order.

• Although we assume that Ξ0 ⊆ Z|C|×|T |
+ , 0 ∈ Ξ0, and f(ξ) ≥ 0 for each ξ ∈ Ξ0, nei-

ther of these assumptions is used in the proof. Hence, the maximizer-cut theorem

holds for ordinally concave functions more generally.

• Among the three statements (i)-(iii), we use only the first one in the proof below.

Step 2: We develop a variation of the domain-reduction algorithm that produces amaximizer

of the diversity index that is maximal in the set of maximizers.42 Fix an ordinally concave

f .

Domain-reduction algorithm.

Input: Let X be a set of contracts.

Step 1: Set ξ0 = 0 and k = 0.

42The domain-reduction algorithm is originally introduced for M-convex functions; see Section 10.1.3 of
Murota (2003).
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Step 2: Check if

f(ξk) ≤ max{f(ξk + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk + χc̃,t̃ ≤ ξ(X)}.

If this is the case, then choose a maximizer (ck+1, tk+1) of the right-hand side, let

ξk+1 = ξk + χck+1,tk+1
, and go to Step 3. Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.

Step 4: Return ξk and stop.

Let k∗ denote the value of k at the end of the algorithm. For each k ∈ {0, . . . , k∗}, let

Ξ0
k = {ξ ∈ Ξ0 | ξk ≤ ξ ≤ ξ(X)} and fk : Ξ0

k → R+ be defined as fk(ξ) = f(ξ) for all ξ ∈ Ξ0
k.

One can verify that ordinal concavity of f is inhereted to fk for each k. We prove that the

algorithm produces a maximal distribution in argmax
ξ∈Ξ0

0

f0(ξ) = Ξ∗(X) (recall the notation

in the definition of the diversity choice rule) by establishing three lemmas.

Lemma 9. For each k ∈ {0, . . . , k∗}, max
ξ∈Ξ0

k

fk(ξ) = max
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 9. The proof is by mathematical induction. The claim trivially holds for

k = 0. Suppose that it holds for k − 1. We show the claim for k.

Case 1: Suppose that ξk−1 is a maximizer of fk−1. Then, fk−1(ξk−1 + χck,tk) ≤ fk−1(ξk−1).

Together with f(ξk−1 + χck,tk) ≥ f(ξk−1) (which follows from the choice of (ck, tk)) and

f(ξ) = fk−1(ξ) for each ξ ∈ Ξ0
k−1, we obtain fk−1(ξk−1 + χck,tk) = fk−1(ξk−1). Substituting

fk−1(ξk−1 + χck,tk) = fk(ξk), we get fk(ξk) = fk−1(ξk−1). Together with Ξ0
k−1 ⊇ Ξ0

k and the

assumption of Case 1, ξk is a maximizer of fk andmax
ξ∈Ξ0

k

fk(ξ) = max
ξ∈Ξ0

k−1

fk−1(ξ). This equality

and mathematical induction hypothesis give us the desired claim.

Case 2: Suppose that ξk−1 is not a maximizer of fk−1.

fk−1(ξk−1 + χck,tk) = f(ξk−1 + χck,tk)

= max
(c̃,t̃)∈(C×T )∪{∅}

f(ξk−1 + χc̃,t̃)

= max
(c̃,t̃)∈(C×T )∪{∅}

fk−1(ξk−1 + χc̃,t̃)

= max
(c̃,t̃),(c̃′,t̃′)∈(C×T )∪{∅}

fk−1(ξk−1 − χc̃′,t̃′ + χc̃,t̃),

where the second equality follows from the choice of (ck, tk) and the last equality follows

from the fact that every distribution in Ξ0
k−1 is greater than or equal to ξk−1. By Theorem

4, there exists a maximizer ξ∗ of fk−1 such that ξ∗ ≥ ξk−1 + χck,tk = ξk, which implies

ξ∗ ∈ Ξ0
k. Together with Ξ0

k−1 ⊇ Ξ0
k, we obtain max

ξ∈Ξ0
k

fk(ξ) = max
ξ∈Ξ0

k−1

fk−1(ξ). This equality and

mathematical induction hypothesis give us the desired claim. �
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Lemma 10. ξk∗ ∈ argmax
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 10. Suppose, for contradiction, that ξk∗ /∈ argmax
ξ∈Ξ0

0

f0(ξ). By Lemma 9 and

Ξ0
k∗ ⊆ Ξ0

0, there exists ξ∗ ∈ Ξ0
k∗ such that ξ∗ ∈ argmax

ξ∈Ξ0
0

f0(ξ) and fk∗(ξk∗) < fk∗(ξ
∗), which

implies f(ξk∗) < f(ξ∗). Assume that (ξ∗)tc > (ξk∗)
t
c (such c and t exist because ξ∗ > ξk∗ by

the definition of Ξ0
k∗). By ordinal concavity of f , there exists (c′, t′) ∈ (C × T ) ∪ {∅}, with

(ξ∗)t
′

c′ < (ξk∗)
t′

c′ if (c
′, t′) 6= ∅, such that one of the inequalities required of ordinal concavity

holds. However, because ξ∗ > ξk∗ , it follows that (c′, t′) = ∅, so we have

(1) f(ξk∗ + χc,t) > f(ξk∗) or

(2) f(ξ∗ − χc,t) > f(ξ∗) or

(3) f(ξk∗ + χc,t) = f(ξk∗) and f(ξ∗ − χc,t) = (ξ∗).

Condition (2) is impossible because ξ∗ ∈ argmax
ξ∈Ξ0

0

f0(ξ). Therefore, condition (1) or (3)

holds. In either case, because ξk∗ + χc,t ≤ ξ∗ ≤ ξ(X), we have

f(ξk∗) ≤ max{f(ξk∗ + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk∗ + χc̃,t̃ ≤ ξ(X)}.

We obtain a contradiction to the fact that the algorithm terminates when k = k∗. �

Lemma 11. ξk∗ is a maximal distribution in argmax
ξ∈Ξ0

0

f0(ξ).

Proof of Lemma 11. Suppose, for contradiction, that the statement does not hold. By

Lemma 10, ξk∗ ∈ argmax
ξ∈Ξ0

0

f0(ξ). Since it is not a maximal distribution, there exists ξ∗ such

that ξ∗ ∈ argmax
ξ∈Ξ0

0

f0(ξ) and ξ∗ > ξk∗ . Assume that (ξ∗)tc > (ξk∗)
t
c (such c and t exist because

ξ∗ > ξk∗). By ordinal concavity of f , there exists (c′, t′) ∈ (C×T )∪{∅}, with (ξ∗)t
′

c′ < (ξk∗)
t′

c′ if

(c′, t′) 6= ∅, such that one of the inequalities required of ordinal concavity holds. However,

because ξ∗ > ξk∗, it follows that (c′, t′) = ∅, so we have

(1) f(ξk∗ + χc,t) > f(ξk∗) or

(2) f(ξ∗ − χc,t) > f(ξ∗) or

(3) f(ξk∗ + χc,t) = f(ξk∗) and f(ξ∗ − χc,t) = f(ξ∗).

If condition (1) or (2) holds, then together with ξk∗ +χc,t ≤ ξ∗ ≤ ξ(X) and ξ∗−χc,t ≤ ξ∗ ≤

ξ(X), we obtain a contradiction to ξk∗, ξ
∗ ∈ argmax

ξ∈Ξ0
0

f0(ξ). Therefore, condition (3) holds,

implying that

f(ξk∗) ≤ max{f(ξk∗ + χc̃,t̃) | (c̃, t̃) ∈ C × T , ξk∗ + χc̃,t̃ ≤ ξ(X)}.

We obtain a contradiction to the fact that the algorithm terminates when k = k∗. �
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Step 3: We develop a modified version of the diversity choice rule that produces the same

outcome as the original one and is more tractable from a computational viewpoint. Fix an

ordinally concave f .

Modified Diversity Choice Rule.

Input: Let X be a set of contracts. Let ξ be a maximal distribution in Ξ∗(X).

Step 1: Set X0 = ∅, ξ0 = ξ, and k = 0.

Step 2: Check whether there exists x ∈ X\Xk that satisfies one of the following con-

ditions:

(i) ξ(Xk ∪ {x}) ≤ ξk, or

(ii) there exists (c′, t′) ∈ C×T such that ξk+χc,t−χc′,t′ ∈ Ξ∗(X) and ξ(Xk∪{x}) ≤

ξk + χc,t − χc′,t′ , where χc,t = ξ({x}).

If there exists such a contract, then choose the one xk+1 with the highest merit and

let

Xk+1 = Xk ∪ {xk+1},

ξk+1 =







ξk (if (i) holds),

ξk + χc,t − χc′,t′ (if (ii) holds),

and go to Step 3. Otherwise, go to Step 4.

Step 3: Add 1 to k and go to Step 2.

Step 4: Return Xk and stop.

In words, Xk and Rk collect the set of accepted and rejected contracts, respectively. The

process of modifying ξk is motivated by the following lemma.

Lemma 12. LetX ′ ⊆ X , x ∈ X\X ′, and (c, t) ∈ C ×T be such that ξ({x}) = χc,t. Suppose that

there exists a maximal distribution ξ in Ξ∗(X) with ξ(X ′) ≤ ξ. Then, the following implication

holds: if there exists a maximal distribution ξ∗ in Ξ∗(X) such that ξ(X ′ ∪ {x}) ≤ ξ∗, then either

(i) ξ(X ′ ∪ {x}) ≤ ξ, or (ii) there exists (c′, t′) ∈ C × T such that ξ + χc,t − χc′,t′ ∈ Ξ∗(X) and

ξ(X ′ ∪ {x}) ≤ ξ + χc,t − χc′,t′ .

