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We develop a new set of restrictions on strategy spaces for continuous-time

games in stochastic environments. These conditions imply that there exists

a unique path of play with probability one given a strategy profile, and also

ensure that agents’ behavior is measurable. Various economic examples are

provided to illustrate the applicability of the new restrictions. We discuss how

our methodology relates to an alternative approach in which certain payoffs are

assigned to nonmeasurable behavior.
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1 Introduction

Continuous-time models have proven useful for the analysis of dynamic strategic

interactions because closed-form solutions can be obtained while such results may

be difficult to derive in discrete-time models. However, the specification of a game

in continuous time entails some technical complexities. As discussed by Simon and

Stinchcombe (1989) and Bergin and MacLeod (1993), many of these difficulties stem

from the ability of agents to instantaneously react to the actions of other agents.

In order to resolve such problems, the strategy spaces need to be suitably defined,

and those authors propose techniques for doing so in a deterministic environment.

Although those methods are useful in that context, continuous-time modeling has

been successful in the analysis of stochastic environments as well, and hence it is

desirable to develop suitable restrictions for strategy spaces in such models. This

paper is devoted to the discussion of restrictions on strategy spaces for continuous-

time games in stochastic settings.

We develop a new set of conditions to restrict strategy spaces in continuous time.

We begin by defining the concept of consistency between a strategy and a history,

which means that a given strategy can generate a given history. One problem in

continuous time is that there are cases where zero or multiple histories are consistent

with a specific profile of strategies. In order to rule out these two possibilities, we

develop two novel concepts. Traceability helps prevent the former situation, requiring

that when the other agents do not move in the future, there exists a history consistent

with an agent’s strategy. Frictionality eliminates the latter possibility, requiring that

in any history that is consistent with an agent’s strategy, the agent can move only

finitely many times during any finite time interval. By applying these criteria, we

show that each strategy profile induces a unique path of play.

A further issue regards the measurability of the action process. For expected

payoffs to be well defined, the stochastic process describing the moves of agents should

be progressively measurable. In addition, specifying the strategy space so as to ensure

the measurability of actions is complicated in our model due to perfect monitoring.

Simply requiring the action process of an agent to be progressively measurable (as

is standard in the literature) is problematic because the strategy of one agent affects

whether the strategy of another agent induces a measurable action process under
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perfect monitoring.1 Thus, simply restricting the action process of an agent to be

progressively measurable even when the behavior of another agent is nonmeasurable

(which would correspond to the standard approach) would result in an extremely

limited set of strategies as explained in section 4.1, ruling out a variety of situations

in which the actions of one agent are influenced by the behavior of another agent.

Therefore, we invent a two-step technique for delineating the strategy space. A

strategy is called quantitative if the behavior of an agent is measurable regardless

of the strategy of its opponents. A strategy is called calculable if the behavior of

an agent is measurable when its opponents play quantitative strategies. We show

that each agent’s behavior is measurable if every agent uses a calculable strategy.

Moreover, the set of calculable strategies is the largest strategy space for each agent

that includes the set of all quantitative strategies and implies measurable actions.

A few methods have previously been proposed for defining strategy spaces in

continuous time when the environment is deterministic, but they are not directly

applicable to the stochastic case. In particular, the “inertia” assumption from Bergin

and MacLeod (1993) would ensure that each strategy profile induces a unique path

of play. This condition essentially requires that at each history up to a given time t,

there exists a time interval of positive length during which agents do not change their

actions.2 There are at least two ways to extend this definition to a stochastic setting.

In one approach, the aforementioned time interval can depend on the history up to

time t but not on the realization of uncertainty after time t. The other approach

allows this time interval to also depend on the realization of uncertainty after time t.

The former version of inertia may be too strong in stochastic environments, where

given a history up to time t and any ε > 0, the state variable may change quickly

within the time interval (t, t + ε), so that the analyst may want to consider the

possibility of an equilibrium in which agents change their actions during the interval

(t, t + ε). We present various examples to illustrate that such a situation naturally

arises in stochastic settings.3 The latter version is weaker but does not guarantee

1This type of complexity does not arise in models of continuous-time games with imperfectly
observable actions such as Sannikov (2007).

2Bergin and MacLeod (1993) also consider a weaker condition involving the completion of the
set of inertia strategies, and we discuss it in footnote 43.

3When comparing our approach with existing techniques, we consider many examples that in-
volve rapid transitions between states, but as the applications in section 5 illustrate, such a property
is not necessary for our methodology to apply in situations that are not covered by existing tech-
niques in the literature.
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measurable behavior. In a deterministic environment, the inertia condition would

essentially suffice to ensure that the resulting path of play is measurable, but more is

involved in a stochastic setting because the actions of the agents can be contingent on

moves of nature.4 Accordingly, we introduce the notion of calculability. Furthermore,

neither version of inertia implies nor is implied by traceability and frictionality, as

shown in section 3.3. We present an example to demonstrate that even the weaker

formulation of inertia rules out some applications of interest covered by traceability

and frictionality in which the timing of moves by one agent depends on the actions

of another agent.5

Relatedly, the “admissibility” criterion in Simon and Stinchcombe (1989) when

extended to a stochastic environment would imply existence and uniqueness of the

path of play. However, this condition requires the number of moves by an agent to

be bounded.6 As will be seen from our examples in section 5, imposing the bound

uniformly so as not to depend on the realization of uncertainty can sometimes be too

restrictive. Specifically, the equilibria that we analyze entail no upper bound on the

number of moves during any finite time interval. Agents may make infinitely many

moves over an infinite horizon with probability one.

Allowing the bound to depend on the realization of uncertainty does not suffice

to cover some relevant applications, particularly those in which the number of moves

by one agent depends on the behavior of the other agent. Furthermore, since admis-

sibility applies off as well as on the path of play, it eliminates some simple strategies

that require an agent to move multiple times following a deviation. By contrast,

traceability and frictionality are weaker requirements and do not preclude strategies

in which the number of moves in a given finite time interval may be arbitrarily large.7

4For instance, the strategies in example 8 satisfy inertia as well as traceability and frictionality
but do not induce measurable behavior.

5Although the inertia condition may be insufficient to model optimal behavior in some of the
applications we consider, it may be enough to accommodate ε-optimal strategies. In item 3 of remark
2, we explain that restricting attention to ε-optimal strategies without defining strategy spaces more
generally creates a problem of circularity.

6Simon and Stinchcombe (1989) also restrict how agents may condition their behavior on the
past by requiring strategies not to distinguish between two histories in which the same actions occur
at different times that are sufficiently close to each other. Some of the equilibria we consider in our
examples violate this assumption.

7More precisely, fix an interval of the nonnegative real line with positive but finite length as
well as any realization of uncertainty. For each agent, our model allows for the possibility that
there exists a strategy satisfying the restrictions of the model such that the following holds. For
any nonnegative integer n, one can find a history that is consistent with this strategy such that the
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As shown in section 3.3, admissibility when applied to our model implies traceability

and frictionality, but not vice versa. Moreover, even if agents use admissible strate-

gies, the behavior that arises may not be measurable, necessitating an additional

condition like calculability.8

Our model is not intended to cover all possible stochastic environments, and our

focus is on games in which agents strategically choose the timing of discrete moves.

This, in particular, precludes games in which agents move at every moment in contin-

uous time9 (which are not allowed by Simon and Stinchcombe (1989) or Bergin and

MacLeod (1993), either). As the reader will hopefully see, even though our framework

is not totally comprehensive, defining strategy spaces in a stochastic environment is

a nontrivial task, and our examples show that our model encompasses a number of

economically relevant situations. We emphasize that our objective is not to under-

mine the usefulness of existing restrictions in the literature like those of Bergin and

MacLeod (1993) and Simon and Stinchcombe (1989). We discuss those restrictions

simply to underscore the additional complications that arise when the environment

is stochastic.

Continuous-time modeling has been widely employed in stochastic settings, and its

use is growing. Section 5 of our paper considers various applications. An important

question is the timing of investment under uncertainty, which has been studied by

McDonald and Siegel (1986) in continuous time with a single agent. In section 5.1,

we consider a model of forest management in which multiple agents decide when to

harvest trees whose volumes evolve stochastically over time. A major class of problems

involving the timing of moves is search models, in which agents must choose between

trading at the present time and waiting for a better opportunity to trade. Section 5.2

examines a supply chain in the petroleum industry, where the price of oil varies over

time, and a well is deciding when to extract each unit oil and transfer it to a refinery,

which then processes the input and delivers the output to a customer. The oil well

number of moves by the agent during the given time interval is equal to n.
8See example 8 for a particular instance of admissible strategies that do not generate a measurable

path of play.
9Such models have been applied to study, for example, repeated games (Sannikov, 2007), con-

tracting (Sannikov, 2008), reputation (Faingold and Sannikov, 2011), signaling (Dilme, 2017), and
oligopoly (Bonatti, Cisternas, and Toikka, 2017). These papers assume the imperfect observabil-
ity of opponents’ actions and an inability to condition on one’s own past actions, which simplify
the description of strategies, thereby preventing issues related to the existence, uniqueness, and
measurability of behavior that are discussed in our paper.
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faces a search problem, and its optimal strategy is characterized by a reservation

price like in the classic model of McCall (1970). A topic related to investment under

uncertainty is entry and exit by a firm, which is studied by Dixit (1989) in continuous

time where the price follows a diffusion process. In section 5.3, we analyze a situation

in which two firms contemplate the timing of entry into a market, where the cost of

entry varies with time and the benefit depends on entry by the competitor.

Some existing models limit agents to moving at random points in time. For

instance, there is a literature on bargaining games in continuous time, including the

model in Ambrus and Lu (2015), where agents can make offers at random times and

must reach an agreement by a specified deadline. Another class of models is revision

games as formalized by Kamada and Kandori (2020), where agents have opportunities

to alter their actions before interacting at a designated time. In section 5.4, we apply

our restrictions to a finite-horizon game that has a deadline by which a buyer must

place an order with a seller. The buyer’s taste for a good is stochastically changing

over time, and the seller receives opportunities at random times to fulfill the order.

Further applications of our framework are considered in the online appendix. Or-

tner (2019) specifies a bargaining model in continuous time, where the bargaining

power of each agent is governed by a Brownian motion. As mentioned in the on-

line appendix, Kamada and Rao (2018) develop a model of bargaining and trade in

which there is a transaction cost that may evolve according to a geometric Brownian

motion. We also present an example in which a pair of criminals play a prisoner’s

dilemma at times that arrive according to a Poisson process, as well as continuously

deciding whether to remain partners in crime. Another issue related to the timing

of investment is technology adoption, which has been studied in continuous time by

Fudenberg and Tirole (1985). The online appendix contains an example where two

agents repeatedly decide on when to adopt a technology that has positive externali-

ties and a stochastically evolving cost. A continuous-time formulation has also been

used for models of adjustment costs, including the analysis of pricing by Caplin and

Spulber (1987). In the online appendix, we examine interactions between a retailer

and a distributor in a model of inventory adjustment with a randomly changing stock

as well as a model of exchange where prices evolve stochastically.

Given the difficulty of restricting the strategy space to prevent nonmeasurable

behavior, a pertinent question is whether the issue can simply be avoided by allowing

nonmeasurable behavior and exogenously assigning it a (for example, low) expected
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payoff. In section 6, we examine this question, and relate the equilibria under this

alternative approach to those under our original methodology. A problem is that

the assignment of expected payoffs to nonmeasurable behavior is inherently arbitrary

as the conditional expectation may be undefined and the set of equilibria depends

on the particular assignment of expected payoffs to nonmeasurable behavior. Under

some conditions, a type of “folk theorem” can even be obtained, whereby arbitrary

behavior can be sustained in equilibrium by punishing deviations with nonmeasurable

behavior that is assigned an extremely low payoff. In addition, we show that any

equilibrium under the calculability restriction can be supported as an equilibrium

under the payoff assignment approach for some assignment of expected payoffs to

nonmeasurable behavior. A partial converse of this result is also obtained.

The rest of the paper proceeds as follows. In section 2, we specify the model.

Section 3 shows that the concepts of traceability and frictionality together imply the

existence of a unique path of play given a strategy profile. Section 4 deals with

measurability issues and shows that the calculability assumption implies that agents’

behavior is measurable. Section 5 contains the aforementioned applications of our

methodology. In section 6, we compare our approach to an alternative approach in

which the strategy space is not restricted but a certain payoff is assigned to non-

measurable behavior. Proofs of the major results are in the appendix. The online

appendix provides further applications, extensions, derivations, and discussions.

2 Model

There are a finite number of agents, and the set of agents is denoted by I. Time runs

continuously in [0, T ) where T ∈ (0,∞]. Each agent i ∈ I has a measurable action

space Ai. Let (Ω,F , P ) be a probability space, and let {Ft}t∈[0,T ) be a filtration of the

sigma-algebra F . The shock level at time t, which is denoted by st, evolves according

to a stochastic process whose state space is S endowed with the sigma-algebra B(S).10

The state space S can be any set but in applications is typically the product of the set

of variables representing the environment (e.g., the amount of resources, the price, the

cost) and R+ representing calendar time.11 The shock process {st}t∈[0,T ) is assumed

10The notation B(X) represents the Borel sigma-algebra on a topological space X.
11The former set could also be a binary set representing whether there is a Poisson hit at a given

moment.
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to be progressively measurable.12

In every instant of time, each agent i observes the current realization of the shock

level and chooses an action from a subset of Ai that can depend on the history.

Formally, for each i ∈ I and t ∈ [0, T ), let ait represent the action that agent i chooses

at time t. The collection {ait}t∈[0,T ) of agent i’s actions indexed by time t ∈ [0, T )

is called an action path. Letting u ∈ [0, T ), the collection {ait}t∈[0,u) is said to be

an action path up to time u. Neither the probability space nor the shock process

depends in any way on the actions of the agents.13

A history of the game is represented as h = {st, (ait)i∈I}t∈[0,T ). That is, a history

consists of the realization of the shock process along with the actions chosen by the

agents at each time. Given a history h, a history hu up to time u is defined as(
{st}t∈[0,u], {(ait)i∈I}t∈[0,u)

)
. Note that hu includes information about the shock at

time u but does not contain information about the actions at time u. By convention,

h0 is used to denote the null history (s0, {}) at the start of the game. Letting Ht be

the set of all histories up to time t, define H =
⋃
t∈[0,T ) Ht.

For each i ∈ I, define the feasible set of actions at every history by the function

Āi : H → 2Ai . We assume that there exists an action z ∈ Ai such that z ∈ Āi(ht) for

any ht ∈ H. The action z can be interpreted as “not moving,” whereas an action other

than z is regarded as a “move.” A strategy for agent i ∈ I is a map πi : H → Ai.
14 Let

Πi with generic element πi represent the set of all strategies for agent i.15 In addition,

12A stochastic process {xt}t∈[0,T ) can be treated for any υ ∈ [0, T ) as a function x(t, ω) on the
product space [0, υ]× Ω. It is said that {xt}t∈[0,T ) is progressively measurable if for any υ ∈ [0, T )
the function x(t, ω) is measurable with respect to the product sigma-algebra B([0, υ])×Fυ.

13The assumption that the shock process does not depend on the actions of the agents is not par-
ticularly restrictive. For example, in order to model a situation where uncertainty evolves according
to an Itô process that depends on the actions of the agents, the shock process could be specified as a
Wiener process, and the value of the Itô process at each time could be encoded in the action space,
which may be history-dependent. A related example is the application in section 5.1, where the
volume of a forest, which is affected by the actions of agents to harvest wood and evolves according
to an arithmetic Brownian motion between harvests, is specified in the set of feasible actions, which
we define shortly.

14Simon and Stinchcombe (1989) allow for sequential moves at a single moment of time. The
definition of the strategy space here rules out such behavior. We can thereby express histories in a
natural way as specifying a profile of actions at each time and define strategies in the standard way
as a mapping from histories to actions. In addition, it may not be realistic to allow players to move
sequentially without any elapse of time. This restriction is innocuous except in the partnership and
cooperation game between criminals in the online appendix, where we argue that restricting moves
to happen at Poisson opportunities may cause an inefficient delay. If agents could immediately
respond to a deviation at the current Poisson jump instead of waiting for the next Poisson jump to
respond, such an inefficiency would not arise.

15The definition of strategies thus far does not eliminate the possibility of flow moves, whereby
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a strategy πi for agent i ∈ I is said to be feasible if it satisfies the restriction that

πi(ht) ∈ Ā(ht) for any ht ∈ H. Let Π̄i denote the set of all feasible strategies for

agent i. For any profile of sets (Dj)j∈I and any i ∈ I, let D−i = ×j∈I\{i}Dj.

3 Existence and Uniqueness of the Action Path

3.1 Examples

Since the model is formulated in continuous time, the definition of the strategy space

is not trivial as noted by Simon and Stinchcombe (1989) and Bergin and MacLeod

(1993). As explained below, we need to develop a novel approach for restricting the

strategy space in our context. The following two examples illustrate the problems

that our restrictions help eliminate.16

Example 1. (No action path consistent with a given strategy profile) Sup-

pose that Āi(ht) = {x, z} for each i ∈ I and every ht ∈ H. We argue that there is

no action path consistent with the following strategy profile. If there is a positive

integer m such that the current time t is equal to 1/m and no agent has chosen action

x before time t, then each agent chooses x at time t. Otherwise, all agents choose

action z. To see that there is no action path consistent with these strategies, notice

that on any path of play of the given strategy profile, there must exist exactly one

time t > 0 at which action x is taken. However, if the agents were to choose x at this

time t, then they would be deviating from the given strategy profile because there

exists m <∞ large enough that 1/m ∈ (0, t).

In the preceding example, an action path consistent with the specified strategy

profile fails to exist because a given set of times may not have a least element in

continuous time. Similarly, restricting attention to Markov strategies is not enough

to ensure that strategy spaces are well defined because in continuous time there may

not exist a least time at which a state variable satisfies a given condition.17

actions other than z are taken for a positive measure of times. For example, when harvesting trees,
agents may cut a tree continuously over time so that the amount cut at each instant of time is zero,
but the total amount cut over an interval of time may be positive. The subsequent sections restrict
the strategy space so as to avoid flow moves, thereby preventing such behavior in the tree harvesting
problem (section 5.1).

16These problems arise because the strategy of an agent is a contingent plan in which the action
of an agent at a given time may be conditional on past actions. Similar examples can be constructed
with just one agent, but in that case such difficulties could be avoided by defining a strategy as a
mapping from each time to an action at that time without reference to previous actions.

17A strategy is said to be Markov if the action that it specifies at any history up to a given time

9



Example 2. (Multiple action paths consistent with a given strategy profile)

Suppose again that Āi(ht) = {x, z} for each i ∈ I and every ht ∈ H. We argue that

there is more than one action path consistent with the following strategy profile. If

the current time t is equal to 1/m for some positive integer m and another agent has

chosen action x at time 1/n for every positive integer n greater than m, then each

agent chooses x at time t. Otherwise, each agent chooses z.