Proof of Lemma 12. We consider two cases.

Case 1: Suppose that ξtc(X
′) < ξtc. Then,

ξtc(X
′ ∪ {x}) = ξtc(X

′) + 1 ≤ ξtc, and

ξ t̃c̃(X
′ ∪ {x}) = ξ t̃c̃(X

′) ≤ ξ t̃c̃ for all (c̃, t̃) ∈ C × T with (c̃, t̃) 6= (c, t).

Thus, (i) holds.
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Case 2: Suppose that ξtc(X
′) = ξtc. By the sufficient condition of the implication, there exists

a maximal maximizer ξ∗ in Ξ∗(X) with ξ(X ′ ∪ {x}) ≤ ξ∗. Then,

ξtc + 1 = ξtc(X
′) + 1 = ξtc(X

′ ∪ {x}) ≤ (ξ∗)tc,

which implies ξtc < (ξ∗)tc. By Lemma 4 (M-convexity of the set of maximal distributions in

Ξ∗(X)), there exists (c′, t′) ∈ (C × T )with ξt
′

c′ > (ξ∗)t
′

c′ such that ξ+ χc,t − χc′,t′ is a maximal

distribution in Ξ∗(X). It holds that

(ξ + χc,t − χc′,t′)
t′

c′ ≥ (ξ∗)t
′

c′ ≥ ξt
′

c′(X
′ ∪ {x}),

(ξ + χc,t − χc′,t′)
t
c = ξtc + 1 = ξtc(X

′) + 1 = ξtc(X
′ ∪ {x}),

(ξ + χc,t − χc′,t′)
t̃
c̃ = ξ t̃c̃ ≥ ξ t̃c̃(X

′) = ξ t̃c̃(X
′ ∪ {x})

for all (c̃, t̃) ∈ C × T with (c̃, t̃) 6= (c, t) and (c̃, t̃) 6= (c′, t′).

Thus, (ii) holds. �

Lemma 13. The modified diversity choice rule and the (original) diversity choice rule produce the

same outcome.

Proof of Lemma 13. LetXk be defined as in the construction of the diversity choice rule and

let X ′
k and ξk be defined as in the construction of the modified diversity choice rule. We

show by induction that Xk = X ′
k and ξk is a maximal distribution in Ξ∗(X) for each index

k used in the definitions of both rules and terminate at the same index. For k = 0, we have

Xk = ∅ = X ′
k and, by the definition of the modified diversity choice rule, ξ0 is a maximal

distribution in Ξ∗(X). By mathematical induction hypothesis, suppose that Xk = X ′
k and

ξk is a maximal distribution. We now show the hypothesis for k + 1.

Case 1: Suppose that the diversity choice rule does not terminate when the index is

k. By the induction hypothesis and the definition of the modified diversity choice rule,

ξ(Xk) = ξ(X ′
k) ≤ ξk. By the induction hypothesis, ξk is a maximal distribution in Ξ∗(X).

Let xk+1 be such that Xk+1 = Xk ∪ {xk+1}. By the definition of the diversity choice rule,

ξ(Xk ∪{xk+1}) ≤ ξ∗ for some ξ∗ ∈ Ξ∗(X); let us choose ξ∗ so that it is maximal. By Lemma

12, either (i) ξ(Xk∪{xk+1}) ≤ ξk, or (ii) there exists (c′, t′) ∈ C×T such that ξk+χc,t−χc′,t′ ∈

Ξ∗(X) and ξ(Xk ∪ {xk+1}) ≤ ξk + χc,t − χc′,t′ , where χc,t = ξ({xk+1}). It follows that

xk+1 satisfies one of the two conditions stated in Step 2 of the modified diversity choice

rule. Suppose, for contradiction, that X ′
k+1 6= X ′

k ∪ {xk+1}. Then, by the deifnition of the

modified diversity choice rule, there exists x′ ∈ X\X ′
k such that x′ has a higher merit than

xk+1 and ξ(X ′
k ∪ {x′}) ≤ ξ∗∗ for some ξ∗∗ ∈ Ξ∗(X). By the induction hypothesis, we have

X ′
k = Xk, which implies x′ ∈ X\Xk and ξ(Xk ∪ {x′}) ≤ ξ∗∗. Since x′ has a higher merit

than xk+1, we obtain a contradiction to the fact that xk+1 is chosen when the index of the

diversity choice rule is k+1. Therefore,X ′
k+1 = X ′

k ∪{xk+1} = Xk ∪{xk+1} = Xk+1, where
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the second equality follows from the induction hypothesis. It remains to show that ξk+1 is

a maximal distribution in Ξ∗(X). By Lemma 4 (M-convexity of the maximal distributions

in Ξ∗(X)) and Proposition 4.1 of Murota (2003), every maximal distribution in Ξ∗(X) has

the same sum of coordinates. Since ξk is a maximal distribution (which follows from the

induction hypothesis) and ξk and ξk+1 have the same sum of coordinates (which follows

from the definition of the modified diversity choice rule), ξk+1 is a maximal distribution.

Case 2: Suppose that the diversity choice rule terminates when the index is k. Then,

there does not exist x ∈ X\Xk and ξ ∈ Ξ∗(X) such that ξ(Xk ∪ {x}) ≤ ξ. Then, for each

x ∈ X\Xk = X\X ′
k (where the equality follows from the induction hypothesis), neither

(i) nor (ii) in Step 2 of the modified diversity choice rule holds true. Theorefore, the

modified diversity choice rule termines when the index is k.

�

Step 4: We derive the time complexity of the diversity choice rule. The first step for cal-

culating the choice rule is to find one maximal distribution in Ξ∗(X). By Lemma 11, we

can use the domain-reduction algorithm. We assume that f can be evaluated in a constant

time in what follows. Step 2 of the algorithm takesO(|C×T |) time. Let ξk∗ denote the out-

come of the algorithm. Since the algorithm starts from 0 and adds 1 to some coordinate

toward ξk∗ at every round, the number of iterations is ||ξk∗||, which is bounded by ||ξ(X)||

because ξk∗ ≤ ξ(X). Since

||ξ(X)|| =
∑

(c,t)

ξtc(X) =
∑

(c,t)

∑

x∈X

ξtc({x}) =
∑

x∈X

∑

(c,t)

ξtc({x}) = |X|,

the number of iterations is bounded byO(|X|). Thus, finding an outcome of the algorithm

takes O(|C| × |T | × |X|) time.

Given a maximal distribution in Ξ∗(X), we can run the diversity choice rule. By Lemma

13, it suffices to examine the computational time of the modified rule. Step 2 of the rule

takesO(|C|×|T |×|X|) time. The number of iterations is equal to |X|. Hence, the modified

diversity choice rule finds an outcome in O(|C| × |T | × |X|2) time. Together with the

time complexity of executing the domain-reduction algorith, we conclude that finding an

outcome of the diversity choice rule takes O(|C| × |T | × |X|2) time. �

Proof of Theorem 2. We need the following properties of choice rules in our proofs.

Definition 13. A choice rule C satisfies the irrelevance of rejected contracts condition, if, for

eachX ⊆ X and x ∈ X \X ,

x /∈ C(X ∪ {x}) =⇒ C(X ∪ {x}) = C(X).
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Definition 14. A choice rule C satisfies the substitutes condition, if, for each X ⊆ X and x ∈

X \X ,

C(X) ⊇ C(X ∪ {x}) ∩X.

Lemma 14 (Aizerman and Malishevski (1981)). A choice rule C is path independent if, and

only if, it satisfies the irrelevance of rejected contracts condition and the substitutes condition.

By this lemma path independence is equivalent to the conjunction of the irrelevance of

rejected contracts condition (IRC) and the substitutes condition, so we show these two

properties to prove path independence.

Proof of IRC: Let X ⊆ X and x ∈ X \ X such that x /∈ Cd(X ∪ {x}). We need to show

Cd(X ∪ {x}) = Cd(X).

Let c = γ(x), t = τ(σ(x)), ξ1 = ξ(Cd(X)), and ξ2 = ξ(Cd(X ∪ {x})).

Since x /∈ Cd(X ∪ {x}), ξ2 ≤ ξ(X). Together with Theorem 1 (i), we get f(ξ1) = f(ξ2).

Furthermore, Cd(X ∪ {x}) is in F(X) and F(X ∪ {x}). Likewise, Cd(X) is in F(X ∪ {x})

because (X ,F(X )) is a matroid (Lemma 5). Therefore, Cd(X), Cd(X ∪ {x}) ∈ F(X) ∩

F(X ∪ {x}). By Theorem 1 (ii), Cd(X) merit dominates Cd(X ∪ {x}) and Cd(X ∪ {x})

merit dominates Cd(X). Therefore, Cd(X) = Cd(X ∪ {x}), which follows from the anti-

symmetry of merit domination that if two sets merit dominate each other they have to be

the same. The antisymmetry of merit domination is straightforward because if two sets

merit dominate each other, then they have the same number of contracts and, furthermore,

because different contracts have distinct merit rankings, they need to have the same set of

contracts.

To finish the proof, we show that Cd satisfies the substitutes condition.

Proof of Substitutability: Let X ⊆ X and x ∈ X \ X . We need to show Cd(X) ⊇ Cd(X ∪

{x}) ∩X .

Let c = γ(x), t = τ(σ(x)), ξ1 = ξ(Cd(X)), and ξ2 = ξ(Cd(X ∪ {x})).

If x /∈ Cd(X ∪ {x}), then by the irrelevance of rejected contracts condition we have

Cd(X) = Cd(X ∪ {x}). Therefore, Cd(X) ⊇ Cd(X ∪ {x}) ∩X = Cd(X).

For the rest of the proof suppose that x ∈ Cd(X ∪ {x}). We consider several cases

depending on the value of ξ2.

Case 1: Consider the case ξ2 ≤ ξ(X). Then f(ξ1) = f(ξ2). By construction of Cd, ξ1

is maximal in Ξ∗(X). Likewise, ξ2 is maximal in Ξ∗(X ∪ {x}). Since ξ2 ≤ ξ(X), we get

that ξ2 is also maximal in Ξ∗(X). By Lemma 4, ξ1 and ξ2 belong to an M-convex set, so

||ξ2|| = ||ξ1||.
43 Therefore,

∣

∣Cd(X ∪ {x}) \ Cd(X)
∣

∣ =
∣

∣Cd(X) \ Cd(X ∪ {x})
∣

∣ .

43Members of an M-convex set have the same sum of coordinates, see Proposition 4.1 in Murota (2003).



DESIGN ON MATROIDS 39

Since x ∈ Cd(X ∪ {x}) \ Cd(X), we have |Cd(X ∪ {x}) \ Cd(X)| ≥ 1. We show that

|Cd(X ∪ {x}) \ Cd(X)| = 1.

Suppose, for contradiction, that
∣

∣Cd(X ∪ {x}) \ Cd(X)
∣

∣ ≥ 2. Then, there exists x1 ∈

X \ {x} such that x1 ∈ Cd(X ∪ {x}) \ Cd(X). Since f(ξ1) = f(ξ2), Cd(X ∪ {x}) and Cd(X)

are bases in F(X ∪ {x}). By the stronger version of B2, which is stated on page 8, there

exists x2 ∈ Cd(X)\Cd(X ∪{x}) such that (Cd(X ∪{x})\{x1})∪{x2} and (Cd(X)\{x2})∪

{x1} are also bases in F(X ∪ {x}). Theorem 1 implies that Cd(X ∪ {x}) merit dominates

(Cd(X ∪ {x}) \ {x1}) ∪ {x2}, so x1 ≻ x2. Furthermore, since (Cd(X) \ {x2}) ∪ {x1} is a

base in F(X ∪ {x}) it must also be a base in F(X). By Theorem 1, Cd(X)merit dominates

(Cd(X) \ {x2}) ∪ {x1}, therefore, x2 ≻ x1, which is a contradiction to x1 ≻ x2. Therefore,

|Cd(X ∪ {x}) \ Cd(X)| = 1 and Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X).

As a result, Cd(X) ⊇ Cd(X ∪ {x}) ∩ X = Cd(X) \ {y} for some y ∈ Cd(X). This finishes

the proof of Case 1.

Case 2: Consider the case ξ2 6≤ ξ(X). Since Cd(X ∪ {x}) ⊆ X ∪ {x}, it must be that

(ξ2)
t
c > ξtc(X), so Cd(X ∪ {x}) includes x and all contracts in X with type-t students and

school c. Furthermore, (ξ2)
t
c = ξtc(X) + 1 and (ξ1)

t
c ≤ ξtc(X).

Claim 3. For each school c′ ∈ C and type t′ ∈ T such that (c′, t′) 6= (c, t), we have (ξ1)
t′

c′ ≥ (ξ2)
t′

c′ .

Proof of Claim 3. Suppose, for contradiction, that there exist school c′ ∈ C and type t′ ∈ T

with (c′, t′) 6= (c, t) such that (ξ1)t
′

c′ < (ξ2)
t′

c′ . Then, by ordinal concavity, either (i)

(1) f(ξ2 − χc′,t′) > f(ξ2) or

(2) f(ξ1 + χc′,t′) > f(ξ1) or

(3) f(ξ2 − χc′,t′) = f(ξ2) and f(ξ1 + χc′,t′) = f(ξ1)

or (ii) there exist school ĉ ∈ C and type t̂ ∈ T with (ξ2)
t̂
ĉ < (ξ1)

t̂
ĉ such that

(1) f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2) or

(2) f(ξ1 + χc′,t′ − χĉ,t̂) > f(ξ1) or

(3) f(ξ2 − χc′,t′ + χĉ,t̂) = f(ξ2) and f(ξ1 + χc′,t′ − χĉ,t̂) = f(ξ1).

Condition (i) cannot hold because under (i)(1) ξ2−χc′,t′ ≤ Ξ(X ∪{x}) and f(ξ2−χc′,t′) >

f(ξ2) give us a contradiction to the result that the outcome of Cd maximizes the diversity

index among feasible subsets of X ∪ {x} (Theorem 1), because a contract in (X ∪ {x}) \

Cd(X∪{x})with type-t′ student and school c′ can be added toCd(X∪{x}) and increase the

value of f . Under (i)(2) ξ1 + χc′,t′ ≤ ξ(X) and f(ξ1 + χc′,t′) > f(ξ1) give us a contradiction

to the result that the outcome of Cd maximizes the diversity index among subsets of X

(Theorem 1), because a contract in X \ Cd(X) with type-t′ student and school c′ can be

added to Cd(X) and increase the value of f . Under (i)(3), ξ1 + χc′,t′ ≤ ξ(X) and f(ξ1 +

χc′,t′) = f(ξ1) give us a contradiction to the result that the outcome of Cd merit dominates

any feasible subset of X that maximizes diversity (Theorem 1), because a contract in X \
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Cd(X) with type-t′ student and school c′ can be added to Cd(X) without changing the

value of f .

Likewise condition (ii) cannot hold because under (ii)(1) ξ2 − χc′,t′ + χĉ,t̂ ≤ ξ(X ∪ {x})

and f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2) give us a contradiction to the result that the outcome of Cd

maximizes the diversity index among feasible subsets of X ∪ {x} (Theorem 1), because

a contract in (X ∪ {x}) \ Cd(X ∪ {x}) with type-t̂ student and school ĉ can be added to

Cd(X ∪ {x}) and a contract from Cd(X ∪ {x}) with type-t′ student and school c′ can be

removed from Cd(X ∪{x}) to increase the value of f . Under (ii)(2) ξ1+χc′,t′ −χĉ,t̂ ≤ ξ(X)

and f(ξ1 + χc′,t′ − χĉ,t̂) > f(ξ1) give us a contradiction to the result that the outcome

of Cd maximizes the diversity index among feasible subsets of X (Theorem 1), because

a contract in X \ Cd(X) with type-t′ student and school c′ can be added to Cd(X) and

a contract from Cd(X) with type-t̂ student and school ĉ can be removed from Cd(X) to

increase the value of f . Under (ii)(3), f(ξ2 − χc′,t′ + χĉ,t̂) = f(ξ2) and ξ2 − χc′,t′ + χĉ,t̂ ≤

ξ(X ∪ {x}) imply that the lowest merit ranked type-t′ student with a contract at school c′

in Cd(X ∪ {x}) \ Cd(X) has a higher merit ranking than the lowest merit ranked type-t̂

student with a contract at school ĉ inCd(X)\Cd(X∪{x}). Similarly, ξ1+χc′,t′−χĉ,t̂ ≤ ξ(X)

and f(ξ1 + χc′,t′ − χĉ,t̂) = f(ξ1) imply that the lowest merit ranked type-t̂ student with a

contract at school ĉ inCd(X)\Cd(X∪{x}) has a highermerit ranking than the lowestmerit

type-t′ student with a contract at school c′ in Cd(X ∪{x})\Cd(X), which is a contradiction

since the merit ranking is strict and (ĉ, t̂) 6= (c′, t′). �

Claim 4. (ξ1)
t
c = (ξ2)

t
c − 1.

Proof of Claim 4. Suppose, for contradiction, that (ξ1)tc 6= (ξ2)
t
c − 1. Since (ξ1)tc ≤ ξtc(X) and

(ξ2)
t
c = ξtc(X) + 1, we get (ξ1)tc < ξtc(X) = (ξ2)

t
c − 1.

By ordinal concavity, either (i)

(1) f(ξ2 − χc,t) > f(ξ2), or

(2) f(ξ1 + χc,t) > f(ξ1), or

(3) f(ξ2 − χc,t) = f(ξ2) and f(ξ1 + χc,t) = f(ξ1)

or (ii) there exist school c′ ∈ C and type t′ ∈ T with (ξ2)
t′

c′ < (ξ1)
t′

c′ such that

(1) f(ξ2 − χc,t + χc′,t′) > f(ξ2)

(2) f(ξ1 + χc,t − χc′,t′) > f(ξ1) or

(3) f(ξ2 − χc,t + χc′,t′) = f(ξ2) and f(ξ1 + χc,t − χc′,t′) = f(ξ1).

Condition (i) cannot hold because under (i)(1) ξ2 − χc,t ≤ ξ(X ∪ {x}) and f(ξ2 − χc,t) >

f(ξ2) give us a contradiction to the result that the outcome of Cd maximizes the diversity

index among feasible subsets of X ∪ {x} (Theorem 1), because a contract in (X ∪ {x}) \

Cd(X ∪ {x}) with type-t student and school c can be added to Cd(X ∪ {x}) and increase

the value of f . Similarly, under (i)(2) ξ1 + χc,t ≤ ξ(X) and f(ξ1 + χc,t) > f(ξ1) give us a
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contradiction to the result that the outcome of Cd maximizes the diversity index among

feasible subsets of X (Theorem 1), because a contract in X \ Cd(X) with type-t student

and school c can be added to Cd(X) to increase the value of f . Under (i)(3) ξ1 + χc,t ≤

ξ(X) and f(ξ1 + χc,t) = f(ξ1) give us a contradiction to the result that the outcome of Cd

merit dominates each feasible subset ofX that maximizes diversity (Theorem 1), because

a contract in X \ Cd(X) with type-t student and school c can be added to Cd(X) without

changing the value of f . Therefore, condition (ii) must hold.