The following two action paths can be outcomes of this strategy profile. First, all

agents choose action z at all t ∈ [0, T ). Second, each agent chooses x if the current

time t is equal to 1/m for some positive integer m, and they choose z otherwise. It

is straightforward to check by inspection that all the agents are following the given

strategy profile in each case.

3.2 Traceability and Frictionality

We introduce a series of concepts so as to eliminate strategies like those in the ex-

amples above. We define three conditions, which we call consistency, traceability,

and frictionality. Consistency is a property of histories, whereas traceability and

frictionality are properties of strategies.

Definition 1. Given i ∈ I, the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is said to be consistent

with strategy πi at time t if πi(ht) = ait.

Roughly speaking, a history is said to be consistent with a strategy for a given

agent if the history is a possible outcome when that agent plays the strategy.

For any action path {bit}t∈[0,u) of agent i ∈ I up to an arbitrary time u, let

Γi({bit}t∈[0,u)) be the set consisting of any action path {ait}t∈[0,T ) such that {ait}t∈[0,u) =

{bit}t∈[0,u). Given any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u, let

W TR
i (ku; πi) be the set of all ω ∈ Ω such that for any {a−it }t∈[0,T ) ∈ Γ−i({b−it }t∈[0,u))

with ajt = z for all t > u and j 6= i, there exists {ait}t∈[0,T ) ∈ Γi({bit}t∈[0,u)) for which

the history h =
{
st(ω), (ajt)j∈I

}
t∈[0,T )

is consistent with πi at each t ∈ [u, T ). In other

words, W TR
i (ku; πi) represents the set of all sample paths of the shock process such

that given the action paths of the agents up to time u, there exists a history consistent

with agent i’s strategy πi from time u onwards, assuming that agent i’s opponents do

not move after time u.

depends only on the current value of a state variable that summarizes the history of the game up to
that time.
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Definition 2. Given i ∈ I, the strategy πi ∈ Πi is traceable if for any history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u, the set W TR

i (ku; πi) is measurable with

respect to F and has conditional probability one given that {st}t∈[0,u] = {gt}t∈[0,u].

Intuitively, a strategy for a given agent is said to be traceable if there exists a

history that is consistent with the strategy when the other agents do not move in the

future. Traceability excludes the strategy in example 1.

Let Ξi(t) denote the set consisting of every action path {aiτ}τ∈[0,T ) of agent i ∈ I
for which there exists no u > t such that the set {τ ∈ [t, u] : aiτ 6= z} contains

infinitely many elements. Given any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to

time u, let W FR
i (ku; πi) be the set of all ω ∈ Ω such that {ait}t∈[0,T ) ∈ Ξi(u) for all

{ait}t∈[0,T ) ∈ Γi({bit}t∈[0,u)) such that there exists {a−it }t∈[0,T ) ∈ Γ−i({b−it }t∈[0,u)) for

which the history h = {st(ω), (ajt)j∈I}t∈[0,T ) is consistent with πi at each t ∈ [u, T ). In

other words, W FR
i (ku; πi) represents the set of all sample paths of the shock process

such that given the action paths of the agents up to time u, agent i’s strategy πi

induces only finitely many moves in any finite interval of time in the future, regardless

of the behavior of agent i’s opponents from time u onwards.

Definition 3. Given i ∈ I, the strategy πi ∈ Πi is frictional if for any history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u, the set W FR

i (ku; πi) is measurable with

respect to F and has conditional probability one given that {st}t∈[0,u] = {gt}t∈[0,u].

Intuitively, a strategy for a given agent is said to be frictional if any history that

is consistent with that strategy has the property that the agent moves (i.e., takes an

action other than z) only a finite number of times in any finite time interval, where

the number of moves can depend on the sample path of the shock process as well as

the action paths of the other agents. Frictionality excludes the strategy in example

2. It also rules out flow moves.

Traceability and frictionality restrict the strategy space for each agent. Note that

these conditions are defined in terms of the strategy of an individual agent as opposed

to the strategy profile of all agents. In addition, observe that these conditions impose

requirements on a strategy not only after the null history but after every history up

to any time. We can now state a main result.18

18The statement of theorem 1 is cumbersome, but it is inevitably so. For example, we cannot
simplify the statement of the theorem by making reference to the conditional probability of an event
given the history ku up to time u because the action path {(bjt )j∈I}t∈[0,u) of the agents up to time
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Theorem 1. Choose any profile (πj)j∈I of strategies that satisfy traceability and fric-

tionality. Choose any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u.

1. Given that {st}t∈[0,u] = {gt}t∈[0,u], there is conditional probability one that there

exists a unique profile ({ajt}t∈[0,T ))j∈I of action paths with {ajt}t∈[0,T ) ∈ Γj({bjt}t∈[0,u))

for each j ∈ I such that the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi

for each i ∈ I at every t ∈ [u, T ).

2. Given that {st}t∈[0,u] = {gt}t∈[0,u], there is conditional probability one that the

action paths in the first part of the theorem satisfy {ajt}t∈[0,T ) ∈ Ξj(u) for each

j ∈ I.

To paraphrase, suppose that each agent uses a strategy that satisfies the restric-

tions. For any realization of the shock process following a history up to a given time,

the game has a unique action path. Moreover, the action path is such that there is

only a finite number of non-z actions in any finite time interval. The proof entails the

following complication. The strategies of an agent’s opponents can specify actions

that depend on the agent’s behavior. However, the definitions of traceability and

frictionality refer not to the opponents’ strategies, but only to the opponents’ action

paths. Thus, the existence and uniqueness of action paths consistent with a given

strategy profile are not immediate consequences of these assumptions. Indeed, there

may exist a profile of traceable strategies such that no history is consistent with all

agents’ strategies at all times.19 The proof of theorem 1 employs frictionality as well

to identify one by one each time a non-z action is taken, utilizing the two restrictions

at every step.

Hereafter, we restrict attention to strategies that satisfy traceability and friction-

ality. Henceforth, let ΠTF
i denote the set consisting of every traceable and frictional

strategy for agent i. Below we comment on the consequences of relaxing the friction-

ality assumption.

Remark 1. (Weak frictionality and existence of a unique outcome) Fric-

tionality requires that for any action path of the other agents, an agent moves only

u, which is part of ku, cannot be treated as a well defined random variable at this point. Hence, we
first fix the history ku in the statement of the theorem and then consider the conditional expectation
given the shock process {st}t∈[0,u] up to time u.

19See the online appendix for an example of such a strategy profile.
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finitely many times in a finite interval of time. A less restrictive way to specify fric-

tionality is to impose this requirement only when the other agents move just finitely

often in a finite time interval. Formally, a strategy is weakly frictional if it meets

the definition of frictionality when W FR
i (ku) is restricted to be the set of all ω ∈ Ω

such that {ait}t∈[0,T ) ∈ Ξi(u) for all {ait}t∈[0,T ) ∈ Γi({bit}t∈[0,u)) such that there exists

{a−it }t∈[0,T ) ∈ Γ−i({b−it }t∈[0,u))∩Ξ−i(u) for which the history h = {st(ω), (ajt)j∈I}t∈[0,T )

is consistent with πi at each t ∈ [u, T ).

Suppose first that all the agents use traceable and weakly frictional strategies.

Then the resulting path of play may not be unique. For instance, the strategies in

example 2 satisfy traceability and weak frictionality, but there are multiple action

paths consistent with this strategy profile. Suppose next that all the agents use

traceable and weakly frictional strategies and no more than one agent uses a strategy

that is not frictional. Then both items in theorem 1 continue to hold.20 In particular,

the continuation path at any history up to a given time is unique, with each agent

moving only finitely many times in any finite time interval. This is a useful extension

because it enables modelling situations where one agent quickly responds to every

move by another agent (see section 5.2 for an example).

3.3 Comparison with Previous Literature

A question is how traceability and frictionality relate to restrictions on the strategy

space that were previously developed for a deterministic setting. Comparing our

methodology to existing approaches helps to assess how robust it is and clarify what

its limits may be. One condition is inertia from Bergin and MacLeod (1993), which

requires agents to wait for a certain interval of time after changing actions. A suitable

application of their restriction to our model would eliminate pathologies related to

the nonexistence or nonuniqueness of the path of play. The inertia condition might

be extended to a stochastic environment in at least two ways.

One definition involves imposing inertia uniformly at each history. This version

of the condition requires that given any history ht up to an arbitrary time t, there

exists ε > 0 such that an agent does not move in the time interval (t, t + ε), where

ε cannot depend on the realization of the shock process {sτ}τ∈(t,∞) after time t.

Formally, a strategy πi ∈ Πi is said to be uniformly inertial if for every history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u, there exists ε > 0 such that πi(hτ ) = z

20The proof is in appendix A.1.
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for all τ ∈ (u, u + ε) and every history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

with {st}t∈[0,u] =

{gt}t∈[0,u] and {ajt}t∈[0,u) = {bjt}t∈[0,u) for all j ∈ I. Nonetheless, this approach is too

restrictive in the current setting. For instance, in the tree harvesting problem (section

5.1), the optimal behavior of the agents is such that for every ε > 0, there is positive

conditional probability of the agents cutting trees in the time interval (u, u+ ε) given

that the agents cut trees at time u. This violates the uniform inertia condition, which

requires that if the agents cut trees at time u, then there exists ε > 0 such that they

do not cut trees during the time interval (u, u+ ε).

Another approach would be to apply inertia pathwise from each history. For-

mally, a strategy πi ∈ Πi is said to be pathwise inertial if for every history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u and any realization {gt}t∈(u,T ) of the

shock process after time u, there exists ε > 0 such that πi(hτ ) = z for all τ ∈ (u, u+ε)

and every history h =
{
gt, (a

j
t)j∈I

}
t∈[0,T )

with {ajt}t∈[0,u) = {bjt}t∈[0,u) for all j ∈ I. In

other words, for every history ht up to an arbitrary time t and any realization of the

shock process {sτ}τ∈(t,∞) after time t, there is required to exist ε > 0 such that an

agent does not move in the time interval (t, t+ε).21 This formulation enables arbitrar-

ily quick responses to changes in the shock level. However, it does not in itself ensure

measurability of the path of play in a stochastic setting. Some additional restriction

is needed, but the iterative procedure that we use to prove theorem 2 would not be

applicable if the traceability and frictionality restrictions were replaced with either

version of inertia.22 Example 8 in section 4.1 describes a strategy profile satisfying

both versions of inertia (as well as traceability and frictionality) while the resulting

behavior is not measurable.

Irrespective of whether the former or the latter version of inertia is used, the set

of strategies satisfying inertia is neither a subset nor a superset of the set of traceable

and frictional strategies. As the result below states, even the pathwise formulation

of inertia would imply traceability if applied to the current setting because inertia

guarantees the existence of a history consistent with a given strategy at each time.

21This condition could be modified so that zero probability events would never cause it to be
violated. In particular, we could require that for every history ht up to an arbitrary time t, there
is conditional probability one given {sτ}τ∈[0,t] of {sτ}τ∈(t,T ) being such that there exists ε > 0 for
which an agent does not move in the time interval (t, t+ ε). However, such a redefinition would not
affect the analysis of the applications that we present, particularly given that diffusion processes are
modelled as a canonical Brownian motion as explained in footnote 38.

22For this reason, it is unclear to us whether calculability in conjunction with either uniform or
pathwise inertia would ensure that the action processes of the agents are measurable.
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Proposition 1. Any pathwise inertial strategy is traceable.

The next example shows that frictionality is not satisfied by even the uniform

specification of inertia because inertia allows for some strategies that induce infinitely

many moves in a finite time interval.

Example 3. (Uniform inertia does not imply frictionality) Suppose that

Āi(ht) = {x, z} for every ht ∈ H. Consider the strategy in which agent i chooses

x if and only if the current time t is such that t = 1− 1/2m for some positive integer

m. This strategy satisfies uniform inertia because for any time t, agent i does not

move in the time interval (t,∞) if t ≥ 1, and agent i does not move in the time

interval (t, 1 − 1/2l) if t < 1, where l is the least integer k such that 1 − 1/2k > t.

This strategy violates frictionality because any history consistent with it is such that

agent i moves at each of the infinitely many times t < 1 at which t = 1 − 1/2m for

some positive integer m.

There also exist traceable and frictional strategies that do not satisfy even the

pathwise definition of inertia. In particular, inertia eliminates some traceable and

frictional strategies in which the response time of one agent varies with the actions

of another agent. An example of such a strategy is given below.

Example 4. (Traceability and frictionality do not imply pathwise inertia)

Suppose I = {1, 2} and that Āi(ht) = {x, z} for each i ∈ I and every ht ∈ H.

Consider the strategy π̃i in which for any t > 0, agent i chooses x at time t if and

only if agent i has not chosen x before time t, agent −i has chosen x at time t/2, and

agent −i has not chosen x before time t/2. The strategy π̃i does not satisfy pathwise

inertia because for any ε > 0, there exists a history consistent with this strategy in

which agent i chooses x at time ε/2 and agent −i chooses x at time ε/4.

We argue that π̃i satisfies traceability and frictionality. Choose any history up to

an arbitrary time u as well as any action path for agent −i. If there exists a least

time t̃−i such that agent −i chooses x, if t̃−i satisfies 2t̃−i ≥ u, and if x is not chosen

by agent i before time u, then a history h is consistent with π̃i from time u onwards if

and only if h is such that x is chosen by agent i at time 2t̃−i and z is chosen by agent

i at every other time t ≥ u. Otherwise, a history h is consistent with π̃i from time u

onwards if and only if h is such that z is chosen by agent i at every time t ≥ u. Since

there exists a history consistent with π̃i at and after time u and in any such history
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x is chosen by agent i at most once during this interval, the strategy π̃i is traceable

and frictional.

Another condition specified for deterministic models is admissibility in Simon and

Stinchcombe (1989), which would ensure the existence of a unique path of play if

appropriately applied to our framework. This condition comprises three restrictions

that we explain in what follows. The first is F1, which bounds the number of moves

a strategy can induce. One approach to extending F1 to a stochastic setting is to

impose the bound uniformly. Formally, a strategy πi ∈ Πi satisfies uniform F1 if for

any time ũ ∈ [0, T ), there exists an integer m such that the following holds. Choose

any history of the form h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

as well as any time û ∈ [0, ũ] such that

h is consistent with πi for t ∈ [û, ũ]. Suppose that the set consisting of each time

t < û such that ait 6= z is nonempty and has a maximum denoted by u. If πi(hu) = aiu

and there are at least m distinct values of t < û such that ait 6= z, then ait = z for

t ∈ [û, ũ].

An alternative is to specify the requirement pathwise. Formally, a strategy πi ∈ Πi

satisfies pathwise F1 if for any realization {gt}t∈[0,T ) of the shock process as well as

any time ũ ∈ [0, T ), there exists an integer m such that the following holds. Choose

any history of the form h =
{
gt, (a

j
t)j∈I

}
t∈[0,T )

as well as any time û ∈ [0, ũ] such that

h is consistent with πi for t ∈ [û, ũ]. Suppose that the set consisting of each time

t < û such that ait 6= z is nonempty and has a maximum denoted by u. If πi(hu) = aiu

and there are at least m distinct values of t < û such that ait 6= z, then ait = z for

t ∈ [û, ũ].

Intuitively, a strategy for agent i satisfies uniform F1 if for any finite interval of

time, there exists an upper bound on the number of times agent i can move during

that time interval. If, however, the bound has been reached or exceeded due to a

deviation by agent i, then agent i is permitted to move at most one more time. The

pathwise version of F1 is defined similarly except that the bound on the number of

moves in each interval of time can also depend on the sample path of the shock process.

The uniform version of F1 rules out some applications of interest. For example, the

maximal equilibrium of the tree harvesting problem (section 5.1) is such that given

any proper interval of time along with a nonnegative integer m, there is positive

probability that trees are cut more than m times during this interval. Pathwise F1

is less restrictive, but does not cover every situation. For example, the equilibrium

of the supply chain example (section 5.2) is such that given any proper interval of
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time and any price path along with a nonnegative integer m, there exists a history

consistent with the strategy of the oil refinery in which it processes more than m

batches of oil during this interval in response to oil being extracted more than m

times.

The second criterion for admissibility is F2, which requires a strategy to in-

duce a well defined action path when the other agents do not move in the fu-

ture. Formally, a strategy satisfies F2 if the following holds. Choose any history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u. Given that {st}t∈[0,u] = {gt}t∈[0,u],

there is conditional probability one that for any {a−it }t∈[0,T ) ∈ Γ−i({b−it }t∈[0,u)) such

that ajt = z for all t > u and j 6= i, there exists a unique action path {ait}t∈[0,T ) ∈
Γi({bit}t∈[0,u)) for which the history h =

{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi at each

t ∈ [u, T ), and this action path satisfies {ait}t∈[0,T ) ∈ Ξi(u). Intuitively, a strategy for

agent i satisfies F2 if there exists a unique history that is consistent with the strategy

when the other agents do not move in the future and this history is such that agent

i moves only finitely many times in any finite time interval in the future.

The third requirement is F3, which imposes a special form of continuity on strate-

gies. In particular, if one history up to a given time specifies the same moves as

another history but at times that are just slightly greater, then an agent is required

to take the same action at these two histories. This condition is violated by the

solutions to all the applications in section 5 and the online appendix except for the

ones in sections 5.3 and 5.4.23 However, Simon and Stinchcombe (1989) note that

this condition is not needed to prove the existence and uniqueness of an outcome

consistent with a given strategy profile. It is used only to relate continuous-time

outcomes to the limits of outcomes in discrete-time games.24 For our purposes, we

define uniformly admissible strategies as those that satisfy uniform F1 and F2 and

pathwise admissible strategies as those that satisfy pathwise F1 and F2.

The result below shows that pathwise and hence also uniform F1 imply friction-

23For instance, consider two histories up to a given time specifying the same moves but at slightly
different times, where one history but not the other is on the equilibrium path of play. If an
equilibrium in grim-trigger strategies is played as in section 5.1, then the behavior prescribed by
these strategies may differ between these two histories.

24Since traceability and frictionality do not imply F3, the approach in Simon and Stinchcombe
(1989) cannot easily be extended to relate the continuous-time equilibria that we consider to the
equilibria of a discretized version of the game that is played on an increasingly fine grid. We believe
this should not be considered a deficiency as continuous-time and discrete-time methods involve
different models that do not necessarily have the same implications, and it is unclear a priori which
approach is more plausible.
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ality and that F2 implies traceability. Intuitively, suppose that agent i plays an

admissible strategy πi and that the other agents do not move in the future. Then

F2 guarantees the existence of an action path for agent i that is consistent with πi.

Hence, traceability is satisfied. Moreover, both uniform and pathwise F1 ensure that

πi induces only finitely many moves in any finite interval of time. Hence, frictionality

is satisfied.

Proposition 2. If πi satisfies pathwise F1, then πi is frictional. If πi satisfies F2,

then πi is traceable.