Under condition (ii)(1) ξ2−χc,t+χc′,t′ ≤ ξ(X ∪{x}) and f(ξ2−χc,t+χc′,t′) > f(ξ2) give

a contradiction to the result that the outcome of Cd maximizes the diversity index among

feasible subsets ofX∪{x} (Theorem 1), because a contract in (X∪{x})\Cd(X∪{x})with

type-t student and school c can be added to Cd(X ∪ {x}) and a contract from Cd(X ∪ {x})

with type-t′ student and school c′ can be removed from Cd(X ∪ {x}) to increase the value

of f . Likewise, under (ii)(2) ξ1+χc,t−χc′,t′ ≤ ξ(X) and f(ξ1+χc,t−χc′,t′) > f(ξ1) give us

a contradiction to the result that the outcome of Cd maximizes the diversity index among

feasible subsets ofX (Theorem 1), because a contract inX\Cd(X)with type-t student and

school c can be added to Cd(X) and a contract in Cd(X) with type-t′ student and school

c′ can be removed to increase the value of f . Under (ii)(3) f(ξ2 − χc,t + χc′,t′) = f(ξ2) and

ξ2 − χc,t + χc′,t′ ≤ ξ(X ∪ {x}) imply that the lowest merit ranked type-t student with a

contract at school c in Cd(X ∪ {x}) \ Cd(X) has a higher merit ranking than the lowest

merit ranked type-t′ student with a contract at school c′ in Cd(X) \Cd(X ∪{x}). Similarly,

f(ξ1+χc,t−χc′,t′) = f(ξ1) and ξ1+χc,t−χc′,t′ ≤ ξ(X) imply that the lowestmerit ranked type-

t′ studentwith a contract at school c′ inCd(X)\Cd(X∪{x}) has a highermerit ranking than

the lowest merit ranked type-t′ student with a contract at school c′ in Cd(X ∪{x})\Cd(X),

which is a contradiction since the merit ranking is strict and (c, t) 6= (c′, t′).

Both conditions cannot hold. Therefore, (ξ1)tc = (ξ2)
t
c − 1. �

To finish the proof of Case 2, we combine the results that we have established so far:

(ξ2)
c
t = ξtc(X ∪ {x}) = ξtc(X) + 1, (ξ1)ct = ξtc(X), and, for each type t′ ∈ T and school c′ ∈ C

with (t′, c′) 6= (t, c), (ξ1)c
′

t′ ≥ (ξ2)
c′

t′ . For a fixed type t′ ∈ T and school c′ ∈ C and the number

of contracts of type-t′ students with school c′, choice rule Cd chooses contracts with the

highest merit ranking. Therefore, Cd(X) ⊇ Cd(X ∪ {x}) ∩X , which finishes the proof of

Case 2. Therefore, Cd satisfies the substitutes condition. �

Proof of Theorem 3. The following result follows from Theorem 1.

Lemma 15. Suppose that λ ∈ R+ is such that the diversity index fλ is ordinally concave. Then,

for each set of contractsX ⊆ X ,

(i) min{f(ξ(Cd
λ(X))), λ} = min{f(ξ(Cd(X))), λ} and
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(ii) Cd
λ(X) merit dominates each Y ⊆ X such that

min{f(ξ(Cd
λ(Y ))), λ} = min{f(ξ(Cd(X))), λ}.

Now fix a set of contracts X ⊆ X and denote the outcome of the trace algorithm as

Ctr(X). Using Lemma 15, first, we show that Ctr(X) ⊆ P(X), and, then, P(X) ⊆ Ctr(X)

to finish the proof.

Claim 5. Ctr(X) ⊆ P(X).

Proof of Claim 5. Let Y ∈ Ctr(X). Suppose, for contradiction, that Y /∈ P(X), and, hence,

there exists Z ⊆ X such that Z 6= Y , Z merit dominates Y , and f(ξ(Z)) ≥ f(ξ(Y )).

Suppose that Z is chosen at index k ∈ N in the construction of Ctr(X). Therefore, Y =

Cd
λk
(X). Then, by Lemma 15, Y = Cd

λk
(X) merit dominates each subset of X that attains

diversity level of f(ξ(Cd
λk
(X))) = f(ξ(Y )). Therefore, since f(ξ(Z)) ≥ f(ξ(Y )) and Z ⊆ X ,

we get Y merit dominates Z. As noted in the proof of Theorem 2, the merit domination

is antisymmetric, which is a contradiction because we have Y merit dominates Z, Z merit

dominates Y , and Y 6= Z. Therefore, Y ∈ P(X). Since Y is any set in Ctr(X), we conclude

Ctr(X) ⊆ P(X). �

Claim 6. P(X) ⊆ Ctr(X).

Proof of Claim 6. Let Y ∈ P(X). Suppose, for contradiction, that Y /∈ Ctr(X). Since

Cd(X) ∈ Ctr(X) and Ctr(X) ⊆ P(X), we get that Cd(X) ∈ P(X). Since Y /∈ Ctr(X),

we have Y 6= Cd(X). By Theorem 1, f(ξ(Cd(X)) ≥ f(ξ(Y )) and Cd(X) merit dominates

any subset of X with diversity f(ξ(Cd(X)). Therefore, since Y ∈ P(X), we cannot have

f(ξ(Cd(X)) = f(ξ(Y )), which implies f(ξ(Cd(X))) > f(ξ(Y )).

Since λ0 = 0 and f(ξ(Cd(X))) > f(ξ(Y )), there exists an index k such that

f(ξ(Cd
λk
(X))) > f(ξ(Y )) ≥ λk where λk is defined as in the construction of Ctr(X). By

Lemma15, and becausemin{f(ξ(Cd
λ(Y ))), λk} = λk = min{f(ξ(Cd(X))), λk},Cd

λk
(X)merit

dominates Y . This is a contradiction because f(ξ(Cd
λk
(X))) > f(ξ(Y )), Cd

λk
(X)merit dom-

inates Y , and Y ∈ P(X). Hence, we get that Y ∈ Ctr(X). Since Y is an arbitrary set in

P(X), we conclude that P(X) ⊆ Ctr(X). �

Claims 5 and 6 imply that P(X) = Ctr(X). �
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Online Appendix

In this appendix, we present the proofs of our auxiliary results.

Proof of Proposition 1. If (X ,F) is amatroid, the greedy rule satisfies path independence

(Fleiner, 2001) and the law of aggregate demand (Yokoi, 2019). Therefore, (1) implies (3).

Furthermore, (3) implies (2) trivially. To complete the proof, we show that (2) implies (1).

Suppose that (2) is satisfied. Let B denote the collection of maximal sets in F . By as-

sumption, F is nonempty, which implies that B is nonempty. Hence, B1 holds. Before

showing B2’, we establish that I2 is satisfied.

To show I2, let X ∈ F . Consider a weight function that assigns all contracts in X a

distinct positive weight. Let C be the greedy rule for such a weight function. Then, by

the greedy rule definition, C(X) = X since X ∈ F . For any X ′ ⊆ X , path independence

implies that C(X ′) = X ′. In addition, by the greedy rule definition, C(X ′) ∈ F , so we get

X ′ ∈ F . Therefore, I2 is satisfied.

Suppose, for contradiction, that B2’ is not satisfied. Therefore, there exist X1, X2 ∈ B

and x1 ∈ X1 \X2 such that for each x2 ∈ X2 \X1, (X1 \ {x1}) ∪ {x2} is not included in a

feasible set in F .

Consider a weight function that assigns all contracts in X a distinct and positive weight

so that contracts inX1 \ {x1} have higher weights than contracts inX2 \X1, and contracts

inX2 \X1 have higher weights than the weight of x1. Let C ′ be the greedy rule for such a

weight function.

WhenX1∪X2 is the set of available contracts for the greedy rule C ′, it choosesX1 \{x1}

first becauseX1 ∈ F and the weights of contracts inX1 \{x1} are greater than the weights

of other contracts in X1 ∪ X2. Next the greedy rule chooses no x2 ∈ X2 \X1 because, by

construction, (X1 \ {x1}) ∪ {x2} is not included in a feasible set in F . Finally, the greedy

rule chooses x1 because (X1 \ {x1}) ∪ {x1} = X1 ∈ F . Since X1 ∈ B, no other contract can

be chosen. Therefore, we get

C ′(X1 ∪X2) = X1.

When {x1}∪X2 is the set of available contracts for the greedy ruleC ′, contracts inX2 are

chosen first because they have positive weights greater than the weight of x1 andX2 ∈ F .

Furthermore, since X2 ∈ B, x1 is not chosen and we get

C ′({x1} ∪X2) = X2.

The two displayed equations provide a contradiction to path independence of C ′: By

Lemma 14, path independence implies the substitutes condition. Now, by the substitutes

condition, x1 ∈ X1 = C ′(X1∪X2) implies x1 ∈ C ′({x1}∪X2) = X2, which is a contradiction

since x1 /∈ X2.
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Therefore, we conclude that the maximal sets in F satisfy B1 and B2’, which together

with Lemma 1 implies that they are the bases of a matroid. Since F satisfies I2, F is the

collection of subsets of the bases, which implies that (X,F) is a matroid (see Theorem

1.2.3 of Oxley (2006)). �

Proof of the Statement in Example 1. We prove the statement that the diversity index

defined in Example 1 satisfies ordinal concavity. We consider several cases depending on

the value of ξ used in the definition of ordinal concavity.

Case 1: ξ = ξ({x, y}). Let t ∈ T be the type of the student associated with contract x and

t′ ∈ T be the type of the student associated with contract z. If ξ̃t
′

c = 0, then ξ̃ = ξ(∅) or

ξ̃ = ξ({y}). For ξ̃ = ξ(∅), we have f(ξ̃ + ξ({x})) > f(ξ̃). Therefore, condition (ii) in the

definition of ordinal concavity is satisfied. For ξ̃ = ξ({y}), we have f(ξ − χc,t) = f(ξ)

and f(ξ̃ + χc,t) = f(ξ̃). Therefore, condition (iii) in the definition of ordinal concavity

is satisfied. However, if ξ̃t
′

c = 1, then ξ̃ = ξ({z}) or ξ̃ = ξ({y, z}). For both values of

ξ̃, f(ξ − χc,t + χc,t′) > f(ξ), which means that condition (i) in the definition of ordinal

concavity is satisfied.

Case 2: ξ = ξ({y, z}). If χc,t = ξ({y}) and n > 5, then we have f(ξ − χc,t) > f(ξ), so

condition (i) in the definition of ordinal concavity is satisfied.

If χc,t = ξ({y}) and n = 5, then, for ξ̃ = ξ(∅), we have f(ξ̃+χc,t) > f(ξ̃), so condition (ii)

in the definition of ordinal concavity is satisfied. For ξ̃ = ξ({x}), we have f(ξ−χc,t) = f(ξ)

and f(ξ̃ + χc,t) = f(ξ̃), so condition (iii) in the definition of ordinal concavity is satisfied

For ξ̃ = ξ({z}), we have f(ξ̃ + χc,t) = f(ξ̃) and f(ξ − χc,t) = f(ξ), so condition (iii) in the

definition of ordinal concavity is satisfied. Finally, if ξ̃ = ξ({x, z}), let t′ ∈ T be such that

χc,t′ = ξ({z}). Then f(ξ̃+χc,t−χc,t′) = f(ξ̃) and f(ξ−χc,t′ +χc,t) = f(ξ), so condition (iii)

in the definition of ordinal concavity is satisfied.

However, if χc,t = ξ({z}), then ξ̃tc = 0, and for all such ξ̃ except ξ({x, y}), we have

f(ξ̃+χc,t) > f(ξ̃). Therefore, condition (ii) in the definition of ordinal concavity is satisfied.

For ξ̃ = ξ({x, y}), letχc,t′ = ξ({x}). Then f(ξ̃+χc,t−χc,t′) = f(ξ̃) and f(ξ−χc,t′+χc,t) = f(ξ),

so condition (iii) in the definition of ordinal concavity is satisfied.

Case 3: ξ = ξ({x, z}). Since the diversity index f is symmetric with respect to x and y, this

case is analogous to Case 2 above.

Case 4: ξ = ξ({z}). In this case, we have χc,t = ξ({z}) and ξ̃tc = 0. For all such ξ̃ except

ξ({x, y}), we have f(ξ̃+χc,t) > f(ξ̃), so condition (ii) is satisfied in the definition of ordinal

concavity. For ξ̃ = ξ({x, y}), if we let χc,t′ = ξ({x}) where t′ ∈ T is the type of student

associated with contract x, then f(ξ̃+χc,t−χc,t′) > f(ξ̃), so condition (ii) in the definition

of ordinal concavity is satisfied.
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Case 5: ξ = ξ({x}). In this case, we have χc,t = ξ({x}) and ξ̃tc = 0. If ξ̃ = ξ(∅), then

f(ξ̃+χc,t) > f(ξ̃). Therefore, condition (ii) in the definition of ordinal concavity is satisfied.

If ξ̃ = ξ({y}), let t′ ∈ T be such that χc,t′ = ξ({y}). Then f(ξ̃ + χc,t − χc,t′) = f(ξ̃) and

f(ξ−χc,t+χc,t′) = f(ξ), so condition (iii) in the definition of ordinal concavity is satisfied.

If ξ̃ ∈ {ξ({z}), ξ({y, z})}, then let t′′ ∈ T be such thatχc,t′′ = ξ({z}). Then f(ξ−χc,t+χc,t′′) >

f(ξ), which means that condition (i) in the definition of ordinal concavity is satisfied.

Case 6: ξ = ξ({y}). Since the diversity index f is symmetric with respect to x and y, this

case is analogous to Case 5 above.

�

Proof of Proposition 2. If x /∈ Cd(X ∪ {x}), then by the irrelevance of rejected contracts

condition (which follows from Theorem 2 and Lemma 14), we haveCd(X) = Cd(X∪{x}).

Theorefore, the law of aggregate demand is satisfied.

Otherwise, if x ∈ Cd(X ∪ {x}), we consider several cases depending on the value of

ξ(Cd(X ∪ {x})) as in the proof of Theorem 2.

Let c = γ(x), t = τ(σ(x)), ξ1 = ξ(Cd(X)), and ξ2 = ξ(Cd(X ∪ {x})) for the rest of the

proof.

Case 1: Consider the case ξ2 ≤ ξ(X). In this case, in the proof of Theorem 2, we show

Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X).

Case 2: Consider the case ξ2 6≤ ξ(X). Since Cd(X ∪ {x}) ⊆ X ∪ {x}, it must be that

(ξ2)
t
c > ξtc(X), so Cd(X ∪ {x}) includes x and all contracts in Xc = {x ∈ X|γ(x) = c} with

type-t students. Furthermore, (ξ2)tc > (ξ1)
t
c because (ξ1)

t
c ≤ ξtc(X).

Claim 7. ||ξ2|| ≥ ||ξ1||.

Proof of Claim 7. Starting from y1 = ξ1, we construct a finite sequence of distributions

y1, . . . , yk ≤ ξ(X ∪ {x}) where k ≥ 1 such that, f(yk) = f(ξ2), and, for each i = 2, . . . , k,

(i) ||yi|| ≥ ||yi−1||,

(ii) f(yi) ≥ f(yi−1), and

(iii) ||yi − ξ2|| < ||yi−1 − ξ2||.

If f(ξ1) = f(ξ2), then we are done because we can let k = 1 and y1 = ξ1. Otherwise, if

f(ξ1) < f(ξ2), then we construct such a sequence inductively as follows. Suppose that we

have y1, . . . , yi. If f(yi) = f(ξ2), then we are done. Otherwise, if f(yi) 6= f(ξ2), we must

have f(yi) < f(ξ2) because ξ2 ∈ Ξ∗(X ∪ {x}) and yi ≤ ξ(X ∪ {x}). By monotonicity, there

exists a pair (c′, t′) ∈ C × T such that (ξ2)t
′

c′ > (yi)
t′

c′ . Then, by ordinal concavity, either (i)

(1) f(ξ2 − χc′,t′) > f(ξ2), or

(2) f(yi + χc′,t′) > f(yi), or

(3) f(ξ2 − χc′,t′) = f(ξ2) and f(yi + χc′,t′) = f(yi)
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or (ii) there exist school ĉ ∈ C and type t̂ ∈ T with (ξ2)
t̂
ĉ < (yi)

t̂
ĉ such that

(1) f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2), or

(2) f(yi + χc′,t′ − χĉ,t̂) > f(yi), or

(3) f(ξ2 − χc′,t′ + χĉ,t̂) = f(ξ2) and f(yi + χc′,t′ − χĉ,t̂) = f(yi).

Suppose that condition (i) holds. We cannot have condition (i)(1) because ξ2 − χc′,t′ ≤

ξ(X ∪{x}) and f(ξ2−χc′,t′) > f(ξ2) give us a contradiction because ξ2 ∈ Ξ∗(X ∪{x}). Both

condition (i)(2) and (i)(3) imply f(yi+χc′,t′) ≥ f(yi). Therefore, we can let yi+1 = yi+χc′,t′

because ||yi+1|| = ||yi||+1 > ||yi||, f(yi+1) ≥ f(yi), and ||yi+1−ξ2|| = ||yi−ξ2||−1 < ||yi−ξ2||.

Suppose that condition (ii) holds. We cannot have condition (ii)(1) because ξ2−χc′,t′ +

χĉ,t̂ ≤ ξ(X ∪ {x}) and f(ξ2 − χc′,t′ + χĉ,t̂) > f(ξ2) give us a contradiction because ξ2 ∈

Ξ∗(X∪{x}). Both conditions (ii)(2) and (ii)(3) imply f(yi+χc′,t′−χĉ,t̂) ≥ f(yi). Therefore,

we can let yi+1 = yi + χc′,t′ − χĉ,t̂ because ||yi+1|| = ||yi||, f(yi+1) ≥ f(yi), and ||yi+1 − ξ2|| =

||yi − ξ2|| − 2 < ||yi − ξ2||.

Since ||yi − ξ2|| can take only a finite number of values, there exists k such that f(yk) =

f(ξ2) or ||yk − ξ2|| = 0. If f(yk) = f(ξ2), since ξ2 is maximal in Ξ∗(X ∪ {x}) and the set

of maximal distributions in Ξ∗(X ∪ {x}) is M-convex (Lemma 4), we get ||ξ2|| ≥ ||yk||.

Otherwise, if ||yk − ξ2|| = 0, we get yk = ξ2 and, hence, ||ξ2|| = ||yk||. In both cases we

establish ||ξ2|| ≥ ||yk||.

Furthermore, by construction, ||yk|| ≥ ||y1|| = ||ξ1||. Together with ||ξ2|| ≥ ||yk||, this

inequality implies ||ξ2|| ≥ ||ξ1||. �

To finish the proof of Case 2, we combine the results that we have:

• (ξ2)
t
c = ξtc(X ∪ {x}) = ξtc(X) + 1,

• (ξ1)
t
c = ξtc(X) (Claim 4),

• ||ξ2|| ≥ ||ξ1|| (Claim 7), and,

• for each type t′ ∈ T and school c′ ∈ C with (t′, c′) 6= (t, c), (ξ1)t
′

c′ ≥ (ξ2)
t′

c′ (Claim 3).