Hence, the set of admissible strategies, regardless of whether defined pathwise or

uniformly, is a subset of the set of traceable and frictional strategies. The converse

of this result does not hold for two reasons. First, not only do both versions of

property F1 apply on the path of play, but they also place important restrictions on

the behavior of the agents off the path of play. In particular, if an agent violates the

upper bound on the number of moves in an interval of time because of a deviation,

then the agent can move only once more in that interval. As the example below

illustrates, this rules out some simple strategies that require an agent always to move

at specified times.

Example 5. (Strategy violating pathwise F1 off the path of play) Suppose

that Āi(ht) = {x, z} for every ht ∈ H. Consider the following strategy π̃i. Let t′ and

t′′ be any two times with t′′ > t′ > 0. Agent i chooses x if and only if the time is

currently t′ or t′′. Note that π̃i is traceable and frictional. For any positive integer m,

let hm be a history in which agent i chooses x if and only if the time is equal to t′′ or

to t′ · k/m for some positive integer k ≤ m. The history hm is consistent with π̃i at

time t′, but there is no value of m such that π̃i(h
m
t′′) = z. Hence, strategy π̃i does not

satisfy pathwise F1.

Second, both versions of F1 preclude some traceable and frictional strategies in

which the number of moves by one agent varies with the timing of moves by an-

other agent. Below is an example of a traceable and frictional strategy that violates

pathwise F1, even when it is applied only on the path of play.

Example 6. (Traceability and frictionality do not imply pathwise F1) Sup-

pose I = {1, 2} and that Āi(ht) = {x, z} for each i ∈ I and every ht ∈ H. Consider

the following strategy π̃i. Agent i does not choose x at any time in the interval [0, 1].
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If there exists a positive integer m such that agent −i chooses x at time 1/m and

agent −i chooses z at every time t < 1 such that t 6= 1/m, then agent i chooses x at

time t > 1 if and only if there exists a positive integer k ≤ m such that t = 1 + k/m.

Otherwise, agent i chooses z at each time t > 1. This strategy does not satisfy path-

wise F1 because for every integer m > 0, there exists a history consistent with this

strategy in which agent −i chooses x at time 1/m and agent i chooses x at m distinct

times during the interval (1, 2], meaning that there is no upper bound on the number

of moves by agent i in this interval.

We argue that π̃i satisfies traceability and frictionality. Choose any history up to

an arbitrary time u as well as any action path for agent −i. If there exists an integer

m > 0 such that agent −i chooses x at time 1/m and agent −i does not choose x at

any time t < 1 such that t 6= 1/m, then a history h is consistent with π̃i from time u

onwards if and only if h is such that x is chosen by agent i at every time t ≥ u for

which there exists a positive integer k ≤ m such that t = 1 + k/m and z is chosen

by agent i at every other time t ≥ u. Otherwise, a history h is consistent with π̃i

from time u onwards if and only if h is such that z is chosen by agent i at every time

t ≥ u. Since there exists a history consistent with π̃i at and after time u and in any

such history x is chosen by agent i finitely many times during this interval of time,

the strategy π̃i is traceable and frictional.

Traceability alone does not imply F2. Although example 2 satisfies F2, this re-

striction is violated by the following single-agent variant of that example. There exist

traceable strategies that induce more than one path of play or an action path with

infinitely many moves in a finite interval of time.

Example 7. (Traceable strategy violating F2) Suppose that Āi(ht) = {x, z} for

every ht ∈ H. Consider the traceable strategy π̃i defined as follows. If the current

time t is equal to 1/k for some positive integer k and agent i has chosen action x at

time 1/m for every positive integer m greater than k, then agent i chooses x at time

t. Otherwise, agent i chooses z. A history h is consistent with π̃i if agent i chooses

z at all times or if agent i chooses x if and only if the current time t is equal to 1/k

for some positive integer k. Noting that there exists more than one history consistent

with π̃i (including one in which agent i moves infinitely many times in a finite interval

of time), π̃i does not satisfy F2.

When taken together, traceability and frictionality imply F2, as the result below
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shows. Intuitively, suppose that agent i plays a traceable and frictional strategy πi

and that each of the other agents does not move in the future, which is also a traceable

and frictional strategy. By theorem 1, there exists a unique action path for agent i

that is consistent with πi and this action path specifies only finitely many moves in

any finite time interval. Hence, F2 is satisfied. This result and its proof also hold if

the frictionality requirement is relaxed to weak frictionality as defined in remark 1.

Proposition 3. Any traceable and frictional strategy satisfies F2.

Finally, there are uniformly and pathwise admissible strategies, like π̃1 in example

8, that may not induce measurable behavior. A further restriction is necessary, as

discussed in the next section.

4 Measurability of the Action Process

4.1 An Example

Another matter concerning the specification of the model involves the measurability

of the path of play. This issue causes little trouble in nonstochastic situations in-

cluding Bergin and MacLeod (1993) and Simon and Stinchcombe (1989). Indeed, if

there were no uncertainty about the shock level, then constraints such as traceabil-

ity and frictionality would be enough to define the payoff to each agent. However,

the stochastic nature of the shock complicates matters since agents can condition

their behavior on moves by Nature. In order to compute expected payoffs, the action

process should be progressively measurable.

In discrete time, it is relatively uncomplicated to specify a game so that the path

of play is measurable. The analyst can simply require the strategies of the agents to

be measurable functions from the history up to each time to the actions at that time.

Under such an assumption, if the path of play is measurable up to and including

any given time, then the behavior of the agents will be measurable in the following

period as well. Hence, the measurability of the path of play up to every time can be

shown by induction. In continuous time, however, such an iterative procedure is not

applicable because the next period after any given time is not well defined.

In continuous-time games with imperfect monitoring like Sannikov (2007), it is

again unproblematic to define the strategy space so as to ensure the measurability

of the actions taken by agents. The strategy of each agent can be specified as a

stochastic process that is progressively measurable with respect to an exogenously
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given filtration. Nonetheless, this task is less straightforward in the current context

where the actions induced by an agent’s strategy may or may not be measurable

depending on the other agents’ behavior. The example below demonstrates this sort

of interdependence in terms of the measurability of actions.

Example 8. (Actions induced by a strategy may or may not be measurable)

Let {st}t∈[0,∞) be an arbitrary stochastic process with state space S ⊆ R++. Assume

that there exists S̃ ⊆ S along with t̃ > 0 such that {ω ∈ Ω : st̃(ω) ∈ S̃} is not a

measurable subset of the probability space (Ω,F , P ).25 Suppose I = {1, 2} and that

Āi(ht) = {x, z} for each i ∈ I and every ht ∈ H.

Suppose that agent 1 plays the strategy π̃1 defined as follows. If agent 2 chooses

z at time t̃ > 0, then agent 1 is required to choose x at time 2t̃. Otherwise, agent 1 is

required to choose x at time 2t̃ if the shock st̃ at time t̃ is in the set S̃ and to choose

x at time t̃ + st̃ if the shock st̃ at time t̃ is not in the set S̃. Suppose that agent 2

plays the strategy π̃2 defined as follows. Agent 2 is required to choose x at time t̃. If

agent 1 chooses x at time 2t̃, then agent 2 is required to choose x at time 3t̃. The

agents do not take action x except as specified above.

For i ∈ {1, 2} and t ∈ [0, T ), the action ait of agent i at time t can be treated as a

function from the probability space (Ω,F , P ) to {x, z}. Even if the action a2
t of agent

2 is measurable at each time t ∈ [0, T ), the strategy π̃1 can induce a nonmeasurable

action a1
2t̃

by agent 1 at time 2t̃. By contrast, the strategy π̃2 induces a measurable

action a2
t by agent 2 at every time t ∈ [0, T ), unless the action a1

2t̃
of agent 1 at time

2t̃ is nonmeasurable.

In the ensuing analysis, we seek to eliminate strategies like π̃1 because such strate-

gies can generate nonmeasurable behavior by one agent even if the actions of the other

agents are measurable. Nonetheless, we wish to retain strategies like π̃2 that ensure

the measurability of one agent’s actions given the measurability of the other agents’

actions.

The following two simple ways of restricting the strategy space do not succeed in

removing π̃1 while retaining π̃2, which is why we introduce a more complex procedure

in section 4.2. First, suppose that we delete strategies such that for some strategy of

one’s opponent, one’s behavior is not measurable. However, this would rule out both

25For instance, let the probability space be the interval (0, 1) with the Borel sigma-algebra and
the Lebesgue measure, and let the state space be the interval (0, 1). Suppose that st̃ is the uniform
random variable defined by st̃(ω) = ω. Then a Vitali set can be used to provide an example of S̃.
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π̃1 and π̃2. Second, suppose that we delete strategies such that for every strategy

of one’s opponent, one’s behavior is not measurable. However, this would rule out

neither π̃1 nor π̃2.

4.2 Two-Step Procedure

In order to suitably phrase the definition, a two-step procedure is adopted. We first

specify a very restrictive set of strategies that always induce measurable behavior,

and the first set is then used to construct a more inclusive second set. The elements

of the resulting strategy space are said to be calculable.

We begin by providing a formal definition of the action processes. Let π = (πj)j∈I

with πj ∈ ΠTF
j for j ∈ I be a profile of traceable and frictional strategies. Choose

an arbitrary time u. Fix any path {(bjt)j∈I}t∈[0,u) of actions for the agents up to this

time. Define the history up to time u by ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
, where

{gt}t∈[0,u] is any realization of shock levels from time 0 to u. Given that {st}t∈[0,u] =

{gt}t∈[0,u], let
(
{φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T )

)
j∈I with {φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T ) ∈

Γj({bjt}t∈[0,u)) for each j ∈ I be a profile of action paths for which the history{
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at every

t ∈ [u, T ). According to theorem 1, such a profile of action paths exists and is

unique with conditional probability one. Furthermore, these action paths satisfy

{φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T ) ∈ Ξj(u) for each j ∈ I with conditional probability one.

Denoting b = {(bjt)j∈I}t∈[0,u) and π = (πj)j∈I , the action process ξib(π) for i ∈ I
represents the stochastic process defined as follows. At any time t ∈ [0, u), ξib(π) = z

holds. Let g̃ = {g̃t}t∈[0,u] represent the realization of shock levels until time u, and

denote the resulting history up to time u by k̃u = (g̃, b). Given the realization of the

shock {sτ}τ∈(u,T ) after time u, ξib(π1, π2) = φit(k̃u, {sτ}τ∈(u,T ), π) holds at each time

t ∈ [u, T ). The state space of ξib(π) is Ai with sigma-algebra B(Ai). To paraphrase, let

b signify any path of actions for the agents up to an arbitrary time u. The stochastic

process ξib(π) is simply equal to z up to this time. Thereafter, ξib(π) records the actions

chosen by agent i when the strategy profile π is played.26

We now restrict the strategy space so as to ensure the progressive measurability

26For simplicity in defining the process ξib(π), we consider the continuation path of play for each
agent i under strategy profile π when the agents follow the fixed action path b up to time u. The
results in this section would not change under an alternative definition in which at a history ku up
to time u on the path of play of π, we instead consider the continuation path of play under π when
the agents follow strategy profile π up to time u.
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of the action processes.

First step: quantitative strategies

The first step is to define a set of traceable and frictional strategies that induce

measurable behavior by one agent whenever the other agents play traceable and

frictional strategies. The elements of this set are said to be quantitative.

Definition 4. For i ∈ I, the strategy πi ∈ ΠTF
i is quantitative if it belongs to

the set ΠQ
i consisting of any πi ∈ ΠTF

i such that the stochastic process ξib(πi, π−i) is

progressively measurable for all b and every π−i ∈ ΠTF
−i .

The composition of the set ΠQ
i can vary with the specification of the shock process.

It contains traceable and frictional strategies that depend neither on the realized

values of the shock process nor on the actions of one’s opponents. An example of

a quantitative strategy would be the strategy that requires agent i to choose action

x 6= z at time 1 regardless of the actions of agents −i and that specifies action z by

agent i at other times. As shown in the online appendix, the set ΠQ
i may also contain

some strategies that are contingent on the realization of the shock and the behavior

of one’s opponents. Nonetheless, the set ΠQ
i is extremely restrictive as a strategy

space. In particular, the strategies π̃1 and π̃2 in example 8 are both excluded.

Second step: calculable strategies

The second step is to define a set of traceable and frictional strategies that in-

duce measurable behavior by one agent whenever the other agents play quantitative

strategies. That is, the set ΠQ
i is used to construct a larger strategy space ΠC

i , the

elements of which are said to be calculable.

Definition 5. For i ∈ I, the strategy πi ∈ ΠTF
i is calculable if it belongs to the

set ΠC
i consisting of any πi ∈ ΠTF

i such that the stochastic process ξib(πi, π−i) is

progressively measurable for all b and every π−i ∈ ΠQ
−i.

The strategy space ΠC
i admits a relatively broad range of behavior. It allows for

strategies that depend on the actions of one’s opponents, including many grim-trigger

strategies. For example, consider the strategy that requires agent i to choose action

x at time 2 if and only if all the other agents choose action x at time 1 and that

specifies no other non-z actions by agent i. This is a calculable strategy. If all the

opponents of i play quantitative strategies, then the action profile by those opponents
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at time 1 is a measurable function from (Ω,F1) to A−i, and so the action by agent i

at time 2 is a measurable function from (Ω,F2) to Ai.

The result below shows that restricting the strategy space ensures measurable be-

havior. If each agent plays a calculable strategy, then the stochastic process encoding

the actions of each agent is progressively measurable.

Theorem 2. If πi ∈ ΠC
i for i ∈ I, then the stochastic process ξib(πi, π−i) is progres-

sively measurable for all b and each i ∈ I.

An iterative argument is used to establish the preceding result. Let (πi, π−i) be

a profile of calculable strategies, and let b denote the past actions of the agents. We

start by constructing a progressively measurable stochastic process that is the same

as ξib(πi, π−i) up to and including the time of the first non-z action by some agent.

We then do the same for the second non-z action, the third non-z action, and so on.27

Intuitively, if no agent has chosen a non-z action yet, then it is as if each agent’s

opponents are following the strategy of always choosing z, which belongs to the set

ΠQ
−i. Hence, if an agent is using a strategy in ΠC

i , then its action process will satisfy

the requirements for progressive measurability up to and including the time when a

non-z action is chosen.28

The final result justifies our restriction on strategies. In order to guarantee the

measurability of the action process, we seek to eliminate strategies that generate

nonmeasurable behavior. There is no obvious reason to delete a quantitative strategy

because it induces measurable actions virtually regardless of the strategies played by

the other agents. Given that any strategy in ΠQ
i is permitted, the set ΠC

i of calculable

strategies is the largest strategy space for each agent that ensures the measurability

of actions.

Proposition 4. For each i ∈ I, let Ψi be any strategy space with ΠQ
i ⊆ Ψi ⊆ ΠTF

i .

Suppose that the stochastic process ξib(π) is progressively measurable for all b, any

π ∈ ×j∈IΨj, and each i ∈ I. Then Ψi ⊆ ΠC
i for i ∈ I.

27The second part of theorem 1 implies that, with probability one, the time of the kth non-z
action is well defined for every positive integer k.

28The set of calculable strategies cannot be defined using wording similar to the traceability and
frictionality assumptions. In particular, suppose that agent i is simply required to play a strategy
that for any action path of the opponents, induces a progressively measurable action process for
agent i. If the opponents play quantitative strategies, then agent i’s action process may not be
progressively measurable because, for example, the time of a non-z action by agent i may depend
on the opponents choosing non-z actions at some time in a nonmeasurable set.
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The logic is simple. Suppose that agent i uses some non-calculable strategy π′i.

By definition, there exists a quantitative strategy π′−i such that the actions of agent

i may not be progressively measurable when i’s opponents play π′−i. Hence, measur-

able behavior is not ensured if agent i can use some non-calculable strategy and the

opponents can play any quantitative strategies.

The remainder of the paper considers for each i ∈ I primarily strategies in ΠC
i .

4.3 Expected Payoffs

This section defines expected payoffs and equilibrium concepts. For each i ∈ I,

let vi : (×j∈IAj) × S → R be a measurable utility function. Choose any history

h = {sτ , (ajτ )j∈I}τ∈[0,T ) such that {ajτ}τ∈[0,T ) ∈ Ξj(t) for each j ∈ I. The realized

payoff to agent i at time t is given by:

V i
t (h) =

∑
τ∈Mt(h)

vi[(a
j
τ )j∈I , sτ ],

where the set Mt(h) = {τ ∈ [t, T ) : ∃ j s.t. ajτ 6= z} represents the set of times from

t onwards at which some agent moves under the given history.29

That is, the payoff is the sum of discrete utilities from the times at which at

least one agent chooses an action other than z.30 It follows from the second part of

theorem 1 that, with probability one, the number of non-z actions chosen by each

agent is countable. Note also that discounting is not explicitly modeled. However, if

one wishes, it can be modelled by including the current time as part of the shock.31

For example, there may exist wi such that vi[(a
j
τ )j∈I , sτ ] = e−ρτwi[(a

j
τ )j∈I ]. We also

29The model can be extended to allow the utility function vi to depend on the time t at which
the payoff is calculated. Such an extension, which would allow for time-inconsistent behavior, would
leave the analysis in this section essentially unchanged.

30The specification of the realized payoff reflects the normalization that for each element of S, the
discrete utility from the action profile in which all agents choose z is 0. The model could be extended
to allow the action profile in which all agents choose z to generate a flow utility for each agent that
depends arbitrarily on the shock process. Such an extension would not affect the equilibria of the
model in calculable strategies as long as the value of this flow utility does not depend on the past
actions of the agents.

31In the applications in section 5 and the online appendix, the shock is formally defined to include
calendar time as one of its components.
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define:

V i,p
t (h) =

∑
τ∈Mt(h)

max{0, vi[(ajτ )j∈I , sτ ]} and V i,n
t (h) =

∑
τ∈Mt(h)

min{0, vi[(ajτ )j∈I , sτ ]},

whence the realized payoff can be expressed as V i
t (h) = V i,p

t (h) + V i,n
t (h).

Under the preceding specification, no agent experiences a flow payoff. However,

some of our examples in the online appendix illustrate how a game can be straight-

forwardly reformulated so that agents experience a stream of flow payoffs. We also

interpret the different formulations, explaining how they emphasize different features

of the economic setting.

Let Π̄TF
i = ΠTF

i ∩ Π̄i denote the set of strategies for each agent i ∈ I that are

feasible as well as traceable and frictional. The space of sample paths of {st}t∈[0,u)

is equipped with an arbitrary sigma-algebra A. We impose the following one-sided

boundedness condition.32 For any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to

time u and any strategy profile π ∈ ×j∈IΠ̄TF
j such that the process ξib(π) with b =

{(bjt)j∈I}t∈[0,u) is progressively measurable for all i ∈ I, we have either V p
i (ku, π) <∞

or V n
i (ku, π) > −∞ for every i ∈ I, where we define for o ∈ {n, p}:

V o
i (ku, π) =

E{st}t∈(u,T )

[
V i,o
u

({
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

)
|{st}t∈[0,u] = {gt}t∈[0,u]

]
.