These lead to two possibilities:

(1) for each t′ ∈ T and c′ ∈ C with (t′, c′) 6= (t, c), (ξ1)t
′

c′ = (ξ2)
t′

c′ , or

(2) there exist t̂ ∈ T and ĉ ∈ C with (t̂, ĉ) 6= (t, c) such that (ξ1)t̂ĉ = (ξ2)
t̂
ĉ + 1 and for

each t′ ∈ T and c′ ∈ C with (t′, c′) /∈ {(t, c), (t̂, ĉ)}, (ξ1)t
′

c′ = (ξ2)
t′

c′ .

For a fixed type t ∈ T , school c ∈ C, and the number of contracts of type-t students with

school c, choice rule Cd chooses contracts with the highest merit ranking. Therefore, if

condition (1) holds, then Cd(X ∪ {x}) = Cd(X) ∪ {x}. However, if condition (2) holds,

Cd(X ∪ {x}) = (Cd(X) ∪ {x}) \ {y} for some y ∈ Cd(X). �

Proof of Proposition 3. This proposition follows from Proposition 4 because pseudo M♮-

concavity is weaker than pseudo M♮-concavity+. �
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Proof of Proposition 4. The “only if” direction: Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C ×T with ξtc > ξ̃tc.

Our goal is to prove that there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt
′

c′ < ξ̃t
′

c′ whenever

(c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},(1a)

and conditions (A) and (B) are satisfied.

Suppose that f(ξ) = f(ξ̃). Let λ∗ denote the equal value. By ordinal concavity of fλ∗ ,

there exists (c∗, t∗) ∈ (C × T ) ∪ {∅} (with ξt
∗

c∗ < ξ̃t
∗

c∗ whenever (c∗, t∗) 6= ∅) such that

(i∗) fλ∗(ξ − χc,t + χc∗,t∗) > fλ∗(ξ), or

(ii∗) fλ∗(ξ̃ + χc,t − χc∗,t∗) > fλ∗(ξ̃), or

(iii∗) fλ∗(ξ̃ + χc,t − χc∗,t∗) = fλ∗(ξ̃) and fλ∗ (ξ − χc,t + χc∗,t∗) = fλ∗(ξ).

By the definition of fλ∗(·), neither (i∗) nor (ii∗) holds. Thus, (iii∗) holds, which implies

f(ξ − χc,t + χc∗,t∗) ≥ λ∗ and f(ξ̃ + χc,t − χc∗,t∗) ≥ λ∗.

It follows that (1a) holds. Note that neither the if-clause of (A) nor that of (B) holds.

In the remaining part, we assume f(ξ) < f(ξ̃) (the other case f(ξ) > f(ξ̃) can be handled

analogously). Under this assumption, for each (c′, t′) ∈ (C × T ) ∪ {∅} that satisfies (1a),

the if-clause of (A) never holds. Thus, it suffices to prove that (1a) and condition (B) hold

for some (c′, t′) ∈ (C × T ) ∪ {∅}.

Let Φ ⊆ {(c′, t′) ∈ (C × T ) | ξt
′

c′ < ξ̃t
′

c′} ∪ {∅} be the set of coordinates that satisfy one of

the following conditions:

(i) f(ξ − χc,t + χc′,t′) > f(ξ), or

(ii) f(ξ̃ + χc,t − χc′,t′) > f(ξ̃), or

(iii) f(ξ̃ + χc,t − χc′,t′) = f(ξ̃) and f (ξ − χc,t + χc′,t′) = f(ξ).

Note that Φ 6= ∅ because fλ = f holds for a sufficiently large λ and the function satisfies

ordinal concavity.

Case 1: Suppose there exists (c′, t′) ∈ Φ for which (iii) holds. Then, (1a) immediately

follows (the if-clause of (B) does not hold).

Case 2: Suppose that there does not exist (c′, t′) ∈ Φ for which (iii) holds.

Subcase 2-1: Suppose that there does not exist (c′, t′) ∈ Φ for which (i) holds. In this case,

every (c′, t′) ∈ Φ satisfies (ii). Let λ′ = f(ξ̃). Since fλ′ satisfies ordinal concavity, there

exists (c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt
′′

c′′ < ξ̃t
′′

c′′ whenever (c′′, t′′) 6= ∅) such that

(iv) fλ′(ξ − χc,t + χc′′,t′′) > fλ′(ξ), or

(v) fλ′(ξ̃ + χc,t − χc′′,t′′) > fλ′(ξ̃), or

(vi) fλ′(ξ̃ + χc,t − χc′′,t′′) = fλ′(ξ̃) and fλ′ (ξ − χc,t + χc′′,t′′) = fλ′(ξ).
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By the definition of truncation, (v) never holds. If (iv) holds, then together with λ′ =

f(ξ̃) > f(ξ), we obtain a contradiction to the assumption of Subcase 2-1. Thus, (vi) holds,

which establishes (1a) (the if-clause of (B) does not hold).

Subcase 2-2: Suppose that there exists (c′, t′) ∈ Φ for which (i) holds. Let Φ′ ⊆ Φ be the set

of coordinates for which (i) holds.

Subcase 2-2-1: Suppose that there exists (c′, t′) ∈ Φ′ such that

f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) (= min{f(ξ), f(ξ̃)}).(1b)

Then, (1a) holds (the if-clause of (B) does not hold).

Subcase 2-2-2: Suppose that there does not exist (c′, t′) ∈ Φ′ that satisfies (1b). Let λ′′ =

f(ξ). Since fλ′′ satisfies ordinal concavity, there exists (c′′′, t′′′) ∈ (C × T )∪ {∅} (with ξt
′′′

c′′′ <

ξ̃t
′′′

c′′′ whenever (c′′′, t′′′) 6= ∅) such that

(vii) fλ′′(ξ − χc,t + χc′′′,t′′′) > fλ′′(ξ), or

(viii) fλ′′(ξ̃ + χc,t − χc′′′,t′′′) > fλ′′(ξ̃), or

(ix) fλ′′ (ξ − χc,t + χc′′′,t′′′) = fλ′′(ξ) and fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = fλ′′(ξ̃).

By the definition of fλ′′(·), neither (vii) nor (viii) holds. Thus, (ix) holds.

If f(ξ) < f(ξ − χc,t + χc′′′,t′′′), then (c′′′, t′′′) ∈ Φ′. By the assumption of Subcase 2-2-2,

f(ξ̃ + χc,t − χc′′′,t′′′) < f(ξ) = λ′′. Then, fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = f(ξ̃ + χc,t − χc′′′,t′′′) < λ′′ =

fλ′′(ξ̃), where the last equality follows from λ′′ = f(ξ) < f(ξ̃). We obtain a contradiction

to fλ′′(ξ̃ + χc,t − χc′′′,t′′′) = fλ′′(ξ̃) stated in (ix).

It follows that f(ξ − χc,t + χc′′′,t′′′) ≤ f(ξ) = λ′′. Together with fλ′′ (ξ − χc,t + χc′′′,t′′′) =

fλ′′(ξ) = λ′′ (the former equality follows from (ix)), we have

f(ξ) = f(ξ − χc,t + χc′′′,t′′′).(1c)

By fλ′′(ξ̃+χc,t−χc′′′,t′′′) = fλ′′(ξ̃) ≥ λ′′ (the equality follows from (ix)), we have f(ξ̃+χc,t−

χc′′′,t′′′) ≥ λ′′ = f(ξ). This condition and (1c) imply that (1a) holds for (c′′′, t′′′). Note that

the if-clause of (B) holds if f(ξ̃ + χc,t − χc′′′,t′′′) < f(ξ̃). In this case, by the assumption of

Subcase 2-2, there exists a coordinate in Φ′, for which the desired strict inequality in (B)

holds.

The “if” direction: Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc. By pseudo M♮-concavity+,

there exists (c′, t′) ∈ (C × T ) ∪ {∅} (with ξt
′

c′ < ξ̃t
′

c′ whenever (c′, t′) 6= ∅) such that

min{f(ξ), f(ξ̃)} ≤ min{f(ξ − χc,t + χc′,t′), f(ξ̃ + χc,t − χc′,t′)},(1d)

and conditions (A) and (B) are satisfied. Let λ ≥ 0.

Case 1: Suppose f(ξ) = f(ξ̃).
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Subcase 1-1: Suppose λ > f(ξ) = f(ξ̃). Then, (1d) implies that one of the following condi-

tions holds:

• f(ξ) < f(ξ + χc,t − χc′,t′)
(

⇐⇒ fλ(ξ) < fλ(ξ + χc,t − χc′,t′)
)

, or

• f(ξ̃) < f(ξ̃ − χc,t + χc′,t′)
(

⇐⇒ fλ(ξ̃) < fλ(ξ̃ − χc,t + χc′,t′)
)

, or

• f(ξ) = f(ξ + χc,t − χc′,t′) and f(ξ̃) = f(ξ̃ − χc,t + χc′,t′)
(

⇐⇒ fλ(ξ) = fλ(ξ + χc,t − χc′,t′) and fλ(ξ̃) = fλ(ξ̃ − χc,t + χc′,t′)
)

.

Thus, ordinal concavity of fλ holds.

Subcase 1-2: Suppose λ ≤ f(ξ) = f(ξ̃). Then, (1d) implies f(ξ − χc,t + χc′,t′) ≥ f(ξ) and

f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ̃), which in turn implies

fλ(ξ) = fλ(ξ + χc,t − χc′,t′) and fλ(ξ̃) = fλ(ξ̃ − χc,t + χc′,t′).

Thus, ordinal concavity of fλ holds.

Case 2: Suppose f(ξ) 6= f(ξ̃). We assume f(ξ) < f(ξ̃) (the other case f(ξ) > f(ξ̃) can be

handled analogously).

Subcase 2-1: Suppose λ > f(ξ̃). Note that (1d) implies f(ξ) ≤ f(ξ − χc,t + χc′,t′).

Subcase 2-1-1: Suppose f(ξ) < f(ξ − χc,t + χc′,t′). This inequality is equivalent to fλ(ξ) <

fλ(ξ − χc,t + χc′,t′), showing that ordinal concavity of fλ holds.

Subcase 2-1-2: Suppose f(ξ) = f(ξ − χc,t + χc′,t′). Equivalently,

fλ(ξ) = fλ(ξ − χc,t + χc′,t′).(1e)

• If f(ξ̃) < f(ξ̃ + χc,t − χc′,t′), then equivalently fλ(ξ̃) < fλ(ξ̃ + χc,t − χc′,t′), showing

that ordinal concavity of fλ holds.

• If f(ξ̃) = f(ξ̃ + χc,t − χc′,t′), then equivalently fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′), which

together with (1e) implies that ordinal concavity of fλ holds.

• If f(ξ̃) > f(ξ̃ + χc,t − χc′,t′), then the if-clause of (B) holds. Thus, there exists

(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt
′′

c′′ < ξ̃t
′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

This inequality is equivalent to fλ(ξ) < fλ(ξ − χc,t + χc′′,t′′), showing that ordinal

concavity of fλ holds.

Subcase 2-2: Suppose f(ξ̃) ≥ λ > f(ξ). Note that (1d) implies f(ξ) ≤ f(ξ − χc,t + χc′,t′).

Subcase 2-2-1: Suppose f(ξ) < f(ξ − χc,t + χc′,t′). This inequality is equivalent to fλ(ξ) <

fλ(ξ − χc,t + χc′,t′), showing that ordinal concavity of fλ holds.

Subcase 2-2-2: Suppose f(ξ) = f(ξ − χc,t + χc′,t′). Equivalently,

fλ(ξ) = fλ(ξ − χc,t + χc′,t′).(1f)
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• If f(ξ̃) ≤ f(ξ̃ + χc,t − χc′,t′), then fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′), which together with

(1f) implies that ordinal concavity of fλ holds.

• If f(ξ̃) > f(ξ̃ + χc,t − χc′,t′), then the if-clause of (B) holds. Thus, there exists

(c′′, t′′) ∈ (C × T ) ∪ {∅} (with ξt
′′

c′′ < ξ̃t
′′

c′′ whenever (c′′, t′′) 6= ∅) such that

f(ξ) < f(ξ − χc,t + χc′′,t′′).

This inequality is equivalent to fλ(ξ) < fλ(ξ − χc,t + χc′′,t′′), showing that ordinal

concavity of fλ holds.

Subcase 2-3: Suppose λ ≤ f(ξ). By (1d), we have λ ≤ f(ξ) ≤ f(ξ − χc,t + χc′,t′) and

λ ≤ f(ξ) ≤ f(ξ̃ − χc,t + χc′,t′), which implies

fλ(ξ) = fλ(ξ − χc,t + χc′,t′) and fλ(ξ̃) = fλ(ξ̃ + χc,t − χc′,t′).

Thus, ordinal concavity of fλ holds. �

Proof of Claim 1. Let ξ, ξ̃ ∈ Ξ0 and (c, t) with ξtc > ξ̃tc. If ξ̃ = ξ(∅), then

f(ξ̃) < f(ξ) and f(ξ̃) < f(ξ̃ + χc,t).

Together with the fact that f(ξ(∅)) = 0 is the minimum function value, pseudo M♮-

concavity+ is satisfied. In the remaining part, suppose that ξ̃ 6= ξ(∅). If ||ξ|| = ||ξ̃|| = 1

or ξ ≥ ξ̃, then pseudo M♮-concavity+ trivially holds. In what follows, we consider the

remaining three cases.

Case 1: Suppose {ξ, ξ̃} ⊆ {ξ({x}), ξ({y, z})}.

Subcase 1-1: Suppose ξ = ξ({x}), which implies χc,t = ξ({x}). For (c′, t′) with χc′,t′ =

ξ({z}),

f(ξ({x})− χc,t + χc′,t′) = f(ξ({z})) = n > 1 = f(ξ({x})),

f(ξ{y, z}) + χc,t − χc′,t′) = f(ξ({x, y})) = 1.

Together with f(ξ({x})) = 1 < 5 = f(ξ({y, z}), pseudo M♮-concavity+ holds.

Subcase 1-2: Suppose ξ = ξ({y, z}) and χc,t = ξ({y}). For (c′, t′) with χc′,t′ = ξ({x}),

f(ξ({y, z})− χc,t + χc′,t′) = f(ξ({x, z})) = 5 = f(ξ({y, z})),

f(ξ({x}) + χc,t − χc′,t′) = f(ξ({y})) = 1 = f(ξ({x})).

Hence, pseudo M♮-concavity+ holds.
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Subcase 1-3: Suppose ξ = ξ({y, z}) and χc,t = ξ({z}). For (c′, t′) with χc′,t′ = ξ({x}),

f(ξ({x}) + χc,t − χc′,t′) = f(ξ({z})) = 5 > 1 = f(ξ({x})),

f(ξ({y, z})− χc,t + χc′,t′) = f(ξ({x, y})) = 1.

Together with f(ξ({x})) = 1 < 5 = f(ξ({y, z}) pseudo M♮-concavity+ holds.

Case 2: Suppose {ξ, ξ̃} ⊆ {ξ({y}), ξ({x, z})}. Since contracts x and y are symmetric, the

proof of this case is similar to that for Case 1.

Case 3: Suppose {ξ, ξ̃} ⊆ {ξ({z}), ξ({x, y})}.

Subcase 3-1: Suppose ξ = ξ({z}), which implies χc,t = ξ({z}). For (c′, t′) with χc′,t′ =

ξ({x}),

f(ξ({x, y}) + χc,t − χc′,t′) = f(ξ({y, z})) = 5 > 1 = f(ξ({x, y})),

f(ξ({z})− χc,t + χc′,t′) = f(ξ({x})) = 1.

Together with f(ξ({x, y})) = 1 < n = f(ξ({z})), pseudo M♮-concavity+ holds.

Subcase 3-2: Suppose ξ = ξ({x, y}) and χc,t = ξ({x}). For (c′, t′) with χc′,t′ = ξ({z}),

f(ξ({x, y})− χc,t + χc′,t′) = f(ξ({y, z})) = 5 > f(ξ({x, y})),

f(ξ({z}) + χc,t − χc′,t′) = f(ξ({x})) = 1.

Together with f(ξ({x, y})) = 1 < n = f(ξ({z})), pseudo M♮-concavity+ holds.

Subcase 3-3: Suppose ξ = ξ({x, y}) and χc,t = ξ({y}). Since contracts x and y are symmet-

ric, the proof for this case is similar to that for Subcase 3-2. �

Proof of Claim 2. Suppose that Ξ0 = {ξ ∈ Z|C|×|T |
+ |

∑

t∈T ξtc ≤ q} for some q ∈ Z+. Let

ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T with ξtc > ξ̃tc. We consider three cases. In each case discussed

below, the if-clauses of (A) and (B) in the definition of pseudoM♮-concavity+ do not hold.

Therefore, it suffices to show that the weak inequality in the definition holds. Recall that,

for each ξ ∈ Ξ0,

f s(ξ) =
∑

(c,t)∈C×T

min{ξtc, r
t
c}.

Case 1: Suppose f s(ξ) < f s(ξ̃).

Subcase 1-1: Suppose rtc ≥ ξtc. Then,

rtc ≥ min{ξtc, r
t
c} = ξtc > ξ̃tc = min{ξ̃tc, r

t
c}.
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Together with f s(ξ) < f s(ξ̃), there exists (c′, t′) ∈ C × T such that

min{ξt
′

c′, r
t′

c′} < min{ξ̃t
′

c′, r
t′

c′} ≤ rt
′

c′.

By the above two inequalities,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) ≤ f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 1-2: Suppose rtc < ξtc.

Subcase 1-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).

By the definition of f s(·),

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 1-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ = q. By ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ t̃c̃ ≤ q =
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃,

there exists (c′, t′) ∈ C × T such that ξt
′

c′ < ξ̃t
′

c′ . If r
t′

c′ < ξ̃t
′

c′, then together with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M♮-concavity+ is satisfied. If rt
′

c′ ≥ ξ̃t
′

c′(> ξt
′

c′), then together with

rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) < f s(ξ − χc,t + χc′,t′), and

f s(ξ̃)− 1 = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

By the assumption of Case 1,min{f s(ξ), f s(ξ̃)− 1} = min{f s(ξ), f s(ξ̃)}. Together with the

above two inequalities, pseudo M♮-concavity+ is satisfied.

Case 2: Suppose f s(ξ) = f s(ξ̃).44

Subcase 2-1: Suppose rtc ≥ ξtc. Then,

rtc ≥ min{ξtc, r
t
c} = ξtc > ξ̃tc = min{ξ̃tc, r

t
c}.

Together with f s(ξ) = f s(ξ̃), there exists (c′, t′) ∈ C × T such that

min{ξt
′

c′, r
t′

c′} < min{ξ̃t
′

c′, r
t′

c′} ≤ rt
′

c′.