The conditional expectation is taken with respect to {st}t∈(u,T ) given that {st}t∈[0,u] =

{gt}t∈[0,u].
33

The expected payoff to agent i at ku is specified as:

Vi(ku, π) = V p
i (ku, π) + V n

i (ku, π). (1)

Let Π̄C
i = ΠC

i ∩ Π̄i denote the set of strategies for each agent i ∈ I that are feasible as

well as calculable. For any π ∈ ×j∈IΠ̄C
j , the expected payoff is well defined because

32All of the applications considered in section 5 and the online appendix satisfy this property.
33The following property is sufficient for the one-sided boundedness condition to hold. For

any u, letting H̄ denote the set consisting of every history h = {st, (ait)i∈I}t∈[0,T ) such that

{ait}t∈[0,T ) ∈ Ξi(u) for each i ∈ I and such that ait ∈ Āi
(
{sτ}τ∈[0,t], {(ajτ )j∈I}τ∈[0,t)

)
for all

t ≥ [u, T ) and each i ∈ I, we have either suph∈H̄
∑
t∈Mu(h) max{0, vi[(ajt )j∈I , st]} < ∞ or

infh∈H̄
∑
t∈Mu(h) min{0, vi[(ajt )j∈I , st]} > −∞ for every i ∈ I.
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theorem 1 implies that the realized payoff can be uniquely computed with conditional

probability one, and theorem 2 along with the one-sided boundedness property ensures

the existence of the conditional expectation.

A potential issue is the nonuniqueness of the conditional expectation, which is a

function from the sample space Ω to the set of sample paths of {st}t∈[0,u). Math-

ematically, any two conditional expectation functions that differ on a set of proba-

bility measure zero may be regarded as the same random variable. This ambiguity

is resolved for each strategy profile π ∈ ×j∈IΠ̄C
j and every time u by choosing any

conditional expectation function and holding this choice fixed. The expected payoff

Vi(ku, π) can thereby be specified uniquely for each π and every ku. This enables us

to use a sure version of optimality instead of an almost sure notion when defining an

equilibrium.

Having specified the expected payoffs, we can now define subgame-perfect equi-

librium (SPE). Formally, a strategy profile π with πj ∈ Π̄C
j for j ∈ I is a subgame-

perfect equilibrium if for any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time

u, the expected payoff to agent i ∈ I at ku satisfies Vi(ku, π) ≥ Vi[ku, (π
′
i, π−i)] for any

π′i ∈ Π̄C
i .34 Although proving the existence of an SPE is difficult in general because

of the complexity of the strategy space that we consider, we show that an SPE exists

in all of the applications that we analyze in section 5 and the online appendix.35

5 Applications

The four examples in this section and the five additional ones in the online appendix

illustrate the applicability of our methodology to a broad range of settings. The ex-

istence of a unique solution to each model facilitates the derivation of comparative

statics, which demonstrates that our methodology enables substantive economic anal-

ysis. Although other methods could be used to analyze each specific application, our

point is that our method simultaneously covers all of the examples that we present,

hence providing a unified approach to a variety of stochastic continuous-time games.

Moreover, even though the equilibria we study often involve Markov strategies, it is

34The online appendix provides an alternative but equivalent definition that simplifies checking
whether a strategy profile is an SPE given the restrictions on the strategy space. This definition is
useful in applications because it provides a simpler alternative to determining whether a potential
deviating strategy is traceable, frictional, and calculable.

35This issue is not specific to our approach: for example, Simon and Stinchcombe (1989) and
Bergin and MacLeod (1993) do not demonstrate the existence of equilibria in their general model.
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not sufficient, as explained in section 3.1, to restrict attention to Markov strategies

for strategy spaces to be well defined. These applications also illustrate how to adapt

our framework to accommodate particular situations that are seemingly beyond the

scope of its assumptions.36

More specifically, in each application, we compare our restrictions with existing

conditions that have been developed in the literature for a deterministic environment.

We explain this comparison in detail for the first two examples, in which existing

conditions are most problematic to apply. The uniform version of the inertia condition

from Bergin and MacLeod (1993) is not satisfied in any application, and pathwise

inertia is violated in section 5.2. As for the admissibility restriction of Simon and

Stinchcombe (1989), uniform F1 does not hold except in sections 5.3 and 5.4 and

in one example in the online appendix. Moreover, pathwise F1 is violated by the

example in section 5.2 and also by one of the applications in the online appendix.

While any traceable and frictional strategies have property F2, property F3 fails in

every application except those in sections 5.3 and 5.4.

It is straightforward to confirm that the equilibrium strategies we study satisfy

the calculability restriction in each application (verifying that they are traceable and

frictional is simple as well). Doing so basically involves checking that each agent’s

behavior up to and including the time of the next move is progressively measurable

given that the behavior of all the agents up to the current time is progressively

measurable and the other agents are using quantitative strategies.37 In addition, it is

possible to demonstrate that a profile of calculable strategies is an SPE without having

to determine whether potential deviating strategies satisfy all of the requirements for

calculability (see also footnote 34).

While the applications we present have not been previously studied due to the

lack of suitable techniques, the examples in sections 5.1 and 5.3 as well as those in

the online appendix where the shock follows a diffusion process can be regarded as

36For example, the action A in section 5.3 may be interpreted as a way of patching the model to
allow the agents to move sequentially at the same time. In the online appendix, we also consider an
example that involves flow payoffs and explain how it can be formulated within our framework.

37For example, consider an equilibrium in grim-trigger strategies like in section 5.1 or two of the
applications in the online appendix. Suppose that agent i plays its equilibrium strategy and the
other agents play arbitrary quantitative strategies. Then the behavior of agent i will be progres-
sively measurable up to and including the first time that one of the other agents deviates from its
equilibrium strategy, after which the behavior of agent i simply involves not moving. Since this
behavior is progressively measurable, it follows that the equilibrium strategy of agent i is calculable.
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multiplayer extensions of the single-agent model of investment under uncertainty in

McDonald and Siegel (1986).

5.1 Tree Harvesting Problem

There are n ≥ 2 woodcutters harvesting trees in a common forest. The volume of

forest resources evolves stochastically over time. It can increase due to natural growth,

which depends on the weather. It can also decrease because of damage to trees by wind

or fire. The forest is large, making it reasonable to assume that the volume follows

a continuous process. Specifically, we assume that it follows an arithmetic Brownian

motion with a lower bound of zero. Formally, let bt with b0 = 0 be a Brownian motion

having arbitrary drift µ and positive volatility σ: dbt = µdt + σdzt.
38 The volume

qt of the forest at time t is given by the greater of bt − p and 0, where p is the total

amount cut in the past. The decision to harvest trees is described in what follows.

At every moment of time t ∈ [0,∞), each woodcutter i decides whether to cut

trees and, if so, a total amount of wood from the forest to harvest eit ∈ (0, qt] as well as

an amount of wood from the harvest to claim for itself f it > 0. The woodcutters need

help from each other in order to cut trees, so that the forest is cut if and only if all the

woodcutters choose to harvest the same positive amount of wood. Suppose that at

time t, every woodcutter i chooses to harvest the total amount of wood dt > 0. Then

the utility of each woodcutter i at that time is (f it/
∑

j f
j
t )(dt − κ), which represents

the difference between the benefit and cost of cutting trees. The amount of wood from

the harvest dt and the total cost of harvesting trees κ > 0 are rationed proportionally

among the woodcutters according to the amount each of them claims.39 If the forest

is not cut at time t (which happens when not all the woodcutters choose to cut the

same positive amount of trees), then each woodcutter receives the payoff 0 at that

time. The woodcutters discount the future at rate ρ > 0.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

38In order to simplify the exposition throughout the paper, we consider the canonical version
of Brownian motion, in which every sample path is continuous, thereby reducing the need to refer
to zero probability events. For example, if it were possible for a sample path of the shock process
to be discontinuous in the application here, then a maximal equilibrium in which the path of play
is always as specified in the statement of proposition 5 might violate pathwise inertia, unless the
definition of this condition were extended as described in footnote 21.

39The analysis would not change qualitatively if each woodcutter who harvests trees were instead
required to bear the full cost κ of cutting trees.
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for each woodcutter i.40 Call this game with such strategy spaces the tree harvesting

game. It is characterized by (n, µ, σ, κ, ρ). The analysis in sections 3 and 4 implies

that an SPE is well defined. A symmetric SPE is said to be maximal if there is no

symmetric SPE that yields a higher expected payoff to each agent.

Let

x∗ = [1 + ακ+W (−e−1−ακ)]/α and x̄ = ln[n/(n− 1)]/α,

where α = (−µ+
√
µ2 + 2σ2ρ)/σ2, and W is the principal branch of the Lambert W

function.41 Assume that κ < x̄, and define x̂ = min{x∗, x̄}.

Proposition 5. The tree harvesting game has a maximal equilibrium for any (n, µ, σ, κ,

ρ). Moreover, the path of play in any maximal equilibrium is such that, with prob-

ability one, the mth cutting of trees occurs at the mth time the volume reaches x̂ for

every positive integer m, where the trees are cut to volume 0 on each cutting.

In a maximal SPE, the continuation payoff from deviation is zero, which is the

minmax payoff of each agent.42 To understand the intuition for why it is optimal

to cut the trees to zero, consider a strategy profile in which the trees are cut to the

volume y > 0 whenever they reach a volume x > y on the equilibrium path. This

policy would be dominated by one in which the trees are cut to zero when they first

reach a volume x and are thereafter cut to zero whenever they reach a volume of

x− y.

Remark 2. 1. (Relationship to inertia) In a maximal SPE, each agent’s strategy

violates uniform inertia but satisfies pathwise inertia. Consider any history up

to an arbitrary time t in which no agent has deviated in the past. For any ε > 0,

there is positive conditional probability that qτ = x̂ for some τ ∈ (t, t + ε), in

which case the agents are required to cut trees. Thus, there does not exist

ε > 0 such that the agents do not move during the time interval (t, t + ε),

meaning that uniform inertia is violated.43 However, pathwise inertia holds

given the continuity of the Brownian path. For any realization of the shock

40Formal definitions of histories and strategy spaces are provided in the online appendix.
41That is, W (−e−1−ακ) is the larger of the two values of y satisfying −e−1−ακ = yey.
42There are multiple possibilities for off-path strategies, as described in the proof of proposition

5 in the online appendix.
43Bergin and MacLeod (1993) also expand the strategy space to the completion of the set of

inertia strategies, but this extension turns out not to apply for the same reason as why the uniform
version of inertia does not. As shown in the online appendix of Kamada and Rao (2018) in the
context of their model, the outcomes of some strategy profiles of interest satisfying our restrictions
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process {bτ}τ∈(t,∞) after time t, there exists ε > 0 such that qτ 6= x̂ for all

τ ∈ (t, t + ε), in which case the agents do not move during the time interval

(t, t+ ε).

2. (Relationship to admissibility) In any maximal SPE, uniform F1 is violated

because there is no upper bound on the number of times that trees may be

harvested in any proper time interval. However, pathwise F1 would hold because

for any realization of the shock process {bτ}τ∈[0,t] up to time t, the agents are

required to harvest trees only finitely many times during the time interval [0, t].

According to proposition 3, any traceable and frictional strategy has property

F2. Nonetheless, property F3 in Simon and Stinchcombe (1989), which in some

sense requires behavior to depend continuously on the history, is violated by a

maximal equilibrium, in which agents use grim-trigger strategies where even a

small deviation incurs a large punishment.

3. (ε-optimal strategies) In the current example, the complexities of defining strat-

egy spaces in continuous time could be mitigated by focusing on a class of ε-

optimal strategies that is relatively well behaved. For example, the strategies

of the agents might be discretized so that agents can move if and only if the

current time is a multiple of η > 0, where η can be made arbitrarily small so

as to approximate the expected payoff to each player in a maximal SPE. Such

strategies would satisfy both uniform and pathwise inertia. Nevertheless, this

approach is subject to a problem of circularity. In order to determine whether a

strategy is ε-optimal, the supremum expected payoff must be computed among

a more general class of strategies such as those satisfying traceability, friction-

ality, and calculability. However, doing so requires defining expected payoffs

for such a class of strategies in the first place. This circularity problem is not

specific to this example but may arise in general when trying to restrict atten-

tion to a set of ε-optimal strategies without first having been able to compute

the expected payoffs given a larger space of strategies. We will not repeat the

same point in the subsequent examples where we solve for an optimal strategy

profile.

cannot be expressed as the limit of the outcomes generated by a Cauchy sequence of strategy profiles
satisfying the uniform version of inertia, even when the approach in Bergin and MacLeod (1993) is
extended to the stochastic case. We are currently working on a paper about the problem of generally
defining the completion of the set of inertia strategies.
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4. (Comparative statics) The cutoff x̂ is the lesser of x∗, which represents the

volume at which it is socially efficient to harvest wood, and x̄, which represents

the highest volume at which it is incentive compatible to do so.44

The threshold x∗ is increasing in µ, σ, and κ and decreasing in ρ. Intuitively,

a higher value of µ or σ reduces the time required for the forest to grow by a

given amount, and a lower value of ρ makes it less costly to postpone the gains

from harvesting wood, which makes it optimal to wait for the forest to grow to a

larger volume before cutting it. A higher value of κ means that harvesting wood

is more costly, so the associated benefits must be larger for it to be optimal to do

so. In addition, the payoff maximizing behavior as represented by x∗ does not

depend on n because the expected payoff to each agent from any given profile

of symmetric strategies is inversely proportional to the number of agents.

The threshold x̄ is increasing in µ and σ and decreasing in ρ and n. Intuitively,

a higher value of µ or σ or a lower value of ρ raises the present value of the

future benefits from cooperation by the agents in harvesting wood, and when n is

lower, each agent receives a bigger share of these benefits. This makes it possible

to enforce cooperation among the agents while harvesting a larger amount of

wood on each cutting. In addition, the incentive compatibility constraint as

represented by x̄ does not depend on κ because both the expected payoff to

each agent in a maximal equilibrium and the supremum of the expected payoffs

from a deviation are proportional to x̂− κ.

5.2 Petroleum Supply Chain

Another application of our restrictions is search models, which involve the timing of

exchanges. Opportunities to transact occur randomly over time, and an agent may

delay trade in pursuit of a better opportunity. In the current example, one agent

reacts to the behavior of another agent that is engaged in a search problem. The

equilibrium strategy of the former agent in responding to the latter agent violates

both pathwise inertia and pathwise admissibility (and hence it also violates uniform

inertia and uniform admissibility).

There are two agents: an oil well W and an oil refinery R. Let pt denote the price

of oil at time t. The price of oil changes at the jump times of a Poisson process with

44Proofs of the comparative statics results that follow are provided in the online appendix.
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parameter λ > 0. The resulting price is independently and identically distributed

according to the cumulative distribution function G on the positive real line and has

a finite expectation. Both agents discount the future at the rate ρ > 0.

The well contains a known quantity q of oil. Let xt denote the amount of oil

withdrawn before time t. At each moment in time t ∈ [0,∞), the well decides whether

to extract oil and, if so, an amount et ∈ (0, q − xt] to remove. Let c(xt) represent

the marginal cost of extracting oil when xt units have already been withdrawn, where

c : [0, q] → R+ is an increasing function. Correspondingly, the cost to the oil well

at time t of extracting the quantity et when xt is the amount that has already been

extracted is given by
∫ xt+et
xt

c(ξ)dξ.

Any oil extracted at time t is immediately transferred to the refinery, and the

refinery pays the well the amount ptet at time t. Upon receiving the input at time t, the

refinery must process it, which takes an amount of time d(et), where the measurable

function d : (0, q] → R++ satisfies lime↓0 d(e) = 0. Let f(et) ≥ 0 represent the

associated processing costs discounted to time t. Having finished processing the oil

received at time t, the refinery decides at each time τ ≥ t + d(et) whether or not to

deliver the output to a customer, if it has not done so already.

The refinery can be compensated in a variety of ways. In general, if the material

that it started processing at time t is delivered to the customer at time t′ ≥ t+ d(et),

then the refinery is paid the amount y(et, pt) > exp[ρd(et)][ptet+f(et)] by the customer

at time t′, where y : R2
++ → R++ is a measurable function. In the case where d is

bounded, for example, the payment to the refinery may have the cost-plus form

ỹ · [ptet + f(et)] with ỹ > exp(ρd̄), where d̄ = supe∈(0,q] d(e). If in addition G has a

bounded support and f(e)/e is bounded for e ∈ (0, q], then the refinery may be paid

a constant unit price ŷ > exp(ρd̄)(p̄ + ¯̄f), so that it receives ŷ · et, where p̄ is the

supremum of the support of G, and ¯̄f = supe∈(0,q] f(e)/e.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
W ,

for the oil well and traceable, weakly frictional, calculable, and feasible strategies,

denoted Π̂C
R, for the oil refinery.45 Call this game with such strategy spaces the

45Formal definitions of histories and strategies are provided in the online appendix. In the formal
specification of the model, W ’s action at a given time is defined as a pair representing the respective
amounts of oil extracted at the current time and in the past, and R’s action at a given time is defined
as a function representing the payments it obtains from delivering the output produced from the oil
received at each time. This way of defining action spaces enables the instantaneous utility of each
agent to be expressed solely as a function of the actions of the agents at the current time, so that
the expected payoffs in this application can be calculated using the general approach in section 4.3.
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supply chain model. It is characterized by (G, c, d, y, q, λ, ρ). The analysis in sections

3 and 4 implies that an SPE is well defined.

The equilibrium of the model is presented in the result below. Let ς : R → R be

the function that solves the following reservation price equation for all κ ∈ R:

ς(κ) = κ+
λ

ρ

∫ ∞
ς(κ)

p− ς(κ)dG(p). (2)

It is straightforward to show that there exists a unique value of ς(κ) satisfying the

above equation for each value of κ and that ς is continuous, increasing, and surjective.

Denoting the inverse of ς by ς−1, let ζt denote the supremum of the set c−1
(
[0, ς−1(pt)]

)
,

where c−1
(
[0, ς−1(pt)]

)
is the preimage of the interval [0, ς−1(pt)] under c. Let {θt,k}lk=1

be a finite sequence of times at which oil was extracted from the well before time t,

and for each index k, let ξt,k be an indicator that is equal to 1 if the refinery has

by time t processed the oil received at time θt,k but has not before time t delivered

the output from the oil received at time θt,k and that is equal to 0 otherwise. If the

refinery has received infinitely many batches of oil by time t, then assume that it is

infeasible for the refinery to continue operating from time t onwards.

Proposition 6. In the supply chain model with (G, c, d, y, q, λ, ρ), the following hold

in any SPE:

1. The strategy of W is such that:

(a) If xt < ζt, then W extracts the amount et = ζt − xt at time t.

(b) If xt ≥ ζt, then W does not extract oil at time t.

2. The strategy of R is such that for any k satisfying ξt,k = 1, R delivers the

product of the oil extracted at time θt,k to the customer at time t.

The well faces a search problem in deciding when to sell each unit of oil, and its

equilibrium strategy has the reservation price property. In particular, each unit of

oil is sold once the price reaches or exceeds a certain threshold, which is increasing

in the marginal cost of extracting that unit of oil. The best response of the refinery

is to deliver each batch of output to the customer as soon as the relevant input has

been processed.
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Remark 3. 1. (Relationship to inertia) R’s equilibrium strategy violates both the

uniform and pathwise versions of inertia. In particular, consider any history up

to an arbitrary time t and any ε > 0. Since lime↓0 d(e) = 0, there exists χ > 0

such that d(χ) < ε/2. If W extracts the amount χ at any time u ∈ (t, t+ ε/2),

then R delivers the resulting output to the customer at time u + d(χ) < t + ε.

Thus, there is no ε > 0 such that R does not move in the interval (t, t+ ε).

W ’s equilibrium strategy does not in general satisfy uniform inertia. For ex-

ample, suppose that G has full support on R+ and that c(0) > 0. Consider

any history up to an arbitrary time t such that pt < ς[c(0)] and no oil has

been extracted yet. For any ε > 0, there is positive conditional probability

that pτ > ς[c(q)] for some τ ∈ (t, t + ε), in which case W extracts oil. Thus,

there does not exist ε > 0 such that W does not move during the time interval

(t, t+ε). However, W has an equilibrium strategy that satisfies pathwise inertia.

For any price path {pτ}τ∈(t,∞) after time t, there exists ε > 0 such that pτ = pt

for all τ ∈ (t, t + ε), in which case W is not required to extract oil during the

time interval (t, t+ ε).

2. (Relationship to admissibility) R’s equilibrium strategy violates both uniform

and pathwise F1. Choose any integer m ≥ 0 and any t > 0. Since lime↓0 d(e) =

0, there exists χ > 0 such that d(χ) < t/(m + 1). If W extracts the amount

χ at any time τ for which there exists an integer k ≥ 0 such that τ = kd(χ),

then R makes more than m deliveries during the time interval [0, t]. Hence,

there is no upper bound on the number of moves by R up to a given positive

time. Moreover, W ’s equilibrium strategy does not generally satisfy uniform

F1. For example, assume that G has full support on R+ and that c is positive,

continuous, and increasing. Suppose that p0 < ς[c(0)], and choose any integer

m ≥ 1 and any t > 0. There is positive probability that the price path is

nondecreasing, has m discontinuities during the interval [0, t], and is such that

for every positive integer k ≤ m, there exists τk ∈ [0, t] satisfying ς{c[(k −
1)q/m]} < pτk < ς[c(kq/m)], in which case W extracts oil m times during the

time interval [0, t]. Hence, the number of moves by W in a finite time interval is

not bounded. However, W has an equilibrium strategy that satisfies pathwise

F1. The number of times that W needs to extract oil during any finite time

interval [0, t] is bounded above by one plus the number of discontinuities up to
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time t in the price path {pτ}τ∈[0,∞), and the number of discontinuities is finite.

F2 is satisfied by any traceable and weakly frictional strategy.

R’s equilibrium strategy violates the strong continuity property F3 because a

small difference in when W extracts a given amount of oil results in some dif-

ference in when R delivers the resulting output. W has an equilibrium strategy

that satisfies F3. In particular, W ’s behavior depends only on the amount of

oil remaining and the current price of oil, so the specific times when oil was

previously extracted or processed do not affect W ’s behavior.

3. (Role of weak frictionality) While W ’s equilibrium strategy is frictional, R’s is

not. For example, suppose that for every positive integer k, W extracts the

amount q/2k at time 1/k. Then since lime↓0 d(e) = 0, R moves infinitely many

times in the finite time interval [0, ε) for any ε > 0. However, R’s equilibrium

strategy is weakly frictional. This is because the number of times that R moves

up to a given time t is bounded above by the number of times that W moves up

to that time. Hence, if W moves only finitely many times in any finite interval

of time, then the same is true of R.

4. (Comparative statics) It is straightforward to show from equation (2) that the

reservation price ς[c(xt)] of a unit of oil with marginal extraction cost c(xt) is

nondecreasing in the rate parameter λ and nonincreasing in the discount rate

ρ. If ς[c(xt)] is less than the supremum of the support of G, then ς[c(xt)] is

strictly increasing in λ and strictly decreasing in ρ. Intuitively, a higher value

of λ makes the price more volatile, raising the option value of waiting for the

price to rise, and a higher value of ρ means that an agent is more impatient and

less willing to delay sale until the price rises.

5.3 Entry Game between Competing Firms

Our restrictions on strategy spaces are useful for analyzing investment games, in

which agents optimally time their decisions based on a shock process that may be

modeled by a diffusion process such as geometric Brownian motion. In the following

example, investment is modelled as entry into a market, which is a common setting

in industrial organization. Uniform inertia is violated, although this condition holds

when defined pathwise.
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Two firms, 1 and 2, are deciding whether to enter a market. Assume that both

firms are initially out of the market. At each moment of time t ∈ [0,∞) such that

no firm has entered, each firm can choose between two moves: I (“get in”) and A

(“accommodate”). Choosing I means that the firm enters the market. When a firm

chooses A at time t, it enters the market if and only if the other firm does not choose

I at the same time t. Once a firm has entered, it cannot move any longer. At any

time such that one firm has entered but not the other, then the latter firm chooses F

(“follow the other firm by entering”) or not. In any event, not moving (i.e., choosing

action z) means that the firm does not enter for now or has already entered.

Let ct be the discrete cost incurred by a firm when it enters the market at time

t. The entry cost evolves according to a geometric Brownian motion: dct = µctdt +

σctdzt, with initial condition c0 = c̃ for some c̃ ∈ R++. Let b1 be the discrete benefit

to a firm from entering the market at time t if it is the only firm to enter the market

up to and including time t. Let b2 be the discrete benefit from entering at time t if

both firms enter the market at or before time t. Assume that b1 > b2 > 0 and c0 > b1.

Agents discount the future at rate ρ > 0.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = 1, 2.46 Call the game with such strategy spaces the entry game. It

is characterized by (b1, b2, µ, σ, ρ). The analysis in sections 3 and 4 implies that an

SPE is well defined.

Below we characterize Markov perfect equilibria, which we define as SPE in

Markov strategies.47 A strategy is said to be Markov if the action prescribed at

any history up to a given time depends only on the current value of the cost and

whether or not each firm has already entered.

Proposition 7. In the entry game with (b1, b2, µ, σ, ρ), there exist κ1 and κ2 with

0 < κ2 < κ1 < ∞ such that in any Markov perfect equilibrium, the following hold at

any time t.

1. Suppose that no firm has entered yet.

(a) If κ1 < ct, then both firms choose z.

46Formal definitions of histories and strategy spaces are provided in the online appendix.
47There exist non-Markov SPE in which the identity of the first entrant depends on the path

of the cost process in an arbitrary manner. Here we rule out such complications by assuming the
Markov property to focus on key issues.

37



(b) If κ2 < ct ≤ κ1, then one firm chooses I, and the other firm chooses A.

(c) If ct ≤ κ2, then both firms choose I, or both firms choose A.

2. Suppose that firm i has already entered but −i has not.

(a) If κ2 < ct, then both firms choose z.

(b) If ct ≤ κ2, then i chooses z while −i chooses F .

That is, on the path of play of any Markov perfect equilibrium, one firm enters

when the cost reaches κ1 for the first time, and the other firm enters when the cost

reaches κ2 for the first time. The cutoffs κ1 and κ2 are such that each firm is indifferent

between being the first and second entrant (i.e., taking action I and A when the cost

ct reaches κ1 for the first time). This is because if being the first entrant is better,

then the second entrant would deviate by choosing I or A just before ct reaches κ1 for

the first time, and if being the second entrant is better, then the first entrant would

deviate by choosing z whenever ct > κ2 and choosing F at the first time ct reaches

κ2.

Remark 4. 1. (Relationship to inertia and admissibility) Uniform inertia is vio-

lated in any Markov perfect equilibrium, but pathwise inertia is satisfied. The

example satisfies all of the requirements for admissibility, regardless of whether

F1 is defined pathwise or uniformly. The details are discussed in the online

appendix.

2. (Comparative statics) For each j = 1, 2, κj is increasing in the benefit bj at

entry because the jth entry is more attractive if bj is higher. The cutoff κ1 is

decreasing in b2 because the expected payoff of the second entrant is greater

when the value of b2 is higher, so that the pressure to be the first entrant is

lower and the first entrant can wait for the cost to fall. The cutoff κ2 clearly

does not depend on b1. Both cutoffs are increasing in µ and ρ because the future

gains from waiting for the entry cost to fall are lower when these parameters are

higher. The cutoffs are decreasing in σ since the effect of σ on the probability

of the cost falling is opposite to that of µ.48

48Proofs of these comparative statics results are provided in the online appendix.
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5.4 Model of Ordering with a Deadline

Our methodology applies to environments like, for example, standard discrete-time

repeated games and revision games as formalized by Kamada and Kandori (2020), in

which each agent is restricted to change actions at discrete times or Poisson oppor-

tunities and the payoff to each agent is determined by the actions and shock levels

at these moving times. The following is an example in which one agent can take a

non-z action (i.e., has an opportunity to move) only at the arrival times of a Poisson

process. Requiring each agent to move only at discrete state changes (i.e., Poisson

hits) may perhaps suffice for the purpose of restricting strategy spaces so as to ensure

a well defined outcome. Nonetheless, in the example below, there is another agent

who can move at any time in an interval of the real line, and restricting that agent to

move only at Poisson arrival times is problematic due to the nonstationarity of the

model.

Consider a buyer B who is contemplating the timing of an order to a seller S,

who faces a predetermined deadline for providing a good. The game is played in

continuous time, where time is denoted by t ∈ [0, T ) with T > 0. The buyer B’s taste

xt evolves according to a Brownian motion with zero drift and positive volatility σ:

dxt = σdzt, with initial condition x0 = x̃ for some x̃ ∈ R. The deadline may, for

example, correspond to Christmas day, and the good may be a Christmas present.

B’s taste may vary over time because, for example, the gift is intended for child who

has fickle preferences.

At each moment in time, B observes her taste, and if she has not yet ordered,

chooses whether or not to place an order indicating her preferred specification of

the good. Once an order is placed, B is unable to revise it. After learning the

specification, S has stochastic chances arriving according to a Poisson process with

parameter λ > 0 to produce and supply the ordered good to B. Specifically, at each

Poisson arrival time, S chooses whether to supply the good or not.

If B places an order and the order is fulfilled, then her utility is v− (s− xT )2− p,
where v > 0 is her valuation for a good whose specification perfectly matches her

taste, s is the specification of the good actually purchased, and p ∈ (0, v) is the fixed

price that B pays. Otherwise, her utility is 0. The seller S’s payoff is p if he fulfills

an order and 0 otherwise.49

49It is assumed without loss of generality that S’s cost of producing and supplying the good is
zero. The equilibrium strategies would not change if S were to face a constant cost strictly less than
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We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = B, S.50 Call the game with such strategy spaces the finite-horizon

ordering game. It is characterized by (λ, T, σ, p, v). The analysis in sections 3 and 4

implies that an SPE is well defined.51

Proposition 8. In the finite-horizon ordering game with (λ, T, σ, p, v), there exists a

unique SPE. In this SPE, there exists t∗ ∈ [0, T ) such that B places an order at time

t if and only if she has not done so yet and t ≥ t∗, and S sells the good at time t

if and only if he has not done so yet, an order has already been placed, and there is

Poisson hit at time t.

The result implies that on the equilibrium path of the unique SPE, B places an

order at time t∗ and S sells the good at the first Poisson hit after time t∗.52

Remark 5. 1. (Relationship to inertia and admissibility) B’s equilibrium strategy

satisfies both uniform and pathwise inertia, and S’s equilibrium strategy is

pathwise inertial but not uniformly inertial. The example satisfies all of the

requirements for admissibility, regardless of whether F1 is defined pathwise or

uniformly. The details are discussed in the online appendix.

2. (Non-z action at a time without a Poisson hit) B’s unique equilibrium strategy

would not satisfy a condition requiring that a non-z action be taken only at

the times of discrete changes in the shock. There is probability zero that the

shock discretely changes at time t∗, where the set of times at which the shock

discretely changes is defined as the set of Poisson arrival times.

3. (Comparative statics) The existence of a unique equilibrium facilitates the

derivation of comparative statics.53 We focus on the case where t∗ > 0. First,

t∗ is increasing in σ. Intuitively, as her taste becomes more volatile, B wants to

the price.
50Formal definitions of histories and strategy spaces are provided in the online appendix.
51In our general framework, the shock level, action profile, and instantaneous utility are not

defined at the terminal time T . However, our description of the finite-horizon ordering game suggests
that B receives a payoff at the deadline that depends on action profiles before the deadline as well
as the shock level at the deadline. As detailed in the online appendix, the game here can be
reinterpreted so as to conform with our general framework.

52Note that the traceability restriction would be violated if B were to follow a strategy of placing
an order if and only if she has not done so yet and t > t∗.

53Proofs of these comparative statics results are provided in the online appendix.
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wait longer to better match the specification to her taste. Second, t∗ is decreas-

ing in v. The reason is that as her valuation for the product becomes higher,

B increasingly wants S to have an opportunity to fulfill her order. Third, t∗ is

increasing in p since the effect of p is opposite to that of v. Finally, t∗ is increas-

ing in λ. As opportunities to provide the product arrive more frequently to S,

B wants to wait longer so as to set the specification closer to the realization of

her taste at time T .

6 Payoff Assignment with Nonmeasurable Behavior

In section 4, we observed that the expected payoffs are not well defined when a

strategy profile generates nonmeasurable behavior. There are at least two approaches

to resolving this problem. The first method is to restrict the strategy space. The

calculability assumption considered in section 4 is an example of the first approach

and can be justified as being the most inclusive restriction in a certain sense. The

second method is to assign an expected payoff to nonmeasurable behavior. This

section is devoted to an exploration of the second approach.

We begin by specifying how to assign expected payoffs to nonmeasurable behavior

(section 6.1). Then we point out a few properties of this methodology that may be

problematic (section 6.2). Ultimately, the disadvantage of the second approach is

the lack of clarity about what expected payoff to assign to nonmeasurable behavior.

The choice of an expected payoff is necessarily arbitrary because the conditional

expectation may be undefined when the behavior of the agents is nonmeasurable,

and such arbitrariness may be problematic because the set of equilibria depends on

the choice of an expected payoff. Hence, there is not an obvious way to argue that

one choice of expected payoff is better than another.54 With some restrictions, we

show that any behavior on the path of play can be sustained in an SPE under a

particular assignment of expected payoffs (section 6.3). Given the absence of an ideal

assignment, the last parts of this section examine when the second approach would

provide the same solution as the first approach. We first show that any SPE under

the calculability assumption is an SPE for a certain way of assigning payoffs (section

54For a particular class of games, some payoff assignments might be more reasonable than others.
For example, an agent may be able to secure a certain payoff by choosing a specific action. In such
a case, this payoff could be assigned to nonmeasurable behavior. More generally, nonmeasurable
behavior might be assigned the minmax payoff. However, this approach suffers from circularity
because the minmax payoff may not be defined until the expected payoffs have already been defined.
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6.4). Then we provide conditions under which the converse is also true (section 6.5).

6.1 Formulation of Expected Payoffs

We consider the assignment of expected payoffs to strategy profiles that induce non-

measurable behavior.55 For each agent i ∈ I, define a function χi : H × Π̄TF
i →

R ∪ {−∞,∞}.
Choose any strategy profile π ∈ ×i∈IΠ̄TF

i . Let ku =
(
{gt}t∈[0,u], {(bit)i∈I}t∈[0,u)

)
be any history up to time u, and denote b = {(bit)i∈I}t∈[0,u). If the process ξib(π) is

progressively measurable for each i ∈ I, then the expected payoff to agent i at ku is

given by Ui(ku, π) = Vi(ku, π), where Vi(ku, π) is as specified in equation (1) in section

4.3. Otherwise, the expected payoff to agent i at ku is given by Ui(ku, π) = χi(ku, π).56

Given a strategy space ×i∈IΠ̂i ⊆ ×i∈IΠ̄TF
i , we say that π ∈ ×i∈IΠ̂i is a subgame-

perfect equilibrium if for any history ku up to time u, the expected payoff to agent

i ∈ I at ku satisfies Ui(ku, π) ≥ Ui[ku, (π
′
i, π−i)] for any π′i ∈ Π̂i. Since the assignment

of expected payoffs to nonmeasurable behavior is not based on an extensive form

(see footnote 56), the standard one-shot deviation principle does not hold in general.

Thus, it is crucial for the definition of SPE to consider deviations to a strategy in the

entire subgame. The following example illustrates.

Example 9. (Deviation to Measurable Behavior) Let {st}t∈[0,T ) be an arbitrary

stochastic process with state space S. Assume that there exists S̃ ⊆ S along with

t̃ > 0 such that {ω ∈ Ω : st̃(ω) ∈ S̃} is not a measurable subset of the probability

space (Ω,F , P ).57 Suppose I = {1} and that Ā1(ht) = {x, z} for every ht ∈ H. The

utility function satisfies v1(x, s) = 0 for all s ∈ S. Let χ1(ht, π1) = −1 for all ht ∈ H
55We assume traceability and frictionality, so that the behavior of the agents is well defined in

the sense that there exists a unique action path consistent with each strategy profile. We could
also consider the assignment of expected payoffs to nondefined behavior, but there is little difference
between assigning payoffs to nondefined and nonmeasurable behavior. In order to define equilibria,
every element in a given set of strategy profiles should be mapped to an expected payoff, and
nondefined behavior like nonmeasurability would ordinarily preclude such a mapping. The results
here can be extended to allow for strategy profiles that induce zero or multiple action paths, but
these additional results are not stated so as to simplify the exposition.

56The extensive form of the game, which assigns a payoff profile to each deterministic history,
is well defined. However, if a profile of traceable and frictional strategies induces nonmeasurable
behavior, then there is no standard method to compute the expected payoff, even though the strategy
profile is associated with a unique payoff under each realization of the shock process. In this sense,
the assignment of expected payoffs is not based on an extensive form.

57For example, let {st}t∈[0,T ) be a standard Brownian motion, and suppose that the set consisting

of every continuous function c : [0, T )→ R with c(0) = 0 and c(t̃) ∈ S̃ is not Wiener measurable.
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and any π1 ∈ Π̄TF
1 . A strategy in which agent 1 chooses action x at time t̃ if and only

if st̃ is in S̃ is not optimal at the null history because agent 1 can deviate to a strategy

that induces measurable behavior. However, there is no history up to a given time at

which a one-shot deviation would increase the expected payoff of the agent.

In what follows, we will compare SPE under the calculability restriction with

SPE under a payoff assignment. Whenever there is ambiguity about the strategy

space or payoff assignment being considered, we identify the problem as Γ
(
Π̂, (χi)i∈I

)
,

where Π̂ ⊆ ×i∈IΠ̄TF
i is the space of strategy profiles in consideration. For exam-

ple, our analysis in the main sections corresponds to considering the game with

Γ
(
×i∈IΠ̄C

i , (χi)i∈I
)
. Since Ui(ht, π) = Vi(ht, π) for all i ∈ I whenever π ∈ ×i∈IΠ̄C

i , the

specification of (χi)i∈I is irrelevant in this case, so that we denote Γ
(
×i∈IΠ̄C

i , (χi)i∈I
)

by Γ
(
×i∈IΠ̄C

i

)
.

6.2 Problems with Payoff Assignment

Assigning a payoff to nonmeasurable behavior may result in a model with objection-

able properties. We first observe that assigning expected payoffs to nonmeasurable

behavior may lead to a non-monotonic relationship between expected and realized

payoffs.

Example 10. (Non-Monotonicity of Expected Payoffs in Realized Payoffs)

Suppose I = {1}. Let Ā1(ht) = {x, z} if t = 1, and let Ā1(ht) = {z} otherwise.

Let {st}t∈[0,T ) be an arbitrary stochastic process with state space S. Assume that

there exists S̃ ⊆ S such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the

probability space (Ω,F , P ). The utility function satisfies v1(x, s) = 1 for all s ∈ S.

Let χ1(ht, π1) = −1 for all ht ∈ H and any π1 ∈ Π̄TF
1 .

Consider a class of strategies, each of which is indexed by a set C ⊆ S, where πC

prescribes action z at any time t 6= 1 and action x at time t = 1 if and only if s1 is in

C. It may be natural for the expected payoffs to satisfy the following monotonicity

condition: U1(h0, π
S′′) ≤ U1(h0, π

S′) if S ′′ ⊆ S ′. That is, the expected payoff is

monotonic in the realized payoffs in the sense of statewise dominance. However,

U1(h0, π
∅) = 0 > −1 = U1(h0, π

S̃) even though ∅ ⊆ S̃. Hence, the monotonicity

condition fails.

As shown by the example below, the specific assignment of expected payoffs to

nonmeasurable behavior affects the set of payoffs that can be supported in an SPE.
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Example 11. (Dependence of Equilibrium Set on Payoff Assignment) Sup-

pose I = {1, 2}. For each i ∈ {1, 2}, let Āi(ht) = {x, z} if t = i − 1, and let

Āi(ht) = {z} otherwise. Let {st}t∈[0,T ) be an arbitrary stochastic process with state

space S. Assume that there exists S̃ ⊆ S such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a

measurable subset of the probability space (Ω,F , P ). The utility functions satisfy

v1[(x, z), s] = 1, v1[(z, x), s] = 0, and v2[(x, z), s] = v2[(z, x), s] = 0 for all s ∈ S.

First, suppose that χ1(ht, π) = −1 and χ2(ht, π) = 0 for all ht ∈ H and any

π ∈ Π̄TF
1 × Π̄TF

2 . Then there exists an SPE in which agent 1 receives an expected

payoff of 0. For example, agent 2 may use a strategy of choosing action x at time 1

if and only if agent 1 chooses action x at time 0 and s1 is in S̃.

Second, suppose that χ1(ht, π) = χ2(ht, π) = −1 for all ht ∈ H and any π ∈
Π̄TF

1 × Π̄TF
2 . Then there does not exist an SPE in which agent 1 receives an expected

payoff of 0. The reason is that there is no history h1 up to time 1 for which agent

2 has an incentive to choose a strategy π2 such that U2[h1, (π1, π2)] = χ2[h1, (π1, π2)]

for some strategy π1 of agent 1. Hence, it is always optimal for agent 1 to choose x

at time 0, so that agent 1 receives an expected payoff of 1.

The general problem is that when the agents’ behavior is nonmeasurable, there

is not a well defined probability distribution over future paths of play. Hence, the

expected payoff assigned by the function χi to a strategy profile involving nonmea-

surable behavior does not have any natural relationship with the realized payoffs at

future times as determined by the function vi. Despite such a problem, the usual

concept of SPE is well defined.

6.3 Arbitrary Behavior in Equilibrium

Now we examine the implications for agents’ incentives of assigning payoffs to non-

measurable behavior. Given any history ku up to time u, let H̄(ku) denote the set con-

sisting of every history h = {st, (ajt)j∈I}t∈[0,T ) such that
(
{st}t∈[0,u], {(ajt)j∈I}t∈[0,u)

)
=

ku, {ait}t∈[0,T ) ∈ Ξi(u) for each i ∈ I, and aiτ ∈ Āi
(
{st}t∈[0,τ ], {(ajt)j∈I}t∈[0,τ)

)
for

all τ ≥ u and each i ∈ I. That is, H̄(ku) includes every feasible history with

finitely many moves in a finite time interval for which ku is a subhistory. Let

ζi(ku) = infh∈H̄(ku)

∑
τ∈Mu(h) vi[(a

j
τ )j∈I , sτ ] denote the greatest lower bound on the

feasible payoffs to agent i at ku.
58 In this section, we consider the possibility of let-

58Recall that Mu(h) denotes the set of times at and after u where some agent moves under history
h.
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ting χi(ku, π) ≤ ζi(ku) for all π ∈ ×j∈IΠ̄TF
j and each i ∈ I. That is, nonmeasurable

behavior is assigned an expected payoff no greater than the infimum of the set of

feasible payoffs.59

A motivation for this specification of payoffs is that assigning an extremely low

payoff to nonmeasurable behavior disincentivizes agents from pursuing such behavior,

thereby ensuring that the path of play is measureable, in which case the computation

of expected payoffs is straightforward. In what follows, we demonstrate that such a

payoff assignment may have a significant impact on the set of SPE. Intuitively, if an

extremely low payoff is supportable in an SPE, then it may be used to severely punish

deviations. In fact, we can prove a type of “folk theorem” under certain conditions. To

illustrate this point, we first describe how both agents using nonmeasurable behavior

can be supported as an SPE.

Example 12. (Mutual Nonmeasurability) Suppose I = {1, 2}. For each i ∈
{1, 2}, let Āi(ht) = {x, z} if t = 1, and let Āi(ht) = {z} otherwise. Let {st}t∈[0,T ) be

an arbitrary stochastic process with state space S. Assume that there exists S̃ ⊆ S

such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the probability space

(Ω,F , P ). The utility function of each agent i ∈ {1, 2} satisfies vi[(a1, a2), s] ≥ 0 for

all s ∈ S and any (a1, a2) ∈ A1 × A2 such that (a1, a2) 6= (z, z). For each i ∈ {1, 2},
let χi(ht, π

′) = χi(ht, π
′′) ≤ 0 for all ht ∈ H and any π′, π′′ ∈ Π̄TF

1 × Π̄TF
2 .

Let π̃ be a strategy profile in which each agent chooses x at time 1 if and only if s1

is in S̃. This strategy profile is an SPE because at any history ht up to a time t ≤ 1,

there is no unilateral deviation that would enable an agent to obtain an expected

payoff greater than χi(ht, π̃) ≤ 0.

We next show how this behavior may be used as a punishment to support other

paths of play.

Example 13. (Folk Theorem) Suppose I = {1, 2}. For each i ∈ {1, 2}, let Āi(h0) =

Ai, Āi(ht) = {x, z} if t = 1, and Āi(ht) = {z} if t /∈ {0, 1}. Let {st}t∈[0,T ) be

an arbitrary stochastic process with state space S. Assume that there exists S̃ ⊆
S such that {ω ∈ Ω : s1(ω) ∈ S̃} is not a measurable subset of the probability

59Similar results hold under an alternative definition in which ζi(ku) = infπ∈Π̄TF
b
Vi(ku, π) at any

history ku =
(
{gt}t∈[0,u], {(bjt )j∈I}t∈[0,u)

)
up to time u, where Π̄TF

b denotes the set consisting of any

strategy profile π ∈ ×j∈IΠ̄TF
j such that the process ξib(π) with b = {(bjt )j∈I}t∈[0,u) is progressively

measurable for all i ∈ I.
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space (Ω,F , P ). The utility functions satisfy v1[(a1, a2), s] ≥ v1[(z, a2), s] ≥ 0 and

v2[(a1, a2), s] ≥ v2[(a1, z), s] ≥ 0 for all s ∈ S and any (a1, a2) ∈ A1 × A2 such that

(a1, a2) 6= (z, z). For each i ∈ {1, 2}, let χi(ht, π
′) = χi(ht, π

′′) ≤ 0 for all ht ∈ H and

any π′, π′′ ∈ Π̄TF
1 × Π̄TF

2 .

Choose any pair of actions (ã1, ã2) ∈ A1×A2. Let π̃ be the strategy profile defined

as follows. Each agent i ∈ {1, 2} chooses ãi at time 0. If every agent i takes action ãi

at time 0, then the agents choose x at time 1. If some agent i does not take action ãi

at time 0, then the agents choose x at time 1 if and only if s1 is in S̃. This strategy

profile is an SPE. A unilateral deviation at h0 would result in an expected payoff of

χi(h0, π̃) ≤ 0 to agent i. If strategy profile π̃ is followed at time 0, then playing x at

time 1 is a best response for each agent to the action of the other agent. If strategy

profile π̃ is not followed at time 0, then neither agent has an incentive to deviate

again for the same reason as in example 12.

The preceding example illustrates how any profile of actions at the null history

can be implemented in equilibrium.60 Now we identify general conditions under which

arbitrary behavior after the null history can also be supported in equilibrium by

suitably assigning payoffs to nonmeasurable behavior.

Proposition 9. Let |I| ≥ 2 and T = ∞. Consider the game Γ
(
×j∈IΠ̄TF

j , (χj)j∈I
)

where χi(ht, π̂) = χi(ht, π̄) ≤ ζi(ht) for all π̂, π̄ ∈ ×j∈IΠ̄TF
j , any ht ∈ H, and ev-

ery i ∈ I. Assume that for each i ∈ I and any ht ∈ H, there exists ã ∈ Āi(ht)

such that ã 6= z. Suppose that there exists t̃ > 0 along with a collection of sets

{S̃t}t∈[0,t̃] such that {ω ∈ Ω : st(ω) ∈ S̃t, ∀ t ∈ [0, t̃]} is not a measurable subset of

the probability space (Ω,F , P ). Choose any π ∈ ×i∈IΠ̄TF
i such that for any profile

of action paths
(
{bit}t∈[0,u)

)
i∈I up to an arbitrary time u > 0, there exists with prob-

ability one some t < u such that πi
(
{sτ}τ∈[0,t], {(bjτ )j∈I}τ∈[0,t)

)
6= bit for some i ∈ I.

Then there exists an SPE π′ ∈ ×i∈IΠ̄TF
i such that

(
{φit(h0, {sτ}τ∈(0,T ), π

′)}t∈[0,T )

)
i∈I =(

{φit(h0, {sτ}τ∈(0,T ), π)}t∈[0,T )

)
i∈I with probability one.

60In our model, actions are assumed to be perfectly observable. Hence, given a strategy profile in
which behavior on the path of play is measurable, assigning an extremely low payoff to nonmeasurable
behavior at information sets that can be reached only after a deviation does not affect expected
payoffs at the null history. Bonatti, Cisternas, and Toikka (2017) consider a related approach
in which a payoff of negative infinity is assigned to strategy profiles with undesirable properties.
However, their model assumes imperfect monitoring, so that punishment using an infinitely negative
payoff results in an infinitely negative payoff at the null history.
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The result is proved by constructing a strategy profile π′ with the following prop-

erties. At the null history h0, agent i has no incentive to deviate because doing so

would result in an expected payoff of χi(h0, π), which is no more than the infimal

feasible payoff ζi(h0) based on the utility function. At any history ku up to a positive

time u, the action path b up to time u is such that the process ξib(π
′) is not progres-

sively measurable given the restriction on strategy profile π in the statement of the

proposition as well as the assumption that ξib(π
′) records the continuation path of

play when the action path up to time u is fixed at b. Hence, the expected payoff of

agent i at history ku is constant at χi(ku, π
′) when the other agents play π′, so that

agent i has no incentive to deviate.61

Note that simply requiring progressive measurability of the shock process does

not enable an arbitrary path of play to be implemented as an equilibrium. To see

this, suppose that the shock can take values only in a finite set and can change values

only at discrete times. Then the shock process would be progressively measurable,

but the finiteness of the state space and the discrete timing of state changes make it

impossible for a strategy profile to induce nonmeasurable behavior.

6.4 From Calculability Restriction to Payoff Assignment

We examine the relationship between the SPE under the calculability restriction and

the SPE when payoffs are assigned to nonmeasurable behavior. As in section 6.3, we

associate nonmeasurable behavior with an expected payoff no more than the greatest

lower bound on the feasible payoffs. The following result shows that the set of SPE

in this case is at least as large as the set of SPE under the calculability restriction.

Proposition 10. Let Āi(ht) = Ai for every ht ∈ H and each i ∈ I. If π is an SPE

of Γ
(
×i∈IΠ̄C

i

)
, then π is an SPE of Γ

(
×i∈IΠ̄TF

i , (χi)i∈I
)

with χi(ht, π̃) ≤ ζi(ht) for

all π̃ ∈ ×j∈IΠ̄TF
j , any ht ∈ H, and every i ∈ I.

Therefore, if the model has an SPE under the calculability restriction, then there

exists an SPE under the approach where nonmeasurable behavior is assigned an

61We assume only for simplicity when defining ξib(π
′) that the action path up to time u is fixed

irrespective of the shock realization up to time u. The reasoning in the proof does not entirely apply
under the alternative definition in footnote 26 where behavior up to time u may be determined
by π′. However, it can still be shown that at any history up to a given time that is reached with
probability one when playing π, π′ specifies the same action profile as π, and π′i designates a best
response to π′−i. As mentioned in footnote 26, the main results in section 4 are valid under both
definitions of the action process.

47



expected payoff no greater than the infimal feasible payoff, even when we do not

associate each instance of nonmeasurable behavior with the same expected payoff.

This result implies that insofar as the concept of SPE is concerned, the calculabil-

ity restriction is not picking up strategy profiles that would be ruled out by every

assignment of expected payoffs to nonmeasurable behavior.

6.5 From Payoff Assignment to Calculability Restriction

Here we identify when an SPE under the method of assigning payoffs to nonmeasur-

able behavior is also an SPE under the calculability restriction.

We begin by defining a set of strategy profiles with certain measurability prop-

erties. Let the random variable θ : Ω → [0, T ] be a stopping time.62 Given any

π′, π′′ ∈ ×i∈IΠi, let ψ(π′, π′′, θ) be the strategy profile satisfying the following two

properties for each i ∈ I:

1. ψi(π
′, π′′, θ)

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
= π′i

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
for

each i ∈ I, all u ≥ 0, every {(bjt)j∈I}t∈[0,u), and any ω ∈ Ω with u ≤ θ(ω);

2. ψi(π
′, π′′, θ)

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
= π′′i

(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
for

each i ∈ I, all u ≥ 0, every {(bjt)j∈I}t∈[0,u), and any ω ∈ Ω with u > θ(ω).

In other words, the strategy ψi(π
′, π′′, θ) plays π′i until and including the stopping time,

and plays π′′i thereafter. A strategy profile π ∈ ×i∈IΠTF
i is said to be measurably

attachable if for each action path b, every stopping time θ, and any π̃ ∈ ×i∈IΠTF
i such

that ξib(π̃) is progressively measurable for all i ∈ I, the strategy ψi(π̃, π, θ) is traceable

and frictional for all i ∈ I and the process ξib[ψ(π̃, π, θ)] is progressively measurable

for all i ∈ I. That is, π is required to induce progressively measurable behavior after

any progressively measurable behavior up to and including an arbitrary random time.

Let ΠA ⊆ ×i∈IΠTF
i be the set of measurably attachable strategy profiles. In addition,

a strategy profile π ∈ ×i∈IΠi is said to be synchronous if for any ht ∈ H, πj(ht) = z

for all j ∈ I whenever πi(ht) = z for some i ∈ I. That is, π requires the agents to

move at the same time as each other.63

62That is, it satisfies {ω ∈ Ω : θ(ω) ≤ t} ∈ Ft for all t ∈ [0, T ).
63The synchronicity assumption is satisfied by the maximal equilibrium of the tree harvesting

problem (section 5.1) and of the sequential exchange model and technology adoption game in the
online appendix as well as by a Markov perfect equilibrium of the inventory restocking applica-
tion in the online appendix. In addition, any asynchronous strategy profile can be expressed as a
synchronous strategy profile by adding a payoff irrelevant action to the action space of each agent
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According to the following result, any synchronous and measurably attachable

strategy profile that is an SPE when payoffs are assigned to nonmeasurable behavior

is also an SPE under the calculability restriction.

Theorem 3. If the synchronous strategy profile π ∈ ΠA is an SPE of Γ
(
×i∈IΠ̄TF

i ,

(χi)i∈I
)
, then π is an SPE of Γ

(
×i∈IΠ̄C

i

)
.

The theorem implies that the restriction to calculable strategies does not exclude

from the set of SPE any synchronous and measurably attachable strategy profile that

is supported as an SPE under some assignment of expected payoffs to nonmeasurable

behavior.

To prove this result, we first show that any profile of calculable strategies that is an

SPE under an assignment of payoffs to nonmeasurable behavior is also an SPE under

the calculability restriction. Intuitively, when the other agents are playing calculable

strategies, a deviation by an agent from one calculable strategy to another calcula-

ble strategy produces the same change in expected payoffs under the calculability

restriction as under the payoff assignment method.

We then confirm that any synchronous and measurably attachable strategy profile

π is also a profile of calculable strategies. This part of the proof involves an iterative

procedure as in the proof of the main theorem stating that calculable strategies gen-

erate a measurable path of play. Specifically, we let π′−i be a profile of quantitative

strategies for the agents other than i. If the agents are playing (πi, π
′
−i), then the

behavior induced by (πi, π
′
−i) is progressively measurable up to and including the first

time that π or (πi, π
′
−i) prescribes a move. Because π induces progressively measur-

able behavior after any progressively measurable behavior up to and including an

arbitrary random time, the behavior induced by (πi, π
′
−i) is progressively measurable

up to and including the next time that π or (πi, π
′
−i) prescribes a move. We can apply

this argument iteratively in order to show that the behavior induced by (πi, π
′
−i) is

progressively measurable. This sort of reasoning establishes that πi is calculable.

The restriction to synchronous SPE ensures that the aforesaid iterative procedure

characterizes the path of play of (πi, π
′
−i) over the entire course of the game. To see

this, choose any time t ∈ [0, T ). By the traceability and frictionality assumptions,

strategy profile (πi, π
′
−i) with probability one induces only a finite number of moves

and requiring this action to be chosen by an agent that does not move when another agent moves.
All the equilibria studied in section 5 and the online appendix satisfy synchronicity after such a
reformulation.
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before time t. Moreover, the synchronicity assumption implies that the procedure is

such that π prescribes a move only if (πi, π
′
−i) does so. Hence, the iterations with

probability one reach time t after only finitely many steps.

Without the assumption that π is measurably attachable, the proposition fails.

This is illustrated by the following example, in which there are two agents, two times

at which the agents can move, and two possible actions at each of these times. We

specify a strategy profile π∗ that is an SPE for a given assignment of payoffs to

nonmeasurable behavior but that is not measurably attachable because the action of

each agent at time 2 is not measurable if one or both agents choose a non-z action

at time 1. We explain that π∗i is not calculable because agent i’s behavior at time 2

under π∗i is not measurable if agent −i follows the quantitative strategy π̃−i of always

choosing a non-z action at time 1 and always choosing z at time 2.

Example 14. (Role of Measurable Attachability) Suppose I = {1, 2}. For

each i ∈ {1, 2}, let Āi(ht) = {w, z} if t = 1, Āi(ht) = {x, z} if t = 2, and let

Āi(ht) = {z} otherwise. Let {st}t∈[0,T ) be an arbitrary stochastic process with state

space S. Assume that there exists S̃ ⊆ S such that {ω ∈ Ω : s2(ω) ∈ S̃} is not

a measurable subset of the probability space (Ω,F , P ). For all s ∈ S, the utility

function of each agent i ∈ {1, 2} satisfies vi[(x, x), s] = 1 and vi[(a1, a2), s] = 0 for

any (a1, a2) ∈ A1×A2 such that (a1, a2) 6= (x, x). Let χi(ht, π) = 0 for each i ∈ I, all

ht ∈ H, and any π ∈ Π̄TF
1 × Π̄TF

2 .

Let π∗ be a strategy profile in which both agents choose z at time 1 and choose z

at time 2 if and only if some agent i ∈ {1, 2} chooses w at time 1 and s2 is in S̃. First,

π∗ is not measurably attachable since the process ξi{}[ψ(π̃, π∗, θ̃)] is not progressively

measurable, where π̃ is a strategy profile in which both agents always choose w at

time 1 and choose z at time 2, and the stopping time θ̃ is equal to the constant 1.

Second, π∗ is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

because for all i ∈ I and π′i ∈ Π̄TF
i , we

have Ui(ht, π
∗) = Vi(ht, π

∗) = 1 ≥ Ui[ht, (π
′
i, π
∗
−i)] for every history ht up to time 1 and

every history ht up to time 2 where z is chosen by both agents at time 1 and because

for all i ∈ I and π′i ∈ Π̄TF
i , we have Ui(ht, π

∗) = χi(ht, π
∗) = 0 = χi[ht, (π

′
i, π
∗
−i)] =

Ui[ht, (π
′
i, π
∗
−i)] for every history ht up to time 2 where w is chosen by some agent at

time 1. Third, π∗i is not calculable since the process ξi{}(π
∗
i , π̃−i) is not progressively

measurable, where π̃−i is the quantitative strategy of always choosing w at time 1

and choosing z at time 2.

Note that measurable attachability is not a restriction on the strategy space of an
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individual agent but on the space of strategy profiles. Hence, ΠA does not necessarily

have a product structure. Although we find it unsatisfactory, one could define a notion

of SPE under the restriction of measurable attachability, where the set of strategies

to which an agent can deviate depends on the strategy profile of its opponents. In

the online appendix, we provide a formal definition of this concept and demonstrate

that any synchronous strategy profile satisfying this notion of equilibrium is an SPE

under the calculability restriction.

7 Conclusion

This paper considers the problem of defining strategy spaces for continuous-time

games in a stochastic environment. We introduced a new set of restrictions on indi-

vidual strategy spaces that guarantee the existence of a unique action path as well as

the measurability of the induced behavior. Specifically, traceability and frictionality

ensure the former, and calculability ensures the latter. Existing techniques devel-

oped for a deterministic environment do not guarantee all of these properties in a

stochastic setting, and they are not sufficient to cover some applications of interest.

We also compared our method to an alternative approach in which specific payoffs

are assigned to strategies inducing nonmeasurable behavior, and found a certain re-

lationship between our method and this alternative. A variety of economic examples

were presented to illustrate the applicability of our framework.

As we mentioned in the introduction, our methodology does not cover every pos-

sible situation. For example, although it applies to timing games in which agents

choose when to take actions, it is not applicable to settings where agents continu-

ously change their actions. We hope that future research will address such settings

as well. In addition, we focused on the case in which past shocks and actions are per-

fectly observable. Allowing for imperfect information about them would enable the

analysis of a wider range of applications. One example would be strategic experimen-

tation with multiple agents, in which the actions of the agents affect the acquisition of

information.64 Other examples may include models of repeated games as well as bar-

gaining with incomplete information as in Daley and Green (2012) and Ortner (2017)

in which at least some actions are perfectly observed instantaneously. The entry game

in section 5.3 could also be extended to allow firms to have private information about

64For example, Keller and Rady (2015) consider a multi-agent bandit problem in continuous time
but restrict agents to Markov strategies.
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their own costs and benefits of entering the market. Finally, we restricted attention

to pure strategies. With mixed strategies, measurability problems may arise even

in the absence of an exogenous shock because one agent’s behavior may condition

on the realization of another agent’s action in a nonmeasurable way. Despite those

limitations, we showed the relevance of our methodology to a wide range of problems,

and we hope that it will be useful in future work on these applications and others for

appropriately defining strategy spaces.

A Appendix

A.1 Proofs for Sections 3 and 4

Proof of Theorem 1. We divide the proof of the theorem into three steps. The first

step shows uniqueness in part 1, the second shows part 2, and the third shows exis-

tence in part 1. Fix an arbitrary history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time

u. Assume that the realization of the shock process {st}t∈[0,T ) is such that st = gt for

t ∈ [0, u].

For t ∈ [0, u), let ajt = bjt for each j ∈ I. First, we show that there is probability

one that {st}t∈(u,T ) is such that there exists at most one profile {(ajt)j∈I}t∈[0,T ) of action

paths for which the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I
at every t ∈ [u, T ). Second, we show that there is probability one that {st}t∈(u,T )

is such that {ajt}t∈[0,T ) ∈ Ξj(u) for each j ∈ I if the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at every t ∈ [u, T ). Third, we show that there

is probability one that {st}t∈(u,T ) is such that there exists a profile {(ajt)j∈I}t∈[0,T ) of

action paths for which the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each

i ∈ I at every t ∈ [u, T ).

For the first step, we use the definition of frictionality. For t ∈ [0, u) and j ∈ I,

let pjt = bjt and qjt = bjt . Suppose to the contrary that there is positive probabil-

ity that {st}t∈(u,T ) is such that there exist two distinct profiles {(pjt)j∈I}t∈[0,T ) and

{(qjt )j∈I}t∈[0,T ) of action paths for which the histories hp =
{
st, (p

j
t)j∈I

}
t∈[0,T )

and

hq =
{
st, (q

j
t )j∈I

}
t∈[0,T )

are both consistent with πi for each i ∈ I at every t ∈ [u, T ).

The frictionality assumption implies that there is zero probability that {st}t∈(u,T ) is

such that {pjt}t∈[u,T ) or {qjt}t∈[u,T ) has infinitely many non-z actions in any finite in-

terval of time for some j ∈ I. It follows that one can find a first time v ≥ u such
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that there exists j ∈ I such that {pjt}t∈[u,T ) is different from {qjt}t∈[u,T ).
65 Let hpv be

the history up to time v when hp is the history between times 0 and T , and let hqv

be the history up to time v when hq is the history between times 0 and T . By the

definition of v, it must be that hpv = hqv. It follows that πi(h
p
v) = πi(h

q
v) for each

i ∈ I. Moreover, since both hp and hq are consistent with πi for each i ∈ I at every

t ∈ [u, T ), it must be that πi(h
p
v) = piv and πi(h

q
v) = qiv for each i ∈ I. Hence, we have

piv = qiv for each i ∈ I, which contradicts the fact that v is the first time no less than

u such that {pjt}t∈[u,T ) is different from {qjt}t∈[u,T ) for some j ∈ I.

The second step is straightforward. We again use the definition of frictionality.

Suppose to the contrary that there is positive probability that {st}t∈(u,T ) is such that

there exists {(ajt)j∈I}t∈[0,T ) for which {ajt}t∈[0,T ) is not in Ξj(u) for some j ∈ I and for

which the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at every

t ∈ [u, T ). In this case, πj would clearly violate the frictionality assumption for some

j ∈ I.

For the third step, we use the following construction that relies on an iterative

argument. We apply the definitions of both traceability and frictionality. With

probability one, {st}t∈(u,T ) is such that the following algorithm can be applied. For

j ∈ I, define the action path {aj,0t }t∈[0,T ) so that aj,0t = bjt for all t ∈ [0, u) and aj,0t = z

for all t ∈ [u, T ). Let k = 0.

1. If the history {st, (aj,kt )j∈I}t∈[0,T ) is consistent with πi for each i ∈ I at every

t ∈ [u, T ), then we are finished. Otherwise, continue to Stage 2.

2. From traceability, for each j ∈ I, one can find an action path {dj,kt }t∈[0,T )

with dj,kt = bjt for t ∈ [0, u) such that the history {st, (dj,kt , (a
i,k
t )i 6=j)}t∈[0,T ) is

consistent with πj at each t ∈ [u, T ), where dj,kt = aj,kt for t ∈ [u, vk] if k ≥ 1.

From frictionality, {dj,kt }t∈[0,T ) can be treated as having only finitely many non-

z actions in any finite interval of time that is a subset of [u, T ). It follows

that one can find a first time vk ≥ u such that {aj,kt }t∈[u,T ) is different from

{dj,kt }t∈[u,T ) for some j ∈ I. For j ∈ I, define the action path {aj,k+1
t }t∈[0,T ) so

65To see this, let X be the set of times at which {pjt}t∈[u,T ) is different from {qjt }t∈[u,T ) for some
j ∈ I. If inf(X) =∞, it means there is no such time, which is a contradiction. Hence, inf(X) <∞.
If the time inf(X) does not belong to the set X, then there exists ε > 0 such that there are infinitely
many times in X greater than inf(X) but less than inf(X) + ε. This implies that at least one of
the 2|I| paths {(pjt )j∈I}t∈[u,T ), {(qjt )j∈I}t∈[u,T ) differs from z at infinitely many points in the time
interval between inf(X) and inf(X) + ε. In this case, there exists j ∈ I such that πj violates the
frictionality assumption.
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that aj,k+1
t = aj,kt for t 6= vk and so that aj,k+1

t = dj,k+1
t for t = vk. The history

{st, (aj,k+1
t )j∈I}t∈[0,T ) is consistent with πi for each i ∈ I at every t ∈ [u, vk].

Redefine k as k + 1. Return to Stage 1.

Consider the case where the preceding algorithm does not terminate after a finite

number of iterations. By construction, vk is increasing in k. Note also that for

j ∈ I along with any fixed value of t, there exists l such that aj,kt is constant in k

for k > l. Thus, limk→∞ a
j,k
t is well defined for all t. Consider the history hT =

limk→∞{st, (aj,kt )j∈I}t∈[0,T ). The history hT is consistent with πi for each i ∈ I for

t ∈ [u, limk→∞ vk).

Suppose that limk→∞ vk < T . With probability one, {st}t∈(u,T ) is such that the

following argument can be applied. From traceability, one can find action paths

{(dj,∞t )j∈I}t∈[0,T ) with dj,∞t = bjt for every j ∈ I and all t ∈ [0, u) such that for

each j ∈ I, the history {st, (dj,∞t , limk→∞(ai,kt )i 6=j)}t∈[0,T ) is consistent with πj at each

t ∈ [u, T ), where dj,∞t = limk→∞ a
j,k
t for j ∈ I and t ∈ [u, limk→∞ vk). Since the

algorithm does not terminate after a finite number of iterations, there exists j ∈ I
such that {dj,∞t }[0,T ) 6∈ Ξj(u), which implies πj violates the frictionality assumption

for some j ∈ I. Thus, limk→∞ vk = T .

Hence, the history hT is such that (i) st = gt for all t ∈ [0, u], (ii) limk→∞ a
j,k
t = bjt

for j ∈ I and t ∈ [0, u), and (iii) hT is consistent with πi for each i ∈ I at every

t ∈ [u, T ).

Proof of Remark 1. Suppose that the first sentence of the statement of theorem 1 is

modified so that (πj)j∈I is a profile of traceable and weakly frictional strategies for

which there exists l such that πj is frictional for all j 6= l. We show that the remainder

of the statement of theorem 1 continues to hold. The proof of theorem 1 still applies

with the changes below.

The fourth sentence of the third paragraph should be replaced with the following.

The frictionality assumption implies that there is zero probability that {st}t∈(u,T )

is such that {pjt}t∈[u,T ) or {qjt}t∈[u,T ) has infinitely many non-z actions in any finite

interval of time for some j 6= l. Therefore, from weak frictionality, there is zero

probability that {plt}t∈[u,T ) or {qlt}t∈[u,T ) has infinitely many non-z actions in any

finite time interval.

The second pair of sentences in the fourth paragraph should be replaced with the

following. Suppose to the contrary that there is positive probability that {st}t∈(u,T )
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is such that there exists {(ajt)j∈I}t∈[0,T ) for which {ajt}t∈[0,T ) 6∈ Ξj(u) for some j 6= l

and for which the history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at

every t ∈ [u, T ). In this case, πj would clearly violate the frictionality assumption for

some j 6= l. Since no such {(ajt)j∈I}t∈[0,T ) can exist with positive probability, it follows

from the weak frictionality assumption that there is zero probability that {st}t∈(u,T )

is such that there exists {(ajt)j∈I}t∈[0,T ) for which {alt}t∈[0,T ) 6∈ Ξl(u) and for which the

history h =
{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at every t ∈ [u, T ).

In the second sentence of item 2 of the iterative procedure, frictionality should

be replaced with weak frictionality. In the second to last paragraph, the second

to last sentence should be replaced with the following. Since the algorithm does not

terminate after a finite number of iterations, there exists j ∈ I such that dj,∞t 6∈ Ξj(u).

If dj,∞t 6∈ Ξj(u) for some j 6= l, then πj violates the frictionality assumption for

some j 6= l. Thus, it must be that {dj,∞t }t∈[0,T ) ∈ Ξj(u) for all j 6= l, so that

{limk→∞ a
j,k
t }t∈[0,T ) ∈ Ξj(u) for all j 6= l. Hence, if dl,∞t 6∈ Ξl(u), then πl violates the

weak frictionality assumption.

Proof of Proposition 1. Assume that the strategy πi is pathwise inertial. For each

j 6= i, let π̃j ∈ be the pathwise inertial strategy that prescribes z at every history

up to an arbitrary time. Choose any history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to

time u as well as any realization {gt}t∈(u,T ) of the shock process after time u. From

theorem 1 in Bergin and MacLeod (1993), there exists a unique profile ({ãjt}t∈[0,T ))j∈I

of action paths with {ãjt}t∈[0,T ) ∈ Γj({bjt}t∈[0,u)) for each j ∈ I such that the history

h =
{
gt, (ã

j
t)j∈I

}
t∈[0,T )

is consistent with πi and π̃−i at every t ∈ [u, T ). For each

j 6= i, from the definition of π̃j, the action path {ãjt}t∈[0,T ) satisfies ãjt = z for all

t ∈ [u,∞). Combining the two preceding statements, πi is traceable.

Proof of Proposition 2. Fix an arbitrary history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up

to time u. Assume that πi ∈ Πi satisfies F2. Then given that {st}t∈[0,u] = {gt}t∈[0,u],

there is conditional probability one that for any {a−it }t∈[0,T ) ∈ Γ−i({b−it }t∈[0,u)) such

that ajt = z for all t > u and j 6= i, there exists an action path {ait}t∈[0,T ) ∈
Γi({bit}t∈[0,u)) for which the history h =

{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with πi at

each t ∈ [u, T ). Hence, πi is traceable.

Choose any realization {gt}t∈(u,T ) of the shock process after time u and any time

u′ > u. Assume that πi ∈ Πi satisfies pathwise F1. Then given any {a−it }t∈[0,T ) ∈
Γ−i({b−it }t∈[0,u)) for which there exists {ait}t∈[0,T ) ∈ Γi({bit}t∈[0,u)) such that the history
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h = {gt, (ajt)j∈I}t∈[0,T ) is consistent with πi at each t ∈ [u, T ), there exists an integer

m such that there are at most m distinct values of t ∈ [u, u′] at which ait 6= z. Hence,

πi is frictional.

Proof of Proposition 3. Assume that πi ∈ ΠTF
i . For each j 6= i, let π̃j ∈ ΠTF

j be

a strategy that prescribes z at every history up to an arbitrary time. Choose any

history ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to time u. The following hold with condi-

tional probability one given that {st}t∈[0,u] = {gt}t∈[0,u]. From the first item of theo-

rem 1, there exists a unique profile ({ãjt}t∈[0,T ))j∈I of action paths with {ãjt}t∈[0,T ) ∈
Γj({bjt}t∈[0,u)) for each j ∈ I such that the history h =

{
st, (ã

j
t)j∈I

}
t∈[0,T )

is consistent

with πi and π̃−i at every t ∈ [u, T ). For each j 6= i, from the definition of π̃j, the

action path {ãjt}t∈[0,T ) satisfies ãjt = z for all t ∈ [u,∞). From the second item of

theorem 1, {ãit}t∈[0,T ) ∈ Ξi(u). Combining the three preceding statements, πi has

property F2.

Proof of Theorem 2. For i ∈ I, choose any πi ∈ ΠC
i . Let {(bjτ )j∈I}τ∈[0,u) be any path

of actions by the agents up to an arbitrary time u. Given the realization of the

shock {sτ}τ∈[0,u] until time u, denote the history up to time u by k̃u({sτ}τ∈[0,u]) =(
{sτ}τ∈[0,u], {(bjτ )j∈I}τ∈[0,u)

)
.

It is helpful to define a set of strategies that depend only on the realization

of the shock and not on the behavior of the agents. For i ∈ I, a strategy π̃i ∈
ΠTF
i is said to be individualistic if π̃i(h

p
t ) = π̃i(h

q
t ) for any two histories hpt =(

{gpτ}τ∈[0,t], {(pjτ )j∈I}τ∈[0,t)

)
and hqt =

(
{gqτ}τ∈[0,t], {(qjτ )j∈I}τ∈[0,t)

)
up to an arbitrary

time t such that {gpτ}τ∈[0,t] = {gqτ}τ∈[0,t].

Next some additional terminology regarding the action process is introduced. For

any realization of the shock process {sτ}τ∈[0,T ), let Λ({sτ}τ∈[0,T )) be an arbitrary

subset of the interval [u, T ). Choose any π
′
= (π

′
j)j∈I and π

′′
= (π

′′
j )j∈I with π

′
j, π

′′
j ∈

ΠTF
j for j ∈ I. The strategy profiles π

′
and π

′′
are said to almost surely induce

the same path of play by agent i ∈ I for all t ∈ Λ({sτ}τ∈[0,T )) if the following

holds. There is probability one of the realization of the shock process {sτ}τ∈[0,T ) being

such that φit[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ), π
′
] = φit[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ), π

′′
] for all

t ∈ Λ({sτ}τ∈[0,T )).

Now observe that the actions of each agent depend only on the realization of the

shock if the agents play a fixed profile of traceable and frictional strategies. In partic-

ular, theorem 1 implies that there exists a profile (π∗j )j∈I of individualistic strategies
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such that π = (πj)j∈I and π∗ = (π∗j )j∈I almost surely induce the same path of play

by every agent for all t ∈ [u, T ). We prove below that ξib(πi, π−i) is progressively

measurable for i ∈ I.

For i ∈ I, let π0
i be the strategy that requires agent i to choose action z at

every history, and note that π0
i ∈ ΠQ

i . Moreover, the stochastic process ξib(πi, π
0
−i)

is progressively measurable for i ∈ I. Given any realization of the shock process

{sτ}τ∈[0,T ), let Λ1({sτ}τ∈[0,T )) denote the set consisting of every time t ∈ [u, T ) for

which there does not exist a time t̃ ∈ [u, t) such that φi
t̃
[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ), π] 6=

z for some i ∈ I. That is, Λ1({sτ}τ∈[0,T )) represents the interval consisting of all

times no less than u and no greater than the time that the first non-z action after

reaching k̃u({sτ}τ∈[0,u]) would be chosen when playing π. Note that the strategy

profiles (πi, π−i) and (πi, π
0
−i) almost surely induce the same path of play by agent

i ∈ I for all t ∈ Λ1({sτ}τ∈[0,T )).

For i ∈ I, let π1
i be the strategy that requires agent i to follow π∗i at any time

t ∈ Λ1({sτ}τ∈[0,T )) and to choose action z at any time t /∈ Λ1({sτ}τ∈[0,T )). That is,

the strategy π1
i requires agent i to choose action z at each time less than u, to follow

the strategy π∗i at any time no less than u and no greater than the time that the

first non-z action after reaching k̃u({sτ}τ∈[0,u]) would be chosen when playing π, and

to choose action z thereafter. Note that for any π′−i ∈ ΠTF
−i , the strategy profiles

(π1
i , π

′
−i) and (πi, π

0
−i) almost surely induce the same path of play by agent i for all

t ∈ Λ1({sτ}τ∈[0,T )). Moreover, it was noted above that ξib(πi, π
0
−i) is progressively

measurable. Hence, π1
i ∈ ΠQ

i for i ∈ I.

For i ∈ I, the strategy πi is such that ξib(πi, π
1
−i) is progressively measurable.

Given any realization of the shock process {sτ}τ∈[0,T ), let Λ2({sτ}τ∈[0,T )) denote the

set consisting of every time t ∈ [u, T ) for which there exists at most one time t̃ ∈ [u, t)

such that φi
t̃
[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ), π] 6= z for some i ∈ I. That is, Λ2({sτ}τ∈[0,T ))

represents the interval consisting of all times no less than u and no greater than the

time that the second non-z action after reaching k̃u({sτ}τ∈[0,u]) would be chosen when

playing π. Note that the strategy profiles (πi, π−i) and (πi, π
1
−i) almost surely induce

the same path of play by agent i ∈ I for all t ∈ Λ2({sτ}τ∈[0,T )).

For i ∈ I, let π2
i be the strategy that requires agent i to follow π∗i at any time

t ∈ Λ2({sτ}τ∈[0,T )) and to choose action z at any time t /∈ Λ2({sτ}τ∈[0,T )). That is,

the strategy π2
i requires agent i to choose action z at each time less than u, to follow

the strategy π∗i at any time no less than u and no greater than the time that the
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second non-z action after reaching k̃u({sτ}τ∈[0,u]) would be chosen when playing π,

and to choose action z thereafter. Note that for any π′−i ∈ ΠTF
−i , the strategy profiles

(π2
i , π

′
−i) and (πi, π

1
−i) almost surely induce the same path of play by agent i for all

t ∈ Λ2({sτ}τ∈[0,T )). Moreover, it was noted above that ξib(πi, π
1
−i) is progressively

measurable. Hence, π2
i ∈ ΠQ

i for i ∈ I.

Let k be an arbitrary positive integer. Given any realization of the shock process

{sτ}τ∈[0,T ), let Λk({sτ}τ∈[0,T )) denote the set consisting of every time t ∈ [u, T ) for

which there exist at most k−1 values of t̃ ∈ [u, t) such that φi
t̃
[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ),

π] 6= z for some i ∈ I. That is, Λk({sτ}τ∈[0,T )) represents the interval consisting of

all times no less than u and no greater than the time that the kth non-z action after

reaching k̃u({sτ}τ∈[0,u]) would be chosen when playing π. For i ∈ I, let πki be the

strategy that requires agent i to follow π∗i at any time t ∈ Λk({sτ}τ∈[0,T )) and to

choose action z at any time t /∈ Λk({sτ}τ∈[0,T )). That is, the strategy πki requires

agent i to choose action z at each time less than u, to follow the strategy π∗i at any

time no less than u and no greater than the time that the kth non-z action after reach-

ing k̃u({sτ}τ∈[0,u]) would be chosen when playing π, and to choose action z thereafter.

Proceeding as above, it follows that πki ∈ ΠQ
i for i ∈ I.

For i ∈ I, let ψi be the strategy that requires agent i to behave as follows. Agent

i chooses action z at each time before u. Agent i plays strategy π1
i at any time

t ∈ Λ1({sτ}τ∈[0,T )). That is, agent i follows π1
i at any time no less than u and no

greater than the time that the first non-z action after reaching k̃u({sτ}τ∈[0,u]) would be

chosen when playing π. For every integer k ≥ 2, agent i plays strategy πki at any time

t satisfying t /∈ Λk−1({sτ}τ∈[0,T )) and t ∈ Λk({sτ}τ∈[0,T )). That is, agent i follows πki

between the times that the (k−1)th and kth non-z actions after reaching k̃u({sτ}τ∈[0,u])

would be chosen when playing π. Note that ψ = (ψj)j∈I and π = (πj)j∈I almost surely

induce the same path of play by every agent for all t ∈ [u, T ). We prove below that

ξib(ψi, ψ−i) is progressively measurable for i ∈ I. It will then follow that ξib(πi, π−i) is

progressively measurable for i ∈ I.

For any positive integer k, let Θk denote the set that consists of each pair (t, ω) ∈
[u, T ) × Ω for which there exist exactly k − 1 values of t̃ ∈ [u, t) such that we have

φi
t̃
[k̃u({sτ (ω)}τ∈[0,u]), {sτ (ω)}τ∈(u,T ), ψ] 6= z for some i ∈ I. For k = 1, this condition

means that time t is no less than u and no greater than the time that the first non-z

action after reaching k̃u({sτ}τ∈[0,u]) would be chosen when the sample point is ω and

strategy profile ψ is played by the agents. For k > 1, this condition means that time
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t is greater than the time of the (k − 1)th but no greater than the time of the kth

non-z action after reaching k̃u({sτ}τ∈[0,u]) when the sample point is ω and strategy

profile ψ is played by the agents.

Recall that πki ∈ ΠQ
i for i ∈ I and every positive integer k, which implies that

ξib(π
k
i , π

k
−i) is progressively measurable. It follows that for each positive integer k,

the set Θk is progressively measurable.66 For i ∈ I and any positive integer k, let

ξ̃ib[(π
k
j )j∈I ] denote the stochastic process that is equal to ξib[(π

k
j )j∈I ] on the set Θk

and is equal to zero elsewhere. It also follows that for each positive integer k, the

stochastic process ξ̃ib[(π
k
j )j∈I ] is progressively measurable for i ∈ I.

For any t ≥ u and positive integer k, let Θt
k denote the set consisting of every

pair (τ, ω) ∈ Θk such that τ ≤ t. Define Θt =
⋃∞
k=1 Θt

k. For any t ≥ u, let Υt

denote the set consisting of every pair (τ, ω) ∈ [u, t] × Ω. Recall that πi ∈ ΠC
i is

a traceable and frictional strategy for i ∈ I. Hence, theorem 1 implies that given

any realization of the shock process {sτ}τ∈[0,u] up to time u, there is conditional

probability one that there exists only finitely many values of t̃ ∈ [u, T ) such that

φi
t̃
[k̃u({sτ}τ∈[0,u]), {sτ}τ∈(u,T ), π] 6= z for some i ∈ I. It follows that for any t ≥ u, the

set consisting of each pair (τ, ω) such that (τ, ω) ∈ Υt and (τ, ω) /∈ Θt has measure

zero with respect to the product measure on B([0, t])×Ft.
Note that for any positive integer k and i ∈ I, the stochastic process ξib[(ψj)j∈I ]

is equal to the stochastic process ξ̃ib[(π
k
j )j∈I ] on the set Θk. Recall that each set Θk

along with every stochastic process ξ̃ib[(π
k
j )j∈I ] is progressively measurable. Hence,

ξib(ψi, ψ−i) is progressively measurable for i ∈ I.

Proof of Proposition 4. Assume that for some j ∈ I, there exists ψj ∈ Ψj such that

ψj /∈ ΠC
j . By definition, there exists ψ−j ∈ ΠQ

−j along with v such that the stochastic

process ξjv(ψj, ψ−j) is not progressively measurable. It follows from ΠQ
−j ⊆ Ψ−j that

ψ−j ∈ Ψ−j. Hence, there exists i ∈ I such that the stochastic process ξib(πi, π−i) is

not progressively measurable for some πi ∈ Ψi, π−i ∈ Ψ−i, and b.

A.2 Proofs for Section 6

Proof of Proposition 9. Choose any strategy profile π ∈ ×i∈IΠ̄TF
i . Define the strategy

profile π′ ∈ ×i∈IΠ̄TF
i as follows. Let ku =

(
{st}t∈[0,u], {(ait)i∈I}t∈[0,u)

)
be any history

66Given any Θ ⊆ [0, T ) × Ω, let χΘ denote the indicator function of Θ. The set Θ is said to be
progressively measurable if for any υ ≥ 0 the function χΘ is measurable with respect to the product
sigma-algebra B([0, υ])×Fυ.
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up to an arbitrary time u. If ait = πi
(
{sτ}τ∈[0,t], {(ajτ )j∈I}τ∈[0,t)

)
for each i ∈ I and

all t ∈ [0, u), then let π′i(ku) = πi(ku) for all i ∈ I. If there exists t ∈ [0, u) and i ∈ I
such that ait 6= πi

(
{sτ}τ∈[0,t], {(ajτ )j∈I}τ∈[0,t)

)
, then for each i ∈ I, let π′i(ku) 6= z if st

is in S̃t for all t ∈ [0, t̃] and u = nt̃ for some positive integer n, and let π′i(ku) = z

otherwise.

The strategy profile π′ is an SPE because if agent i ∈ I deviates at h0, then the

expected payoff to agent i is χi(h0, π
′) ≤ ζi(h0). Moreover, consider any history ku =(

{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to an arbitrary time u > 0. By assumption, there exists

with probability one some t < u such that πi
(
{sτ}τ∈[0,t], {(bjτ )j∈I}τ∈[0,t)

)
6= bit for some

i ∈ I. It follows that for each i ∈ I, the function φi
nt̃

[(
{st(ω)}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
,

{st(ω)}t∈(u,∞), π
′] from Ω to Ai is not measurable, where n is any integer such that

nt̃ ≥ u. Hence, the process ξib(π
′) with b = {(bjt)j∈I}t∈[0,u) is not progressively mea-

surable, so that the expected payoff to agent i is χi(ku, π
′) ≤ ζi(ku) when the other

agents follow strategy profile π′.

Proof of Proposition 10. Let π be an SPE of Γ
(
×i∈IΠ̄C

i

)
, and consider the game

Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

with χi(ht, π̃) ≤ ζi(ht) for all π̃ ∈ ×j∈IΠ̄TF
j , ht ∈ H, and i ∈ I.

Let ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
be any history up to an arbitrary time u, and

denote b = {(bjt)j∈I}t∈[0,u).

For any i ∈ I, choose any π′i ∈ Π̄TF
i . If there is some j ∈ I such that ξjb(π

′
i, π−i)

is not progressively measurable, then Ui[ku, (π
′
i, π−i)] = χi[ku, (π

′
i, π−i)] ≤ ζi(ku),

whereas Ui(ku, π) = Vi(ku, π) ≥ ζi(ku). Suppose now that ξjb(π
′
i, π−i) is progres-

sively measurable for all j ∈ I. Let π′′i with π′′i (ht) = z for t < u be defined such that

π′′i
[(
{sτ}τ∈[0,t], {(djτ )j∈I}τ∈[0,t)

)]
= φit

[(
{sτ}τ∈[0,u], {(bjτ )j∈I}τ∈[0,u)

)
, {sτ}τ∈(u,T ), (π

′
i, π−i)

]
for each realization of the shock process {sτ}τ∈[0,T ) and any action path {(djτ )j∈I}τ∈[0,t)

up to an arbitrary time t ≥ u. Note that π′′i ∈ Π̄i given the assumption that

Āi(ht) = Ai for all ht ∈ H and i ∈ I. By the definition of π′′i , π′′i ∈ ΠTF
i , and

the stochastic process ξjb(π
′′
i , π−i) is the same as ξjb(π

′
i, π−i) for all j ∈ I, which implies

that Ui[ku, (π
′′
i , π−i)] = Vi[ku, (π

′′
i , π−i)] = Vi[ku, (π

′
i, π−i)] = Ui[ku, (π

′
i, π−i)]. More-

over, π′′ is quantitative and hence calculable. Since π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, it

must be that Ui(ku, π) ≥ Ui[ku, (π
′′
i , π−i)]. It follows that Ui(ku, π) ≥ Ui[ku, (π

′
i, π−i)].

Hence, no agent i has an incentive to deviate from πi to π′i at ku, which proves that

π is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)
.

Proof of Theorem 3. We first show that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, assuming that π
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is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

and πi is calculable for each i ∈ I. Then we confirm

that πi is calculable for each i ∈ I given that π is synchronous and measurably

attachable.

To show that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
, consider any ht ∈ H. Given any

i ∈ I, choose any π′i ∈ Π̄C
i . Since π is an SPE of Γ

(
×i∈IΠ̄TF

i , (χi)i∈I
)
, it must

be that Ui(ht, π) ≥ Ui[ht, (π
′
i, π−i)], where Ui(ht, π) = Vi(ht, π) and Ui[ht, (π

′
i, π−i)] =

Vi[ht, (π
′
i, π−i)] because π ∈ ×j∈IΠC

j . It follows that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
.

Given any i ∈ I, we now confirm that πi ∈ ΠC
i . Define πzj (ht) = z for each j ∈ I

and every ht ∈ H. Choose any b = {(bjt)j∈I}t∈[0,u) as well as any π′−i ∈ ΠQ
−i. Define

the stopping time θ0 as follows. For any ω ∈ Ω, let Υ̂0(ω) denote the set consisting

of all t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), π

]
6= z

for some e ∈ I, and let Ῡ0(ω) denote the set consisting of all t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Let θ0(ω) be the lesser of the infimum of Υ̂0(ω) and the infimum of

Ῡ0(ω). Note that ξib[ψ(π, πz, θ0)] and ξib{ψ[(πi, π
′
−i), π

z, θ0]} are the same progressively

measurable stochastic process.

Apply the following procedure iteratively for every positive integer k. Define the

stopping time θk as follows. For any ω ∈ Ω, let Υ̂k(ω) denote the set consisting of all

t ∈ (θk−1(ω), T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), ψ[(πi, π

′
−i), π, θ

k−1]
]
6= z

for some e ∈ I, and let Ῡk(ω) denote the set consisting of all t ∈ (θk−1(ω), T ) such

that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Let θk(ω) be the lesser of the infimum of Υ̂k(ω) and the infimum of

Ῡk(ω), where P ({ω ∈ Ω : θk(ω) > θk−1(ω)} ∪ {ω ∈ Ω : θk−1(ω) = ∞}) = 1 because

ψ[(πi, π
′
−i), π, θ

k−1], (πi, π
′
−i) ∈ ×j∈IΠTF

j . Note that ξib
(
ψ{ψ[(πi, π

′
−i), π, θ

k−1], πz, θk}
)

and ξib{ψ[(πi, π
′
−i), π

z, θk]} are the same progressively measurable stochastic process.

Suppose that the sequence {θk}∞k=1 does not converge almost surely to ∞. Then
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P [{ω ∈ Ω : limk→∞ θ
k(ω) < ∞}] 6= 0. For each ω ∈ Ω, let Ξ(ω) denote the set

consisting of all t ∈ [u, T ) such that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]
6= z

for some e ∈ I. Letting E denote the set consisting of all ω ∈ Ω such that {t ∈ Ξ(ω) :

t ≤ c} contains only finitely many elements for any c ∈ [u,∞), we have P ({ω ∈ Ω :

ω ∈ E}) = 1 because (πi, π
′
−i) ∈ ×j∈IΠTF

j . The definition of E also implies that for

all ω ∈ E such that limk→∞ θ
k(ω) < ∞, there exists t̃(ω) ∈ [u, limk→∞ θ

k(ω)) such

that

φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]

= z

for each e ∈ I and all t ∈ [t̃(ω), limk→∞ θ
k(ω)).

For any ω ∈ E such that limk→∞ θ
k(ω) < ∞, choose any k̃(ω) ≥ 1 such that

θk̃(ω)−1(ω) ≥ t̃(ω). Assuming now that π is synchronous,

φet
[(
{sτ (ω)}τ∈[0,u],({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), ψ[(πi, π

′
−i), π, θ

k̃(ω)−1]
]

= φet
[(
{sτ (ω)}τ∈[0,u], ({bjτ}τ∈[0,u))j∈I

)
, {sτ (ω)}τ∈(u,T ), (πi, π

′
−i)
]

= z

for each e ∈ I, any t ∈ (θk̃(ω)−1(ω), limk→∞ θ
k(ω)), and all ω ∈ E such that limk→∞ θ

k(ω)

<∞. This implies that θk̃(ω)(ω) ≥ limk→∞ θ
k(ω) for all ω ∈ E such that limk→∞ θ

k(ω) <

∞, from which it follows that there is a set of nonzero measure consisting of ω ∈ E
with limk→∞ θ

k(ω) <∞ for which there exists l ≥ 1 such that θl(ω) > limk→∞ θ
k(ω).

However, θk(ω) is nondecreasing in k by construction, so this is a contradiction.

Thus, the sequence {θk}∞k=1 must converge almost surely to ∞. Since the stochas-

tic process ξib{ψ[(πi, π
′
−i), π

z, θk]} is progressively measurable for all k ≥ 1 and the

sequence {θk}∞k=1 converges almost surely to ∞, the stochastic process ξib(πi, π
′
−i) is

progressively measurable. It follows that πi ∈ ΠC
i .
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