44The proofs for Subcases 2-1 and 2-2-1 are similar to those for Subcases 1-1 and 1-2-1, respectively.
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By the above two inequalities,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) ≤ f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 2-2: Suppose rtc < ξtc.

Subcase 2-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).

By the definition of f s(·),

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 2-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ = q. Let Φ = {(c̃, t̃) ∈ C × T | ξ t̃c̃ < ξ̃ t̃c̃}. By ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ t̃c̃ ≤ q =
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃, we have Φ 6= ∅.

Suppose, for contradiction, that rt̃c̃ ≥ ξ̃ t̃c̃ for each (c̃, t̃) ∈ Φ. Then,

f s(ξ)− f s(ξ̃) =
∑

(c̃,t̃)∈C×T

min{ξ t̃c̃, r
t̃
c̃} −

∑

(c̃,t̃)∈C×T

min{ξ̃ t̃c̃, r
t̃
c̃}

=
∑

(c̃,t̃)∈Φ

min{ξ t̃c̃, r
t̃
c′} −

∑

(c̃,t̃)∈Φ

min{ξ̃ t̃c̃, r
t̃
c̃}

+
∑

(c̃,t̃)∈(C×T )\Φ

min{ξ t̃c̃, r
t̃
c̃} −

∑

(c̃,t̃)∈(C×T )\Φ

min{ξ̃ t̃c̃, r
t̃
c̃}

=
∑

(c̃,t̃)∈Φ

ξ t̃c̃ −
∑

(c̃,t̃)∈Φ

ξ̃ t̃c̃

+
∑

(c̃,t̃)∈(C×T )\Φ

(

min{ξ t̃c̃, r
t̃
c̃} −min{ξ̃ t̃c̃, r

t̃
c̃}
)

<
∑

(c̃,t̃)∈Φ

ξ t̃c̃ −
∑

(c̃,t̃)∈Φ

ξ̃ t̃c̃

+
∑

(c̃,t̃)∈(C×T )\Φ

(

ξ t̃c̃ − ξ̃ t̃c̃

)

≤ 0,

where the third equality follows from the assumption made for contradiction and the def-

inition of Φ, the strict inequality follows from min{ξ t̃c̃, r
t̃
c̃} − min{ξ̃ t̃c̃, r

t̃
c̃} ≤ ξ t̃c̃ − ξ̃ t̃c̃ for each

(c̃, t̃) ∈ (C × T )\Φ and min{ξtc, r
t
c} − min{ξ̃tc, r

t
c} < ξtc − ξ̃tc for (c, t) ∈ (C × T )\Φ (where
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the latter strict inequality follows from ξtc > ξ̃tc and rtc < ξtc), and the last inequality fol-

lows from the assumption of Subcase 2-2-2. We obtain a contradiction to the assumption

of Case 2.

It follows that there exists (c′, t′) ∈ Φ with rt
′

c′ < ξ̃t
′

c′ . Together with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M♮-concavity+ is satisfied.

Case 3: Suppose f s(ξ) > f s(ξ̃).

Subcase 3-1: Suppose rtc ≥ ξtc.

Subcase 3-1-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc ≥ ξtc,

f s(ξ)− 1 = f s(ξ − χc,t).

By rtc ≥ ξtc > ξ̃tc,

f s(ξ̃) < f s(ξ̃ + χc,t).

By the assumption of Case 3,min{f s(ξ)− 1, f s(ξ̃)} = min{f s(ξ), f s(ξ̃)}. Together with the

above displayed equality and inequality, pseudo M♮-concavity+ is satisfied.

Subcase 3-1-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ = q. By ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ t̃c̃ ≤ q =
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃,

there exists (c′, t′) ∈ C × T such that ξt
′

c′ < ξ̃t
′

c′ . If r
t′

c′ < ξ̃t
′

c′, then together with rtc ≥ ξtc > ξ̃tc,

f s(ξ)− 1 = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) < f s(ξ̃ + χc,t − χc′,t′).

By the assumption of Case 3, min{f s(ξ) − 1, f s(ξ̃)} = min{f s(ξ), f s(ξ̃)}. Together with

the above inequalities, pseudo M♮-concavity+ is satisfied. If rt
′

c′ ≥ ξ̃t
′

c′(> ξt
′

c′), together with

rtc ≥ ξtc > ξ̃tc,

f s(ξ) = f s(ξ − χc,t) + 1 = f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) + 1 = f s(ξ̃ + χc,t − χc′,t′).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 3-2: Suppose rtc < ξtc.

Subcase 3-2-1: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ < q, which implies ξ̃ + χc,t ∈ Ξ0. By rtc < ξtc,

f s(ξ) = f s(ξ − χc,t).
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By the definition of f s(·),

f s(ξ̃) ≤ f s(ξ̃ + χc,t).

It follows that pseudo M♮-concavity+ is satisfied.

Subcase 3-2-2: Suppose
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃ = q. Let Φ = {(c̃, t̃) ∈ C × T | ξ t̃c̃ < ξ̃ t̃c̃}. By ξtc > ξ̃tc and
∑

(c̃,t̃)∈C×T ξ t̃c̃ ≤ q =
∑

(c̃,t̃)∈C×T ξ̃ t̃c̃, we have Φ 6= ∅.

Suppose, for contradiction, that rt̃c̃ ≥ ξ̃ t̃c̃ for each (c̃, t̃) ∈ Φ. Then, by following the same

line of argument as in Subcase 2-2-2, we obtain f s(ξ) < f s(ξ̃), which is a contradiction to

the assumption of Subcase 3. It follows that there exists (c′, t′) ∈ Φwith rt
′

c′ < ξ̃t
′

c′ . Together

with rtc < ξtc,

f s(ξ) = f s(ξ − χc,t) ≤ f s(ξ − χc,t + χc′,t′), and

f s(ξ̃) = f s(ξ̃ − χc′,t′) ≤ f s(ξ̃ + χc,t − χc′,t′).

We conclude that pseudo M♮-concavity+ is satisfied. �

Counterexample to Claim 2 when Ξ0 is not given as in the statement: Let C = {c, c′} and T =

{t, t′}. Suppose that each school’s capacity is given by qc = 2 and qc′ = 1, i.e.,

Ξ0 =
{

ξ ∈ Z|C|×|T |
+ |

∑

t∈T

ξtc ≤ 2,
∑

t∈T

ξtc′ ≤ 1
}

.

The number of reserved seats is given by rtc = 1, rt
′

c = 1, rtc′ = 1, and rt
′

c′ = 0. Let ξ, ξ̃ ∈ Ξ0

be such that

ξtc = 2, ξt
′

c = 0, ξtc′ = 1, ξt
′

c′ = 0,

ξ̃tc = 1, ξ̃t
′

c = 1, ξ̃tc′ = 0, ξ̃t
′

c′ = 0.

For (c, t), the only candidate of (c′′, t′′) ∈ (C × T ) ∪ {∅} with ξ̃ + χc,t − χc′′,t′′ ∈ Ξ0 is

(c′′, t′′) = (c, t′) (otherwise the capacity constraint for school c is violated at ξ̃+χc,t−χc′′,t′′).

Then,

min{f s(ξ), f s(ξ̃)} = min{2, 2} = 2, and

f s(ξ̃) = 2 > 1 = f s(ξ̃ + χc,t − χc,t′).

It follows that f s violates pseudoM♮-concavity, and hence violates pseudoM♮-concavity+.

Proof of Proposition 5. First we show that M♮-concavity implies ordinal concavity.

Let ξ, ξ̃ ∈ Ξ0 and (c, t) ∈ C × T be such that ξtc > ξ̃tc. Then, by M♮-concavity, one of

conditions (i) and (ii) in Definition 11 holds.

Suppose that condition (i) in Definition 11 holds. If condition (i) or (ii) in Definition 6

holds, then ordinal concavity is satisfied. If conditions (i) and (ii) in Definition 6 do not
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hold, then we have

f(ξ − χc,t) ≤ f(ξ) and f(ξ̃ + χc,t) ≤ f(ξ̃).

These two inequalities together with condition (i) in Definition 11 imply that

f(ξ − χc,t) = f(ξ) and f(ξ̃ + χc,t) = f(ξ̃),

which is condition (iii) in Definition of 6, so ordinal concavity is satisfied.

Suppose that condition (i) in Definition 11 does not hold. By M♮-concavity, condition

(ii) in Definition 11 holds. Therefore, there exists (c′, t′) ∈ C × T with ξt
′

c′ < ξ̃t
′

c′ such that

f(ξ − χc,t + χc′,t′) + f(ξ̃ + χc,t − χc′,t′) ≥ f(ξ) + f(ξ̃).

If condition (i) or (ii) inDefinition 6 holds, then ordinal concavity is satisfied. If conditions

(i) and (ii) in Definition 6 do not hold, then we have

f(ξ − χc,t + χc′,t′) ≤ f(ξ) and f(ξ̃ + χc,t − χc′,t′) ≤ f(ξ̃).

These two inequalities together with condition (ii) in Definition 11 imply that

f(ξ − χc,t + χc′,t′) = f(ξ) and f(ξ̃ + χc,t − χc′,t′) = f(ξ̃),

which is condition (iii) in Definition of 6, so ordinal concavity is satisfied.

Now we provide a function that satisfies ordinal concavity but not M♮-concavity. Let

the diversity index f be defined as f(0) = 0, f(1) = 3, and f(2) = 10. Since it is

strictly increasing it is ordinally concave because condition (ii) in Definition of 6 is sat-

isfied. However, M♮ concavity fails because for ξ = 2, ξ̃ = 0, and χ = 1 we have

f(ξ − χ) + f(ξ̃ + χ) = 6 < 10 = f(ξ) + f(ξ̃). �




