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B Formal Details for Section 5

B.1 Application in Section 5.1

B.1.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and Brownian motion {bτ}τ∈[0,t] up to that time. Let

I = {1, . . . , n} denote the set of woodcutters. A history up to time t is represented

by
(
{bτ}τ∈[0,t], {(aiτ )i∈I}τ∈[0,t)

)
, where {aiτ}τ∈[0,t) denotes the action path of woodcutter

i up to time t with the action space being R2
++∪{z}. The action aiτ = (eiτ , f

i
τ ) ∈ R2

++

means that woodcutter i seeks to harvest the amount eiτ and claim the amount f iτ at

time τ . The action aiτ = z stands for choosing not to cut trees at that time.

The set of all histories up to an arbitrary time is denoted by H. Choose an

arbitrary ht ∈ H. Let X represent the set consisting of each time τ ∈ [0, t) for which

there is no i ∈ I such that aiτ = z and there exists dτ > 0 such that eiτ = dτ for all

i ∈ I. If the set X has only finitely many elements, then let {tk}Kk=1 be the increasing

sequence consisting of all the elements of X. For each k ∈ {1, . . . , K}, define the

volume of the forest right before the kth cutting by qtk = btk −
∑k−1

l=1 rtl , and define

the amount harvested on the kth cutting by rtk = min(qtk , dtk). The volume of the

forest at time t is given by qt = bt −
∑k

l=1 rtl . If the set X has only finitely many

elements, then the feasibility constraint is Āi(ht) = (0, qt]×R++ ∪{z} for each i ∈ I.

Otherwise, the feasibility constraint is simply Āi(ht) = {z} for any i ∈ I.

The set of feasible strategies is for each i ∈ I:

Π̄i = {πi : H → R2
++ ∪ {z} | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for woodcutter i ∈ I.

The shock process st is formally defined as a pair comprising the Brownian motion

bt and calendar time t. The instantaneous utility function vi is specified for each i ∈ I
as vi[(a

i
τ , a
−i
τ ), sτ ] = 0 if aj = z for some j ∈ I or else if ej 6= ek for some j, k ∈ I and

as

vi[(a
i
τ , a
−i
τ ), sτ ] = exp(−ρτ)

(
f iτ

/∑
j∈I

f jτ

)
(dτ − κ)

if there is no j ∈ I such that aj = z and there exists dτ > 0 such that eiτ = dτ for all

i ∈ I.
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B.1.2 Proofs

Proof of Proposition 5. The proof consists of three parts. We first assume the Markov

property on the path of play and solve for the unique optimum, where a symmetric

SPE is said to be Markov on the path of play if the action prescribed by each strategy

at any history up to an arbitrary time on the path of play depends only on the volume

qt at that time. Second, we show that any maximal equilibrium must be Markov on

the path of play. Third, we show that the supremum of the set of expected payoffs

attainable in a symmetric SPE can be approximated arbitrarily closely by a symmetric

SPE that is Markov on the path of play. These three results imply the existence of a

maximal equilibrium.

Lemma 11. For any profile (n, µ, σ, κ, ρ), the tree harvesting game has a symmetric

SPE that is Markov on the path of play and weakly Pareto dominates any symmetric

SPE that is Markov on the path of play. Moreover, on the path of play of any such

SPE, the mth cutting of trees occurs with probability one at the mth time the volume

reaches x̂ for every positive integer m, where the trees are cut to volume 0 on each

cutting.

Proof. Note first that at any history up to an arbitrary time, the minmax continuation

payoff to each agent is zero, which can be obtained under the symmetric Markov

strategy profile in which no woodcutter ever chooses to harvest trees. Hence, we

restrict attention without loss of generality to strategy profiles in which after any

deviation from the path of play, a symmetric Markov strategy profile is played in

which no woodcutter ever chooses to harvest trees.

Let U(bt) denote the value of an asset that pays r at the first time the Brownian

motion reaches c ≥ bt when the current value of the Brownian motion is bt. The

function U(bt) satisfies the Bellman equation ρU(bt) = E(dU) subject to the boundary

condition U(c) = r. Using Ito’s lemma, the Bellman equation can be expressed as

ρU(bt) = µU
′
(bt) + 1

2
σ2U

′′
(bt). It has the unique solution U(bt) = reα(bt−c), where

α = (−µ+
√
µ2 + 2σ2ρ)/σ2.

In any symmetric SPE that is Markov on the path of play, there exist y ≥ 0 and

z > y such that with probability one on the equilibrium path, the trees are cut if and

only if the volume of the forest is currently z > y, with the volume being y ≥ 0 after

each cutting. Consider any symmetric SPE in grim-trigger strategies that is Markov

on the path of play in which the equilibrium path is such that with probability one,
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the trees are cut if and only if the volume of the forest is currently z > y, with the

volume being y > 0 after each cutting. There exists a symmetric SPE in grim-trigger

strategies with a higher expected payoff to each agent in which the equilibrium path

is such that with probability one, the trees are cut if and only if the volume of the

forest is currently z − y, with the volume being 0 after each cutting. Noting that

such an SPE is Markov on the path of play, we restrict attention to symmetric SPE

in grim-trigger strategies for which there exists x > 0 such that with probability one

on the equilibrium path, the trees are cut if and only if the volume of the forest is

currently x > 0, with the volume of the forest being 0 after each cutting.

The expected payoff to each agent from playing such a strategy profile is given by

V (x) = [(x− κ)/n+ V (x)]e−αx, which yields V (x) = (x− κ)/[n(eαx − 1)]. The opti-

mization problem is to choose x ≥ κ so as to maximize V (x) subject to the constraint

(x − κ)/n + V (x) ≥ x − κ. The left-hand side of the incentive constraint represents

the expected payoff from following the prescribed strategy profile when cutting trees,

and the right-hand side represents the payoff to an agent that unilaterally deviates

in the limit as the amount of wood that it claims becomes arbitrarily large.

The derivative of V (x) with respect to x is given by V ′(x) = {eαx[1−α(x− κ)]−
1}/[n(eαx−1)2], which satisfies V ′(κ) > 0, V ′(∞) < 0, and V ′(y) < 0 if V ′(x) ≤ 0 and

y > x. Hence, the unconstrained maximization problem has a unique solution given

by V ′(x) = 0. The closed form expression for the value of x that solves V ′(x) = 0

is x∗ = [1 + ακ + W (−e−1−ακ)]/α. In addition, the constraint can be expressed as

x ≤ x̄, where x̄ = ln[n/(n− 1)]/α.

Hence, the solution for x is the minimum of x∗ and x̄. �

Lemma 12. Up to zero probability events, any maximal equilibrium must be Markov

on the path of play, with the path of play in a maximal equilibrium being unique.

Proof. Suppose that there exists a maximal equilibrium. Then one can find z > 0

and y < z such that there exists a maximal equilibrium in which with probability

one, the first cutting occurs at the first time the volume reaches z, and the trees are

cut to volume y at the first cutting. Since such a strategy profile is optimal, there

exists a maximal equilibrium in which with probability one, the first cutting occurs

at the first time the volume reaches z with the trees being cut to volume y, and the

second cutting occurs at the second time the volume reaches z with the trees being

cut to volume z. Continuing in this way, there exists a maximal equilibrium in which
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there is probability one that for any positive integer k, the kth cutting occurs at the

kth time the volume reaches z, with the trees being cut to volume y at each cutting.

If y > 0, then such a strategy profile would be Pareto dominated by an SPE in

which the path of play is such that with probability one, the trees are cut if and

only if the volume of the forest is currently z− y, with the volume being 0 after each

cutting. It follows that the volume of the forest after the first cutting is zero with

probability one in any maximal equilibrium.

Let V denote the expected payoff to each agent when a maximal equilibrium is

played starting at the null history. Then the continuation payoff to each agent after

the first cutting on the equilibrium path should be V with probability one when a

maximal equilibrium is played. Now consider the following optimization problem.

The value at volume 0 of an asset that pays V + (x − κ)/n at the first time that

the volume reaches x is maximized with respect to x subject to the constraint that

V + (x− κ)/n ≥ x− κ. It is straightforward to show that this problem has a unique

maximizer x′. Hence, up to zero probability events, a maximal equilibrium must be

Markov on the equilibrium path up to the first cutting, which happens at the first time

the volume reaches x′. We can iteratively apply a similar argument to each successive

cutting on the equilibrium path to show that with probability one in any maximal

equilibrium, the trees are cut if and only if the volume of the forest is currently x′,

with the trees being cut to the volume 0 at each cutting. �

Lemma 13. Given any symmetric SPE π, there exists a symmetric SPE that is

Markov on the path of play and that yields no lower an expected payoff to each agent

than does π.

Proof. Let V denote the supremum of the expected payoffs to each agent that can be

supported in a symmetric SPE. We show that there exists a symmetric SPE that is

Markov on the path of play and that yields an expected payoff arbitrarily close to V ,

which proves the desired claim given lemma 12.

Let V (q) denote the supremum of the expected payoffs that can be supported

in a symmetric SPE at any history up to an arbitrary time in which the volume is

currently q. Consider an asset A that pays (x − q − κ)/n + V (q) at the first time

that the volume reaches x. The value V is equal to the supremum of the value of

this asset at the null history over x ≥ 0 and q ∈ [0, x] subject to the constraint that

(x − q − κ)/n + V (q) ≥ x − κ. Call this optimization problem P . Note that the
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function V (q) is continuous in q because for any γ > 0, one can find δ > 0 such that

there is probability greater than 1− γ of the volume reaching q in a time interval of

length γ when the current volume is q− δ. We begin by proving the following claim.

Claim 14. The value of asset A at volume c is bounded above by the sum of c/n and

a constant.

Proof. Consider a revised model that is identical to the tree harvesting game, except

that the cost of cutting trees is zero if the volume has increased by at least the

amount κ since right after the previous cutting. At any history up to an arbitrary

time, the supremum in the tree harvesting game of the expected payoffs to each agent

over all symmetric strategy profiles is no greater than the supremum in the revised

model of the expected payoffs to each agent over all symmetric strategy profiles. In

addition, the following implies that the latter supremum is no greater than the sum

of (c + 2κ)/n and the value of an asset at the null history that for every positive

integer p, pays 2κ/n when the Brownian motion reaches pκ for the first time. This

sum can be expressed as c/n plus a constant.

First, we observe that given any symmetric strategy profile in which trees are not

harvested until the volume is at least c+2κ, there exists in the revised model when the

volume is currently c a symmetric strategy profile yielding a higher expected payoff

to each agent in which trees are harvested before the volume reaches c + 2κ. To see

this, choose any volume l ≥ c + 2κ, and let m denote the greatest integer no larger

than (l− c)/κ− 1. Given any symmetric strategy profile in which the trees are cut at

the next time the volume reaches l, there exists a symmetric strategy profile in the

revised model yielding a higher expected payoff to each agent in which the trees are

cut at the next time that the volume reaches l −mκ and at the m successive times

that the volume increases by the amount κ since right after the previous cutting.

Second, given any symmetric strategy profile in which the volume right after the

next cutting is greater than zero, there exists a symmetric strategy profile yielding a

higher expected payoff to each agent in which the volume right after the next cutting

is zero. In particular, consider any symmetric strategy profile π in which the trees are

cut at time u to a volume z > 0. There exists a symmetric strategy profile yielding a

higher expected payoff to each agent at time u in which the trees are cut to zero at

time u, the agents do not cut the trees at any time u′ at which the total amount cut

after time u up to and including time u′ when playing π would be no greater than z,
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the agents cut the amount y − z at the first time u′ at which the total amount cut

y after time u up to and including time u′ when playing π would be greater than z,

and the agents thereafter play strategy profile π behaving as if strategy profile π had

always been played from time u onwards.

Letting S denote the supremum over all symmetric strategy profiles of the ex-

pected payoff to each agent at volume c in the revised model, the two preceding

observations imply that for any ε > 0, there exists a symmetric strategy profile yield-

ing an expected payoff to each agent greater than S−ε in which the trees are harvested

before the volume first reaches c + 2κ, the trees are always harvested again before

the volume reaches 2κ, and the volume right after each cutting is zero. To compute

an upper bound on the expected payoff to each agent when such a strategy profile is

played, note that the utility of each agent at the first cutting is at most (c + 2κ)/n.

Second, note that each cutting thereafter occurs when the volume is at least κ and

yields a utility to each agent no greater than 2κ/n. Hence, an upper bound on the

continuation value after the first cutting can be computed by assuming that for every

positive integer p, the trees are harvested when the Brownian motion reaches pκ for

the first time with the amount 2κ/n being harvested by each agent at every cutting.

v

Since the upper bound on the value at volume c is less than c−κ for c sufficiently

high, the values of x satisfying the constraint are bounded above. The values of q

satisfying the constraint are consequently bounded above. It is also straightforward

to confirm that the values of x and q satisfying the constraint form a closed set.

Since the objective function is continuous and the admissible values of x and q form a

compact set, there exist values of x and q that achieve the supremum in problem P .

Let x∗ and q∗ denote these maximizers. Note that q∗ cannot be equal to x∗ because

the contradiction V (q∗) = V (q∗)−κ/n would otherwise result. There are two cases to

consider. In the first case, the constraint in problem P is not binding. In the second

case, the constraint in problem P is binding.

Consider the first case. Choose any ε > 0. There exists a symmetric SPE φ1 in

grim-trigger strategies with the following properties that yields an expected payoff

greater than V − ε. With probability one, the first cutting on the equilibrium path

occurs at the first time the volume reaches the threshold x∗, the trees are cut to the

volume q∗ at the first cutting, and the agents after the first cutting on the equilibrium

path play a strategy profile that yields a continuation payoff W that does not depend
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on the history up to the time of the first cutting. Let Y denote the expected payoff

that each agent receives with probability one at the first time the volume reaches q∗

when playing strategy profile φ1. Note that V (q∗) − Y ≤ V (q∗) − W because the

behavior up to the first cutting when playing strategy profile φ1 is the same as the

behavior in problem P .

Since Y ≥ W , there exists a symmetric SPE φ2 in grim-trigger strategies with

the following properties that yields an expected payoff greater than V − ε. With

probability one on the equilibrium path, the first cutting occurs at the first time the

volume reaches the threshold x∗, the second cutting occurs at the first time after

the first cutting that the volume reaches the threshold x∗, the trees are cut to the

volume q∗ at the first and second cutting, and the agents after the second cutting

play a strategy profile that yields a continuation payoff W that does not depend on

the history up to the time of the second cutting. In particular, with probability one,

the agents start by playing φ1, and then after any history up to an arbitrary time on

the equilibrium path after the first cutting, the agents play φ1 behaving after the first

cutting on the equilibrium path as if the volume q∗ were reached for the first time.

Applying this procedure iteratively, one can show that there exists a symmetric

SPE φ in grim-trigger strategies with the following properties that yields an expected

payoff greater than V − ε. There is probability one of the equilibrium path being

such that for any positive integer m, the mth cutting occurs at the first time after the

(m− 1)th cutting that the volume reaches the threshold x∗ and the volume after each

positive cutting is q∗, where the 0th cutting is said to occur at time 0. This shows for

the first case that there exists a symmetric SPE that is Markov on the path of play

and yields an expected payoff arbitrarily close to V .

Consider the second case. Choose any ε > 0. There exists a symmetric SPE ψ1

in grim-trigger strategies with the following properties such that the expected payoff

Y1 at the first time the volume reaches q∗ is greater than V (q∗)− ε. With probability

one on the equilibrium path, the first cutting occurs at the first time the volume

reaches the threshold x1, the trees are cut to q∗ at the first cutting, and the agents

after the first cutting play a strategy profile that yields a continuation payoff W1 that

does not depend on the history up to the time of the first cutting. Moreover, because

the constraint in Problem P is binding, the threshold x1 can be chosen such that

(x1− q∗−κ)/n+W1 = x1−κ by choosing x1 to maximize the expected payoff under

ψ1 given the continuation payoff W1 and the volume q∗ after the first cutting.
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Applying such an argument to any subgame after the first cutting on the equi-

librium path, there exists a symmetric SPE ψ′2 in grim-trigger strategies with the

following properties such that the expected payoff at the first time the volume reaches

q∗ is greater than V (q∗)− ε. With probability one on the equilibrium path, the first

cutting occurs at the first time the volume reaches the threshold x1, the second cut-

ting occurs at the first time after the first cutting that the volume reaches a threshold

x2, the trees are cut to the volume q∗ at the first and second cutting, and the agents

after the second cutting play a strategy profile that yields a continuation payoff W2

that does not depend on the history up to the time of the second cutting. Moreover,

because the constraint in problem P is binding, the threshold x2 can be chosen such

that (x2 − q∗ − κ)/n+W2 = x2 − κ by choosing x2 to maximize the expected payoff

under ψ′2 given the first threshold x1, the continuation payoff W2, and the volume q∗

after the first and second cutting. Let Y2 be the continuation payoff that each agent

receives with probability one immediately after the first cutting on the equilibrium

path when playing ψ′2.

Note that W1 > W2 if x1 > x2, W1 < W2 if x1 < x2, and W1 = W2 if x1 = x2.

In addition, Y1 > Y2 if x1 > x2, Y1 < Y2 if x1 < x2, and Y1 = Y2 if x1 = x2. If

x2 > x1, then let ψ2 = ψ′2. If x2 ≤ x1, then let ψ2 be a strategy profile in which with

probability one, the agents start by playing ψ1, and then after any history on the

equilibrium path after the first cutting, the agents play ψ1 behaving as if the game

just started after the first cutting on the equilibrium path.

Continuing in this way, one can show that there exists a symmetric SPE ψ in grim-

trigger strategies with the following properties such that the expected payoff Y1 at the

first time the volume reaches q∗ is greater than V (q∗)− ε. There is probability one of

the equilibrium path being such that for any positive integer m, the mth cutting occurs

at the first time after the (m − 1)th cutting that the volume reaches the threshold

xm and the volume after each positive cutting is q∗, where the 0th cutting is said to

occur at time 0. Moreover, xm is nondecreasing in m, and the continuation payoff

Qm that each agent receives with probability one after the mth cutting is greater than

V (q∗)− ε.
Let y denote the limit of the sequence {xm}. Consider a symmetric SPE ξ in which

there is probability one of the equilibrium path being such that for any positive integer

m, the mth cutting occurs at the first time after the (m−1)th cutting that the volume

reaches the threshold y and the volume after each positive cutting is q∗, where the 0th
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cutting is said to occur at time 0. With probability one, the expected payoff R under

strategy profile ξ at the first time the volume reaches q∗ is no less than V (q∗) − ε

because Qm is greater than V (q∗)− ε for all m, where R is the limit of the sequence

{Qm}. Hence, the expected payoff under strategy profile ξ at the null history is no

less than V − ε. Moreover, the incentive constraint (y − q∗ − κ)/n + R ≥ y − κ is

satisfied because the incentive constraint (xm − q∗ − κ)/n+Qm ≥ xm − κ is satisfied

for all m. This shows for the second case that there exists a symmetric SPE that is

Markov on the path of play and yields an expected payoff arbitrarily close to V . �

In a maximal SPE, there are multiple possibilities for off-path strategies, but in

any off-path strategies, the continuation payoff from deviation is zero, which is the

minmax payoff of each agent. One possibility for off-path strategies is for each agent

never to move. Another possibility is for each woodcutter to cut trees at time t if

and only if qt = κ and qτ = 0 for some time τ ∈ (t̂, t), where t̂ is the supremum of

the set of times before t at which some agent moved. Yet another possibility is as

follows. Let M be a positive integer, and let c ∈ (0, κ). The agents do not move until

reaching a time t such that qt = 0. Subsequently, the mth cutting for any m ≤ M

occurs when the current time t is such that the volume reaches c for the mth time,

and the trees are cut to zero on each cutting. After the M th cutting, the woodcutters

play a maximal equilibrium. If there is any deviation from this path of play, then the

agents never move. The values of M and c are chosen so that the ex ante expected

payoff of each agent is equal to zero.

Proof of Item 4 in Remark 2. It is straightforward to show that α is decreasing in

µ and σ and increasing in ρ. Since x̄ is decreasing in α > 0, it follows that x̄ is

increasing in µ and σ and decreasing in ρ. Clearly, x̄ is decreasing in n, and x∗ is

increasing in κ. We argue below that x∗ is decreasing in α, from which it follows that

x∗ is increasing in µ and σ and decreasing in ρ.

Defining W̃ (α) = W (−e−1−ακ), the cutoff x∗ can be expressed as follows:

x∗ = 1/α + κ+ W̃ (α)/α.

The partial derivative of x∗ with respect to α is given by:

∂x∗/∂α = [−1 + αW̃
′
(α)− W̃ (α)]/α2.
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Differentiating −1 + αW̃
′
(α)− W̃ (α) with respect to α yields:

αW̃
′′
(α) + W̃

′
(α)− W̃ ′

(α) = αW̃
′′
(α),

where W̃
′′
(α) is given by:

W̃
′′
(α) = e−2−2ακκ2[−e1+ακW

′
(−e−1−ακ) +W

′′
(−e−1−ακ)],

which is negative because W is increasing and concave. It follows that −1+αW̃
′
(α)−

W̃ (α) is decreasing in α. In order to demonstrate that ∂x∗/∂α < 0, it suffices to show

that limα↓0 −1 + αW̃
′
(α)− W̃ (α) = 0.

Using the formula W
′
(`) = W (`)/{`[1 + W (`)]} with ` = −e−1−ακ, we obtain

αW̃
′
(α) =

(
αW (`)/{`[1 +W (`)]}

)
∂`/∂α, which simplifies to −ακW̃ (α)/[1 + W̃ (α)].

Applying L’Hôpital’s Rule, we have limα↓0 −ακW̃ (α)/[1+W̃ (α)] = limα↓0 −κW̃ (α)/

W̃
′
(α), which equals 0 since limα↓0 W̃ (α) = −1 and limα↓0 W̃

′
(α) = ∞. It follows

that limα↓0 −1 + αW̃
′
(α)− W̃ (α) = 0.

B.2 Application in Section 5.2

B.2.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and any price process {pt}τ∈[0,t] up to that time. A history

up to time t is represented by
(
{pτ}τ∈[0,t], {(aiτ )i∈{W,R}}τ∈[0,t)

)
, where {aWτ }τ∈[0,t) and

{aRτ }τ∈[0,t) respectively denote the action paths of the oil well and oil refinery up to

time t. Agent W ’s action space is R++×R+∪{z}. In the case where aWτ ∈ R++×R+,

the first element of aWτ , denoted by eτ , represents the amount of oil extracted by the

oil well at time τ , and the second element, denoted by xτ , records the total amount

extracted before time τ . The action z stands for not extracting any oil at time τ .

Agent R’s action space is RR+

+ ∪ {z}. In the case where aRτ is a function from R+ to

itself, aRτ (τ ′) > 0 represents the payment to the oil refinery at time τ from delivering

the output produced from the oil received at time τ ′, where aRτ (τ ′) = 0 indicates that

no such delivery was made by the oil refinery at time τ . The action aRτ = z means

that the oil refinery does not deliver any output at time τ .

The set of all histories up to an arbitrary time is denoted by H. Choose any

ht ∈ H. Let X represent the set consisting of each time τ ∈ [0, t) such that aWτ 6= z.

If the set X has infinitely many elements, then the feasibility constraints are simply
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ĀW (ht) = ĀR(ht) = {z}. Consider the case where the set X has only finitely many

elements, and let {tk}Kk=1 be the sequence consisting of all the elements of X. The

set of W ’s feasible actions is ĀW (ht) = (0, q − xt]× {xt} ∪ {z}, where xt =
∑K

k=1 etk .

The set of R’s feasible actions ĀR(ht) is such that aRt ∈ ĀR(ht) if and only if aRt = z

or aRt satisfies the following. Choose any time τ ∈ [0,∞). If there exists k such

that tk = τ and τ + d(eτ ) ≤ t and there is no t′ < t such that aRt′ (τ) > 0, then

aRt (τ) ∈ {0, y(pτ , eτ )}. Otherwise, aRt (τ) = 0. In addition, aRt (τ) > 0 for some

τ ∈ [0, t).

The sets of feasible strategies are:

Π̄W = {πW : H → R++ × R+ ∪ {z} | πW (ht) ∈ ĀW (ht) for all ht ∈ H}

Π̄R = {πR : H → RR+

+ ∪ {z} | πR(ht) ∈ ĀR(ht) for all ht ∈ H}
.

For agent W , the set of traceable, frictional, calculable, and feasible strategies can be

defined and is denoted by Π̄C
W . For agent R, the set of traceable, weakly frictional,

calculable, and feasible strategies can be defined and is denoted by Π̂C
R.

The shock process st is formally defined as a pair comprising the price pt and

calendar time t. The instantaneous utility function vi is specified as follows for i = W :

vW [(aWτ , a
R
τ ), sτ ] =

[pτeτ −
∫ xτ+eτ
xτ

c(ξ)dξ] exp(−ρτ) if aWτ 6= z

0 if aWτ = z
,

and as follows for i = R:

vR[(aWτ , a
R
τ ), sτ ] =



[
∑
{τ ′:aRτ (τ ′)>0} a

R
τ (τ ′)− pτeτ ] exp(−ρτ) if aWτ 6= z and aRτ 6= z

[
∑
{τ ′:aRτ (τ ′)>0} a

R
τ (τ ′)] exp(−ρτ) if aWτ = z and aRτ 6= z

−pτeτ exp(−ρτ) if aWτ 6= z and aRτ = z

0 if (aWτ , a
R
τ ) = (z, z)

.

B.2.2 Proofs

Proof of Proposition 6. Consider the problem faced by an oil well deciding when to

sell a single unit of oil whose extraction cost is κ where the price evolves according to
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the stochastic process {pt}t∈[0,∞). This is a basic search problem in continuous time.1

Letting B(κ) denote the expected payoff to an oil well that chooses to retain the oil

at the current time, the optimal policy of the oil well is to extract the oil at time t if

pt > B(κ) +κ, to retain the oil at time t if pt < B(κ) +κ, and either if pt = B(κ) +κ.

The solution is characterized by the Bellman equation:

ρB(κ) = λ

∫ ∞
−∞

max[p−B(κ)− κ, 0]dG(p). (3)

Defining the reservation price ς(κ) = B(κ) + κ, the preceding equation can be ex-

pressed as:

ς(κ) = κ+
λ

ρ

∫ ∞
ς(κ)

p− ς(κ)dG(p). (4)

It is straightforward to show that there exists a unique value of ς(κ) satisfying the

above equation and that ς(κ) is increasing and continuous in κ.

For any κ ∈ R+, let S(κ) be the supremum of the set {e/q : c(e) ≤ κ} if c(0) ≤ κ,

and let S(κ) = 0 otherwise. It follows from the analysis so far that the optimal policy

of an oil well that has a measure q of oil with extraction cost distributed according

to the cdf S is to extract at time t any remaining unit of oil with extraction cost κ

satisfying ς(κ) < pt, to retain at time t any remaining unit of oil with extraction cost

κ satisfying ς(κ) > pt, and either if ς(κ) = pt. Hence, the equilibrium strategy of the

oil well in the supply chain model is as specified in the statement of the proposition.

For any k such that ξt,k = 1, consider the oil extracted at time θt,k. If the refinery

delivers the resulting output at time t′ ≥ t, then its payoff at time t from the delivery

is exp[−ρ(t′−t)]·y(pθt,k , eθt,k) > 0. Since this expression is decreasing in t′, the refinery

maximizes its payoff by delivering the output immediately. Hence, the equilibrium

strategy of the oil refinery is as specified in the statement of the proposition.

B.3 Application in Section 5.3

B.3.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and cost process {cτ}τ∈[0,t] up to that time. A history

up to time t is represented by
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
, where {aiτ}τ∈[0,t) denotes

the action path of firm i ∈ {1, 2} up to time t with the action space being {I, A, F, z}.
1Rogerson, Shimer, and Wright (2005) present a similar problem in their review of search models

of the labor market.
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The set of all histories up to an arbitrary time is denoted by H. We partition it

as follows.

1. Let Hno,no be the set consisting of every history up to any time t that has

the form
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where aiτ = z for each i = 1, 2 and all

τ ∈ [0, t).

2. Let Hyes,no be the set consisting of every history up to any time t that has

the form
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where there exists τ ′ ∈ [0, t) such that

(a1
τ , a

2
τ ) = (z, z) for all τ ∈ [0, t) \ {τ ′} and (a1

τ ′ , a
2
τ ′) is (I, z), (I, A), or (A, z).

3. Let Hno,yes be the set consisting of every history up to any time t that has

the form
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where there exists τ ′ ∈ [0, t) such that

(a1
τ , a

2
τ ) = (z, z) for all τ ∈ [0, t) \ {τ ′} and (a1

τ ′ , a
2
τ ′) is (z, I), (A, I), or (z, A).

4. Let Hyes,yes be the set consisting of every history up to any time t that has the

form
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
where either of the following holds:

(a) There exists τ ′ ∈ [0, t) such that (a1
τ ′ , a

2
τ ′) ∈ {(I, I), (A,A)}, and (a1

τ , a
2
τ ) =

(z, z) for all τ ∈ [0, t) with τ 6= τ ′.

(b) There exist τ ′, τ ′′ ∈ [0, t) with τ ′ < τ ′′ such that (a1
τ , a

2
τ ) = (z, z) for all

τ ∈ [0, t) with τ /∈ {τ ′, τ ′′} and either of the following holds:

i. (a1
τ ′ , a

2
τ ′) ∈ {(I, z), (I, A), (A, z)} and (a1

τ ′′ , a
2
τ ′′) = (z, F ).

ii. (a1
τ ′ , a

2
τ ′) ∈ {(z, I), (A, I), (z, A)} and (a1

τ ′′ , a
2
τ ′′) = (F, z).

The feasibility constraints are as follows. For firm 1,

Ā1(ht) =


{I, A, z} if ht ∈ Hno,no

{F, z} if ht ∈ Hno,yes

{z} otherwise

.

For firm 2,

Ā2(ht) =


{I, A, z} if ht ∈ Hno,no

{F, z} if ht ∈ Hyes,no

{z} otherwise

.
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The set of feasible strategies is for each i = 1, 2:

Π̄i = {πi : H → {I, A, F, z} | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for firm i = 1, 2.

The shock process st is formally defined as a pair comprising the entry cost ct and

calendar time t. The instantaneous utility function vi is specified as follows for each

firm i = 1, 2:

vi[(a
1
τ , a

2
τ ), sτ ] =


0 if (aiτ , a

−i
τ ) ∈ {(z, z), (z, I), (z, A), (z, F ), (A, I)}

(b1 − cτ )e−ρτ if (aiτ , a
−i
τ ) ∈ {(I, z), (I, A), (A, z)}

(b2 − cτ )e−ρτ if (aiτ , a
−i
τ ) ∈ {(F, z), (I, I), (A,A)}

.

B.3.2 Proofs

Proof of Proposition 7. Define a parameter β = 1
2
−µ/σ2−

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2 <

0. For c > 0, let κ2 be the value of κ > 0 that maximizes the expression (b2−κ)(c/κ)β,

which for κ ≤ c is the value of an asset that pays b2 − κ at the first time the cost

reaches κ when the current cost is c. The maximizer is κ2 = [β/(β − 1)]b2, and the

maximized value is b1−β
2 cβ(−β)−β(1− β)β−1.

Next let κ1 be the value of κ > κ2 that solves the equation b1 − κ = (b2 −
κ2)(κ/κ2)β = b1−β

2 κβ(−β)−β(1 − β)β−1. The left-hand side is bigger than the right-

hand side in the limit as κ goes to κ2, and the right-hand side is bigger than the

left-hand side in the limit as κ goes to ∞. The derivative of the left-hand side minus

the right-hand side with respect to κ is given by −1+[−β/(1−β)]1−β(b2/κ)1−β, which

is decreasing in κ. Hence, there exists a unique value of κ that satisfies the preceding

equation.

Now we characterize the SPE. First consider any history up to an arbitrary time

t at which firm i ∈ {1, 2} is the only firm not in the market. In any SPE, action F

will be chosen by firm i if and only if ct ≤ κ2.

Next consider the case in which neither firm has yet entered the market. In an

SPE, the firms will both choose I or both choose A if the history up to the current

time t is such that ct ≤ κ2. Moreover, there cannot be an SPE in which a firm chooses
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I or A at a history up to a given time t satisfying ct > κ1. A firm that enters the

market at such a history could increase its expected payoff by deviating to a strategy

in which it chooses z whenever the cost is currently greater than κ2 and it enters

whenever the cost is currently no greater than κ2. Finally, there cannot be an SPE

in which the firms both choose I or both choose A at a history up to a given time t

satisfying ct > κ2. A firm that enters the market at such a history could increase its

expected payoff by deviating to a strategy in which it chooses z whenever the cost is

currently greater than κ2 and it enters whenever the cost is currently no greater than

κ2.

Now suppose that the firms are playing an SPE in Markov strategies. Consider

the set of histories up to any time in which no firm has entered yet. For i ∈ {1, 2},
let ξi denote the maximum cost ct at which agent i chooses I or A. Such a value of

the cost exists due to the traceability assumption.

It must be that ξ1 = κ1 or ξ2 = κ1. Suppose to the contrary that ξi < κ1 for

each i ∈ {1, 2}. If ξi < ξ−i, then there exists χ ∈ (ξ−i, κ1) such that firm i could

increase its expected payoff by deviating and choosing I whenever the current value

of the cost is χ. If ξ1 = ξ2 and firm i chooses A whenever the cost is currently ξi and

there is no prior entry, then there exists χ ∈ (ξi, κ1) such that firm i could increase

its expected payoff by deviating and choosing I whenever the cost is currently χ.

It must further be that ξ1 = ξ2 = κ1. Suppose to the contrary that ξi = κ1 but

ξ−i < κ1. There exists χ ∈ (ξ−i, κ1) such that firm i could increase its expected

payoff by deviating and choosing z whenever the cost is currently greater than χ and

choosing I whenever the cost is currently no greater than χ. It follows that one firm

will choose I and the other firm will choose A whenever the cost is currently equal

to κ1.

This completes the desired characterization of Markov perfect equilibrium.

Proof of Item 2 in Remark 4. Note that β < 0 is decreasing in µ and ρ but increasing

in σ. The cutoff κ2 is given by [β/(β − 1)]b2, which is increasing in b2 and decreasing

in β. Hence, κ2 is increasing in µ and ρ but decreasing in σ.

The cutoff κ1 is defined by the implicit function f(b1, b2, κ1, β) = b1 − κ1 −
b1−β

2 κβ1 (−β)−β(1−β)β−1 = 0. It follows from the proof of proposition 7 that ∂f/∂κ1 <

0. It is also clear that ∂f/∂b1 > 0 and ∂f/∂b2 < 0. In addition, we have:

∂f/∂β = b1−β
2 κβ1 (−β)−β(1− β)β−1

(
log{[β/(β − 1)]b2} − log(κ1)

)
< 0,
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observing that [β/(β − 1)]b2 < κ1.

The partial derivative of the threshold κ1 with respect to a parameter α ∈
{b1, b2, β} can be signed as follows:

sgn(∂κ1/∂α) = sgn[−(∂f/∂α)/(∂f/∂κ1)] = sgn(∂f/∂α).

Hence, ∂κ1/∂b1 > 0, ∂κ1/∂b2 < 0, and ∂κ1/∂β < 0. It follows that ∂κ1/∂µ > 0,

∂κ1/∂ρ > 0, and ∂κ1/∂σ < 0.

B.3.3 Discussion of Item 1 in Remark 4

Noting that each agent can move at most twice, it is straightforward to confirm that

any Markov perfect equilibrium satisfies both uniform and pathwise admissibility. In

any Markov perfect equilibrium, uniform inertia is violated. To see this, fix a history

up to an arbitrary time t in which the cost is currently ct ∈ (κ2, κ1] and there has

been no previous entry. Consider a firm that takes action A at such a history. For

any ε > 0, there is positive conditional probability that cτ ≤ κ2 for some τ ∈ (t, t+ε),

which implies that this firm takes action F in the time interval (t, t+ ε). Thus, there

cannot exist ε > 0 such that this firm does not move during the time interval (t, t+ε).2

However, pathwise inertia is satisfied because the cost process has continuous sample

paths. To see this, consider any history up to time t and any realization of the cost

process {cτ}τ∈(t,∞) after time t. If ct > κ1, there exists ε > 0 such that cτ 6= κ1 for all

τ ∈ (t, t+ ε). If κ1 ≥ ct > κ2, there exists ε > 0 such that cτ 6= κ2 for all τ ∈ (t, t+ ε).

In each case, the agents do not move during the time interval (t, t + ε). If κ2 ≥ ct,

then there is no ε > 0 such that the agents move during the time interval (t, t+ ε).

2If action A were not available, then a Markov perfect equilibrium would not exist. For example,
there cannot be an equilibrium in which when neither firm has entered yet, one firm chooses I if
the current cost is no greater than κ1 and chooses z otherwise, and the other firm chooses I if the
current cost is no greater than κ2 and chooses z otherwise. In such a strategy profile, if the cost
were currently κ1 for the first time and neither firm has entered yet, then the former firm could
profitably deviate by choosing I at the first time the cost reaches κ and choosing z otherwise, where
κ ∈ (κ2, κ1).
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B.4 Application in Section 5.4

B.4.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0, T ), the taste process {xτ}τ∈[0,t] up to time t, and the sequence

(tk)Kk=1 of Poisson arrival times no greater than t, where tK = t if there is a Poisson hit

at time t. A history up to time t is represented by
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
,

where {(aiτ )i∈{B,S}}τ∈[0,t) denotes the action path of agent i ∈ {B, S} up to time t

with the action space of each agent i being R ∪ {z}.
The set of all histories up to an arbitrary time is denoted by H. We partition it

as follows.

1. Let H∅ be the set consisting of every history up to any time t that has the form(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where aiτ = z for each i = B, S and all

τ ∈ [0, t).

2. For any c ∈ R, let Hc be the set consisting of every history up to any time

t that has the form
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where aSτ = z for

all τ ∈ [0, t) and there exists τ ′ ∈ [0, t) such that aBτ ′ = c and aBτ = z for all

τ ∈ [0, t) \ {τ ′}.

3. For any c ∈ R, let Hc,c be the set consisting of every history up to any time

t that has the form
(
{xτ}τ∈[0,t], (t

k)Kk=1, {(aiτ )i∈{B,S}}τ∈[0,t)

)
where there exist

τ ′, τ ′′ ∈ [0, t) with τ ′ < τ ′′ such that aBτ ′ = c, aBτ = z for all τ ∈ [0, t) \ {τ ′},
aSτ ′′ = c, and aSτ = z for all τ ∈ [0, t) \ {τ ′′}.

The feasibility constraints are as follows. For B, ĀB(ht) = {z} ∪ R if ht ∈ H∅,
and ĀB(ht) = {z} otherwise. For S, ĀS(ht) = {z, c} if tK = t and there exists c ∈ R
such that ht ∈ Hc, and ĀS(ht) = {z} otherwise.

The sets of feasible strategies are:

Π̄B = {πB : H → {z} ∪ R | πB(ht) ∈ ĀB(ht) for all ht ∈ H}

Π̄S = {πS : H → {z} ∪ R | πS(ht) ∈ ĀS(ht) for all ht ∈ H}
.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for agent i = B, S.

The shock process st is formally defined as a triple comprising the taste xt, the

calendar time t, and an indicator for there being a Poisson hit at that time. The
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instantaneous utility function vi is specified as follows for i = B:

vB[(aBτ , a
S
τ ), sτ ] =


0 if aSτ = z

v − p− E[(c− xT )2|xτ ]

= v − p− (c− xτ )2 − σ2(T − τ) if aSτ = c ∈ R

,

and as follows for i = S:

vS[(aBτ , a
S
τ ), sτ ] =

0 if aSτ = z

p if aSτ = c ∈ R
.

B.4.2 Proofs

Proof of Proposition 8. First, since p > 0, it is a strictly dominant strategy for S

to sell the good as soon as he obtains a chance to do so after an order is placed.

Second, since the only choice B effectively makes is the time of placing an order, her

maximization problem can be written as:

max
τ∈(0,T ]

u(τ) = (1− e−λτ )E[v − (s− xT )2 − p] = (1− e−λτ )(v − σ2τ − p),

where τ represents the amount of time remaining until the deadline at time T . The

first-order condition is:

u′(τ) = λe−λτ (v − σ2τ − p)− σ2(1− e−λτ ) = 0. (5)

The second derivative is given by u′′(τ) = −λe−λτ [λ(v − σ2τ − p) + 2σ2]. Note that

u′(0) > 0 since v > p. In addition, u′′(τ) < 0 whenever u′(τ) ≥ 0. Hence, the

objective function has a unique global maximizer in [0, T ). Let τ ′ be the unique

value of τ satisfying equation (5), and define τ ∗ = min{τ ′, T} and t∗ = T − τ ∗. This

completes the desired characterization of the unique equilibrium strategy profile.

Proof of Item 3 in Remark 5. We apply the implicit function theorem to (5) to con-

duct comparative statics, focusing on the case where τ ∗ = τ ′. That is, (5) holds when

τ = τ ∗.

Recall that if (5) holds, then the derivative of its left-hand side is strictly negative.
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Denoting the left-hand side with τ = τ ∗ by f(τ ∗, σ, v, p, λ), it follows that:

sign(∂t∗/∂φ) = −sign(∂τ ∗/∂φ) = −sign[−(∂f/∂φ)/(∂f/∂τ ∗)] = −sign(∂f/∂φ),

where φ ∈ {σ, v, p, λ}.
First, t∗ is increasing in σ because ∂f/∂σ = 2σ[−λe−λτ∗τ ∗ − (1 − e−λτ

∗
)] < 0.

Second, t∗ is decreasing in v because ∂f/∂v = λe−λτ
∗
> 0. Third, t∗ is increasing in

p since the effect of p is opposite to the effect of v by (5). Fourth, t∗ is increasing in

λ as:

∂f/∂λ = e−λτ
∗
(v − σ2τ ∗ − p)− λτ ∗e−λτ∗(v − σ2τ ∗ − p)− σ2τ ∗e−λτ

∗

= σ2(1− e−λτ∗)/λ− σ2τ ∗(1− e−λτ∗)− σ2τ ∗e−λτ
∗

= σ2(1− e−λτ∗ − λτ ∗)/λ < 0,

where the second step applies the equality λe−λτ
∗
(v − σ2τ ∗ − p) = σ2(1− e−λτ∗).

B.4.3 Discussion of Item 1 in Remark 5

Noting that each agent can move at most once, it can easily be seen that both uniform

and pathwise admissibility are satisfied in an SPE. B’s equilibrium strategy, which

simply involves moving at a predetermined time, satisfies both uniform and pathwise

inertia. S’s unique equilibrium strategy violates uniform inertia. For any ε > 0, there

is positive probability of a Poisson hit in the time interval (t∗, t∗+ ε), in which case S

sells the good. Thus, there is no ε > 0 such that S does not move in the time interval

(t∗, t∗+ ε). However, S’s strategy in equilibrium is pathwise inertial. Given any time

t as well as any realization of the Poisson process, there exists ε > 0 such that there

is no Poisson hit in the time interval (t, t + ε). Since S can move only at the arrival

times of the Poisson process, S does not move during this interval of time.

C Additional Applications

C.1 Sequential Exchange with Transaction Cost

Kamada and Rao (2018) consider a problem involving the bilateral trade of divisible

goods. Each of two parties is endowed with the same amount of a different good.

Each agent derives utility not from its own good but from the good that the other

agent initially possesses. The decision facing each agent is when to transfer its good

to the other agent and how much of the good to transfer on each transaction. There is
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a strictly positive transaction cost evolving over time according to a diffusion process

that does not depend on the size of a transaction. The framework can be applied to

study the exchange of information, prisoners, and land.3

The first-best solution (or efficient outcome), which maximizes the expected payoff

of each agent in the absence of incentive constraints, requires there to be at most one

transaction and for the entire stock of each good to be transferred on that transaction.

However, such a strategy profile is not an SPE because an agent does not have an

incentive to incur the transaction cost. In particular, once each agent transfers all

of its good to the other agent, the future value of the relationship is zero since there

is no possibility of further exchange, so that there is no reward for cooperating by

making a transfer.

In Kamada and Rao (2018), any SPE in which trade occurs must involve a poten-

tially infinite sequence of transactions on the path of play. For the case where the cost

process {ct}t∈[0,∞) follows a geometric Brownian motion, those authors further solve

for the maximal equilibrium (or second-best solution), which is the strategy profile

that maximizes the expected payoff of each agent over the class of SPE. The maxi-

mal equilibrium is characterized by a sequence {c∗k, f ∗k}∞k=1 such that on the path of

play, the amount f ∗k of each good is exchanged between the two agents when the cost

reaches c∗k for the first time. Such an equilibrium can be supported using grim-trigger

strategies, in which failure to follow the specified path of play results in a permanent

suspension of trade.

The maximal SPE violates uniform inertia for the following reason. Consider any

history up to an arbitrary time t in which no agent has deviated in the past and

each agent has previously made a total of m transactions. For any ε > 0, there is

positive conditional probability that cτ = c∗m+1 for some τ ∈ (t, t + ε), in which case

the maximal SPE requires each agent to transfer the amount f ∗m+1 during the time

interval (t, t + ε). Thus, there cannot exist ε > 0 such that the agents do not move

during this time interval. However, the maximal SPE is pathwise inertial. To see

this, consider any time t and any realization of the cost process {cτ}τ∈(t,∞) after time

t. Let l be the least index k such that ct > c∗k. Due to the continuity of the sample

paths of geometric Brownian motion, there exists ε > 0 such that cτ 6= c∗l for all

τ ∈ (t, t + ε), which implies that the agents do not move during the time interval

3Kamada and Rao (2018) provide a detailed discussion of how the model and results fit such
real-life settings.
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(t, t+ ε).

In regard to admissibility, uniform F1 is violated because there is no upper bound

on the number of transactions in any proper time interval. Nonetheless, the maximal

SPE satisfies pathwise F1 because for any realization of the cost process {cτ}τ∈[0,t) up

to time t, the agents transact only finitely many times during the time interval [0, t].

From proposition 3, assumption F2 holds for any traceable and frictional strategy.

However, the grim-trigger strategies used to support the maximal SPE are incom-

patible with assumption F3 in Simon and Stinchcombe (1989) because any deviation

from the prescribed timing of a transaction changes the subsequent behavior of the

agents.

For a formal definition of strategy spaces in this context as well as comparative

statics for the maximal equilibrium, see Kamada and Rao (2018).

C.2 Partnership and Cooperation between Criminals

In the analysis of the finite-horizon ordering game in section 5.3, the evolution of

a diffusion process induces agents to move at a time with no Poisson hit. In the

example below, there is no such diffusion process, but restricting agents to move only

at Poisson arrival times is still problematic. In particular, such a restriction may cause

a delay in punishment after a deviation, thereby weakening the scope for punishment,

which makes it difficult to enforce cooperation.

Consider a partnership game between two criminals, 1 and 2, where time t runs

continuously in [0,∞). At each moment of time t, a criminal chooses between remain-

ing in the partnership R and permanently leaving the partnership L. The criminals

receive flow payoffs at each time t depending on the profile of choices at time t. In

particular, the flow payoff to each agent is 1 if both choose R and is 0 if either chooses

L. Moreover, at random points in time that arrive according to a Poisson process

with arrival rate λ > 0, the criminals are apprehended by the police, and they play

a prisoner’s dilemma with discrete payoffs, where they need to choose between ad-

mitting guilt D and remaining silent C. The payoffs in the prisoner’s dilemma are

specified in Table 1. The discount rate is ρ > 0.

Even though our general model seemingly does not allow for flow payoffs, this game

can be reformulated as follows so as to fit into our framework. The reformulated

version will not have a flow payoff, while the discrete payoffs from the prisoner’s

dilemma are unchanged. At time 0, each criminal receives a discrete payoff 1/ρ, which
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C D
C c, c p, b
D b, p d, d

Table 1: Prisoner’s Dilemma (p < d < c < b)

is the integral over time of the flow payoff to a criminal from the partnership game

if both criminals remain in the partnership perpetually. If either criminal changes

from R to L at time t and neither criminal has changed to L before t, then each

criminal receives the discrete payoff −1/ρ at time t. If one criminal changes from R

to L at time t and the other criminal has changed to L at some time before t, then

each criminal receives the discrete payoff 0 at time t. The action z in our framework

would correspond to “not changing from R to L and choosing C.”

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = 1, 2.4 Call the game with such strategy spaces the criminal game.

It is characterized by (c, b, p, d, λ, ρ). The analysis in sections 3 and 4 implies that a

subgame-perfect equilibrium is well defined.

We introduce two strategy profiles and show that one of them is supportable as an

SPE for a larger set of parameter values than the other. First, we define the following

strategy profile, which we call the optimal Poisson-revision strategy profile. Suppose

that the current time is t.

1. When D and L have never been played in the past, play R, and C if there is a

Poisson hit at t.

2. If D or L has ever been played in the past, let t∗ be the infimum of the times

at which D or L is played.

(a) If there is a Poisson hit at t, play D.

(b) If there is no Poisson hit at any time in (t∗, t], play R if feasible.

(c) If there is a Poisson hit at some time in (t∗, t], play L.

Second, we define the following strategy profile for ∆ > 0, which we call the

optimal ∆-delay strategy profile. Suppose that the current time is t.

4Formal definitions of histories and strategy spaces are provided in section C.2.1.
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1. When D and L have never been played in the past, play R, and C if there is a

Poisson hit at t.

2. If D or L has ever been played in the past, let t∗ be the infimum of the times

at which D or L is played.

(a) If there is a Poisson hit at t, play D.

(b) If t ∈ (t∗, t∗ + ∆), play R if feasible.

(c) If t ∈ [t∗ + ∆,∞), play L.

Proposition 15. In the criminal game with (c, b, p, d, λ, ρ), the optimal ∆-delay strat-

egy profile is an SPE whenever the optimal Poisson-revision strategy profile is an SPE.

Moreover, for any given profile (c, p, d, λ, ρ), there exists b such that in the criminal

game with (c, b, p, d, λ, ρ), the optimal ∆-delay strategy profile is an SPE for some

∆ > 0 while the optimal Poisson-revision strategy profile is not.

There is a simple intuition behind this result. If the criminals are restricted to

move only at Poisson arrival times, then punishment for a deviation at time t must be

postponed until the first Poisson hit strictly after time t. The distribution of the first

arrival time of a Poisson process is governed by the parameter λ, which bounds the

scope for punishment in the optimal Poisson-revision strategy profile. In the optimal

∆-delay strategy profile, by setting the time lag ∆ > 0 for punishment small enough,

the punishment for a deviation can be made arbitrarily close to immediate. Hence,

for any λ, this severer punishment can potentially make cooperation in the prisoner’s

dilemma incentive compatible under the optimal ∆-delay strategy profile even when

it is not under the optimal Poisson-revision strategy profile.

Remark 6. 1. (Relationship to inertia) Uniform inertia is not satisfied in either

of the aforementioned strategy profiles. To see this, fix any time t and pair of

action paths up to time t such that criminal i has not chosen D or L before time

t, criminal j first chooses D or L at some time t∗ < t, and there is no Poisson

hit in the time interval (t∗, t]. For any ε > 0, there is positive probability of

there being a Poisson hit in the time interval (t, t+ ε), in which case criminal i

changes to D in the prisoner’s dilemma at the time of the Poisson hit. Hence,

there is no ε > 0 such that criminal i does not move in the time interval (t, t+ε).
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However, these two strategy profiles are pathwise inertial. To see this, fix any

time t and action paths up to time t. For any realization of the Poisson process,

there exists ε > 0 such that no Poisson hit occurs in the time interval (t, t+ ε).

Under the optimal Poisson-revision strategy profile, the agents move only when

there is a Poisson hit, so no move occurs during this time interval. Under

the optimal ∆-delay strategy profile, agents can also move at time t∗ + ∆. If

t∗+∆ > t, then the optimal ∆-delay strategy profile prescribes no move at each

time τ such that t < τ < min(t + ε, t∗ + ∆). Otherwise, it prescribes no move

in the time interval (t, t+ ε).

2. (Relationship to admissibility) Uniform F1 is violated by both strategy profiles

since each agent defects in every prisoner’s dilemma game following a devia-

tion, where unboundedly many prisoner’s dilemma games may be played in any

proper time interval. However, each of these strategy profiles satisfies pathwise

F1. Given any time t and any realization of the Poisson process, there are only

finitely many Poisson hits in the time interval [0, t]. Under the optimal Poisson-

revision strategy profile, agents can move only at the times of a Poisson hit,

and under the optimal ∆-delay strategy profile, each agent can move only one

additional time. Hence, the number of moves during the time interval [0, t] is

bounded given the realization of the Poisson process.

Each strategy profile has the piecewise continuity property F2, which according

to proposition 3, is an implication of traceability and frictionality.

The strong continuity assumption F3 is satisfied by the optimal Poisson-revision

strategy profile but not by the optimal ∆-delay strategy profile. Under the

optimal ∆-delay strategy profile but not under the optimal Poisson-revision

strategy profile, a slight difference in the time when D is first chosen may cause

a difference in the time when each agent responds by choosing L.

3. (Limiting behavior) On the one hand, for any ∆ > 0, if ρ < ∞ is sufficiently

large, then neither the optimal Poisson-revision strategy profile nor the optimal

∆-delay strategy profile is an SPE. This is because the present value of future

punishment becomes very small. On the other hand, for any ∆ > 0, if ρ > 0 is

sufficiently small, then both of these strategy profiles are SPE. This is because

the criminals value the future very highly.
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On the one hand, for any ∆ > 0, if λ < ∞ is sufficiently large, then both

the optimal Poisson-revision strategy profile and the optimal ∆-delay strategy

profile are SPE because the future punishment for a deviation is very frequent.

On the other hand, if λ > 0 is sufficiently small, then the optimal Poisson-

revision strategy profile is not an SPE because the future punishment is very

infrequent. The evaluation of the optimal ∆-delay strategy profile in the case

of small λ > 0 is ambiguous and depends on the size of ρ(b− c). The reason is

that the payoffs in the partnership game can also be used to punish a deviator,

and the timing of the punishment under the optimal ∆-delay strategy profile

does not depend on the frequency of the Poisson hits.5

C.2.1 Formal Definitions of Histories and Strategy Spaces

At every moment of time, each criminal i ∈ {1, 2} chooses an action from the set

Ai = {(L1, D), (L2, D), (L1, z̄), (L2, z̄), (z̄, D), (z̄, z̄)}, where we let z = (z̄, z̄). The

interpretation is as follows. The first element of each action represents the choice in

the partnership game, where z̄ means “not changing the relationship,” and L1 or L2

means permanently leaving the partnership. The subscript k on Lk indicates that

the agent is the kth criminal to leave the partnership. The second element denotes

the choice in the prisoner’s dilemma, where z̄ signifies cooperation at the time of a

Poisson hit and corresponds to no activity at a time without a Poisson hit, and D

indicates defection at the time of a Poisson hit.

Choose any time t ∈ [0, T ), the sequence (tk)Kk=1 of past arrival times of the

Poisson process, and the action path {(aiτ )i∈{1,2}}τ∈[0,t) up to that time. A history up

to time t is represented by
(
(tk)Kk=1, w, {(aiτ )i∈{1,2}}τ∈[0,t)

)
, where w ∈ {yes, no}. An

interpretation is that w = yes if and only if there is a Poisson hit at time t.

The set of all histories up to an arbitrary time is denoted by H. We partition it

as follows.

1. Let HL,L,w be the set consisting of every history up to any time t that has the

form
(
(tk)Kk=1, w, {(aiτ )i∈{1,2}}τ∈[0,t)

)
with aiτ ∈ {(z̄, z̄), (L1, z̄), (L2, z̄)} for each

i = 1, 2 at any τ ∈ [0, t) such that τ 6= tk for all k = 1, 2, . . . , K and where

either of the following holds:

5These results follow directly from the proof of proposition 15, and so their proofs are omitted.
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(a) There exists τ ′ ∈ [0, t) such that for each i = 1, 2, aiτ ′ ∈ {(L1, D), (L1, z̄)}
and aiτ ∈ {(z̄, D), (z̄, z̄)} for τ ∈ [0, t) \ {τ ′}.

(b) There exist τ ′, τ ′′ ∈ [0, t) with τ ′ < τ ′′ such that for some i ∈ {1, 2},
aiτ ′ ∈ {(L1, D), (L1, z̄)}, a−iτ ′′ ∈ {(L2, D), (L2, z̄)} and aiτ ∈ {(z̄, D), (z̄, z̄)}
for τ ∈ [0, t) \ {τ ′}, a−iτ ∈ {(z̄, D), (z̄, z̄)} for τ ∈ [0, t) \ {τ ′′}.

2. Let HL,R,w be the set consisting of every history up to any time t that has the

form
(
(tk)Kk=1, w, {(aiτ )i∈{1,2}}τ∈[0,t)

)
with aiτ ∈ {(z̄, z̄), (L1, z̄)} for each i = 1, 2

at any τ ∈ [0, t) such that τ 6= tk for all k = 1, 2, . . . , K and where there

exists τ ′ < t such that a1
τ ′ ∈ {(L1, D), (L1, z̄)} and a1

τ ∈ {(z̄, D), (z̄, z̄)} for

τ ∈ [0, t) \ {τ ′} while a2
τ ∈ {(z̄, D), (z̄, z̄)} for all τ ∈ [0, t).

3. Let HR,L,w be the set consisting of every history up to any time t that has the

form
(
(tk)Kk=1, w, {(aiτ )i∈{1,2}}τ∈[0,t)

)
with aiτ ∈ {(z̄, z̄), (L1, z̄)} for each i = 1, 2

at any τ ∈ [0, t) such that τ 6= tk for all k = 1, 2, . . . , K and where there

exists τ ′ < t such that a2
τ ′ ∈ {(L1, D), (L1, z̄)} and a2

τ ∈ {(z̄, D), (z̄, z̄)} for

τ ∈ [0, t) \ {τ ′} while a1
τ ∈ {(z̄, D), (z̄, z̄)} for all τ ∈ [0, t).

4. Let HR,R,w be the set consisting of every history up to any time t that has the

form
(
(tk)Kk=1, w, {(aiτ )i∈{1,2}}τ∈[0,t)

)
with aiτ = (z̄, z̄) for each i = 1, 2 at any

τ ∈ [0, t) such that τ 6= tk for all k = 1, 2, . . . , K and where aiτ ∈ {(z̄, D), (z̄, z̄)}
for all τ ∈ [0, t) and each i = 1, 2.

The feasibility constraints are as follows. For criminal 1,

Ā1(ht) =



{(z̄, D), (z̄, z̄)} if ht ∈ HL,L,yes ∪HL,R,yes

{(z̄, z̄)} if ht ∈ HL,L,no ∪HL,R,no

{(L2, D), (L2, z̄), (z̄, D), (z̄, z̄)} if ht ∈ HR,L,yes

{(L2, z̄), (z̄, z̄)} if ht ∈ HR,L,no

{(L1, D), (L1, z̄), (z̄, D), (z̄, z̄)} if ht ∈ HR,R,yes

{(L1, z̄), (z̄, z̄)} if ht ∈ HR,R,no

.
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Similarly, for criminal 2,

Ā2(ht) =



{(z̄, D), (z̄, z̄)} if ht ∈ HL,L,yes ∪HR,L,yes

{(z̄, z̄)} if ht ∈ HL,L,no ∪HR,L,no

{(L2, D), (L2, z̄), (z̄, D), (z̄, z̄)} if ht ∈ HL,R,yes

{(L2, z̄), (z̄, z̄)} if ht ∈ HL,R,no

{(L1, D), (L1, z̄), (z̄, D), (z̄, z̄)} if ht ∈ HR,R,yes

{(L1, z̄), (z̄, z̄)} if ht ∈ HR,R,no

.

The set of feasible strategies is for each criminal i = 1, 2:

Π̄i = {πi : H → Ai | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for criminal i = 1, 2.

The shock process st is formally defined as a pair comprising the calendar time t

and an indicator w ∈ {yes, no} for the existence of a Poisson hit at that time. The

instantaneous utility function vi is specified as follows for each agent i = 1, 2:

vi[(a
1
τ , a

2
τ ), sτ ] =



1
ρ

+ gi(a
1
τ , a

2
τ ) + hi(a

1
τ , a

2
τ ) if τ = 0 and w = yes

1
ρ

+ gi(a
1
τ , a

2
τ ) if τ = 0 and w = no

[gi(a
1
τ , a

2
τ ) + hi(a

1
τ , a

2
τ )]e

−ρτ if τ > 0 and w = yes

gi(a
1
τ , a

2
τ )e
−ρτ if τ > 0 and w = no

,

where

gi(a
1
τ , a

2
τ ) =

−1
ρ

if aiτ ∈ {(L1, D), (L1, z̄)} or a−iτ ∈ {(L1, D), (L1, z̄)}

0 otherwise
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and

hi(a
1
τ , a

2
τ ) =



c if ajτ ∈ {(L1, z̄), (L2, z̄), (z̄, z̄)} for each j = 1, 2

b if aiτ ∈ {(L1, D), (L2, D), (z̄, D)} and a−iτ ∈ {(L1, z̄), (L2, z̄), (z̄, z̄)}

p if aiτ ∈ {(L1, z̄), (L2, z̄), (z̄, z̄)} and a−iτ ∈ {(L1, D), (L2, D), (z̄, D)}

d if ajτ ∈ {(L1, D), (L2, D), (z̄, D)} for each j = 1, 2

.

C.2.2 Proofs

Proof of Proposition 15. The incentive constraint for the optimal Poisson-revision

strategy profile is as follows:

c+

∫ ∞
0

1 · e−ρtdt+

∫ ∞
0

λce−ρtdt ≥ b+

∫ ∞
0

e−λt1 · e−ρtdt+

∫ ∞
0

λde−ρtdt,

which by a simple manipulation, can be shown to be equivalent to ρ(b− c) ≤ λ/(ρ+

λ) + λ(c− d).

Under the optimal ∆-delay strategy profile, there is clearly no incentive for a

criminal to start a deviation when there is currently no Poisson hit. Suppose instead

that there is a Poisson hit at the current time. If D or L has been played in the past,

then it is again easy to see that each criminal has an incentive to follow the prescribed

strategy. Assume now that D and L have not been played in the past. The incentive

constraint is as follows:

c+

∫ ∞
0

1 · e−ρtdt+

∫ ∞
0

λce−ρtdt ≥ b+

∫ ∆

0

1 · e−ρtdt+

∫ ∞
∆

0 · e−ρtdt+

∫ ∞
0

λde−ρtdt,

which by a simple manipulation, can be shown to be equivalent to ρ(b− c) ≤ e−ρ∆ +

λ(c− d).

Thus, the optimal ∆-delay strategy profile is an SPE but not the optimal Poisson-

revision strategy profile if and only if λ/(ρ+λ)+λ(c−d) < ρ(b−c) ≤ e−ρ∆ +λ(c−d),

which is satisfied for some ∆ > 0 if and only if λ/(ρ+λ) < ρ(b−c)−λ(c−d) < 1.
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C.3 Repeated Technology Adoption6

There are two countries, 1 and 2, and a sequence of technologies {T k}∞k=1. At every

time t ∈ [0,∞), each country decides whether or not to adopt technology T k if and

only if it has adopted each of the technologies T 1, . . . , T k−1. Let tk be the first time

at which some country adopts T k, and define t0 to be 0. If country i adopts T k, then

it receives a private benefit p > 0 at the time of adoption, and the other country

−i receives an externality q > 0 at that time. In addition, country i incurs a cost

when it adopts T k. For each k ∈ N, the cost is the sum of a base cost P ∈ (p, p+ q)

that is time-invariant and a variable cost ckt , which evolves according to a geometric

Brownian motion: dckt = µckt dt+σckt dzt, with the initial condition ck
tk−1 = R for some

R ∈ R++ such that P +R > p+ q.7 The payoffs are discounted at rate ρ > 0.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = 1, 2.8 Call the game with such strategy spaces the technology

adoption game. It is characterized by (p, q, P,R, µ, σ, ρ). The analysis in sections 3

and 4 implies that an SPE is well defined.

Note that there is an SPE in which no country adopts any technology because

p < P . Because there are multiple equilibria with different properties, we focus on the

maximal equilibria. A symmetric SPE is said to be maximal if there is no symmetric

SPE that yields a higher expected payoff to each agent.

Proposition 16. The technology adoption game has a maximal equilibrium for any

profile (p, q, P,R, µ, σ, ρ). Moreover, there exists c̄ ∈ R+ such that on the path of play

of any maximal equilibrium, technology T k is adopted with probability one by each

country i at the first time that the cost ckt reaches c̄. Additionally, the set consisting

of each profile (p, q, P,R, µ, σ, ρ) such that c̄ > 0 is nonempty.

Remark 7. 1. (Relationship to inertia) In a maximal equilibrium with c̄ > 0, each

agent’s strategy is not uniformly inertial but is pathwise inertial. Fix a history

on the path of play up to an arbitrary time t such that t ≥ tk−1 but ckτ > c̄ for

all τ ≥ [tk−1, t]. For any ε > 0, there is positive conditional probability that

6This example is structurally and analytically similar to the model in Kamada and Rao (2018),
which is discussed in section C.1.

7Formally, let ct be a cost process that evolves according to a geometric Brownian motion:
dct = µctdt+ σctdzt, with the initial condition c0 = R for some R ∈ R++ such that P +R > p+ q.
For each k ∈ N, the cost process ckt is specified as ckt = χkct for t ≥ tk−1, where χk = R/ctk−1 .

8Formal definitions of histories and strategy spaces are provided in section C.3.1.
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ckτ = c̄ for some τ ∈ (t, t+ ε), in which case the two countries adopt technology

T k in the time interval (t, t+ ε). Thus, there cannot exist ε > 0 such that either

agent does not move during the time interval (t, t + ε), meaning that uniform

inertia fails to hold. However, pathwise inertia holds due to the continuity of

the sample path generated by geometric Brownian motion. For any realization

of the cost process {ckτ}τ∈(t,∞) after time t, there exists ε > 0 such that ckτ 6= c̄

for all τ ∈ (t, t + ε), in which case the agents do not move during the time

interval (t, t+ ε).

2. (Relationship to admissibility) Uniform F1 is not satisfied by a maximal equi-

librium with c̄ > 0 because unboundedly many technologies may be adopted by

each country in any proper time interval. However, any maximal equilibrium

has pathwise F1. For any time t and any realization of the shock process, the

adoption cost decreases by a factor of R/c̄ only finitely many times during the

time interval [0, t], meaning that each agent adopts only finitely many technolo-

gies during this interval. By proposition 3, any traceable and frictional strategy

satisfies property F2. F3 is violated by the trigger strategies supporting a max-

imal equilibrium as any deviation from the prescribed path of play changes the

subsequent pattern of technology adoption.

C.3.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and underlying cost process {cτ}τ∈[0,t] up to that time. A

history up to time t is represented by
(
{cτ}τ∈[0,t], {(aiτ )i∈{1,2}}τ∈[0,t)

)
, where {aiτ}τ∈[0,t)

denotes the action path of country i ∈ {1, 2} up to time t with the action space

being R++ ∪ {z}. The number of technologies adopted by country i ∈ {1, 2} in

the time interval [0, t) is denoted by li, which is the number of elements in the set

{τ ∈ [0, t) : aiτ ∈ R++}.
The set of all histories up to an arbitrary time is denoted by H. Choose an

arbitrary i ∈ {1, 2} as well as any ht ∈ H. If lj <∞ for each j ∈ {1, 2}, then define

τ ∗ ∈ [0, t) as follows:

1. If li > l−i, then τ ∗ is the unique value of τ ∈ [0, t) such that aiτ ∈ R++ and

aiτ ′ = z for all τ ′ ∈ (τ, t).

2. If li = l−i, then τ ∗ = min{τ 1∗, τ 2∗}, where for each j ∈ {1, 2}, τ j∗ is the unique

value of τ ∈ [0, t) such that ajτ ∈ R++ and ajτ ′ = z for all τ ′ ∈ (τ, t).
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3. If li < l−i, then for each j ∈ {1, 2}, there exists a unique set of times {τ j,1, . . . , τ j,li}
such that aj

τ j,k
∈ R++ for each k = 1, . . . , li and ajτ ′ = z for all τ ′ ∈ [0, τ j,li) \

{τ j,1, . . . , τ j,li−1}. Let τ ∗ = min{τ 1,li , τ 2,li}.

Whenever lj < ∞ for each j ∈ {1, 2}, the feasibility constraint is Āi(ht) = {r, z},
where r = cτ∗ . Otherwise, if lj =∞ for some j ∈ {1, 2}, then let Āi(ht) = {z}.

The set of feasible strategies is for each i ∈ {1, 2}:

Π̄i = {πi : H → R++ ∪ {z} | πi(ht) ∈ Āi(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for country i = 1, 2.

The shock process st is formally defined as a pair comprising the cost ct and

calendar time t. The instantaneous utility function vi is specified as follows for each

i ∈ {1, 2}:

vi[(a
i
τ , a
−i
τ ), sτ ] =



[p− (P + R
r
cτ )]e

−ρτ if aiτ = r ∈ R++ and a−iτ = z

qe−ρτ if (aiτ , a
−i
τ ) ∈ {z} × R++

[p+ q − (P + R
r
cτ )]e

−ρτ if aiτ = r ∈ R++ and a−iτ ∈ R++

0 if (aiτ , a
−i
τ ) = (z, z)

.

C.3.2 Proofs

Proof of Proposition 16. As with Proposition 2, the proof consists of three parts.

We first assume the Markov property on the path of play and solve for the unique

optimum.9 Second, we show that any maximal equilibrium must be Markov on the

path of play. Third, we show that the supremum of the set of expected payoffs

attainable in a symmetric SPE can be approximated arbitrarily closely by a symmetric

SPE that is Markov on the path of play. These three results imply the existence of a

maximal equilibrium.

Lemma 17. For any profile (p, q, P,R, µ, σ, ρ), the technology adoption game has a

symmetric SPE that is Markov on the path of play and weakly Pareto dominates any

9A symmetric SPE is said to be Markov on the path of play if the action prescribed by each
strategy at any history up to an arbitrary time on the path of play depends only on the cost ckt at
that time where k − 1 is the number of technologies that have been adopted by each country up to
then.
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symmetric SPE that is Markov on the path of play. Moreover, there exists c̄ ∈ R+ such

that on the path of play of any such SPE, technology T k is adopted with probability

one by each country i at the first time that the cost ckt reaches c̄. Additionally, the set

consisting of each profile (p, q, P,R, µ, σ, ρ) such that c̄ > 0 is nonempty.

Proof. At any history up to a given time, the least continuation payoff that each

country can receive in an SPE is zero, which is achieved when each country follows

a strategy of not making any further technology adoptions. Since P > p, it is an

SPE for each country to never adopt any technology. Hence, assuming the Markov

property on the path of play, there exists c̄ ∈ (0, p+ q) such that any symmetric SPE

that maximizes the expected payoff of each agent has the following properties. With

probability one, technology Tk is adopted at time t if and only if the history up to

time t meets all of the following conditions:

1. There exists k ∈ N such that T k−1 has been adopted by both countries but T k

has not been adopted by either country.

2. For each l = {1, . . . , k− 1}, T l was adopted by both countries at a time tl such

that clτ > c̄ for all τ ∈ (tl−1, tl) and cl
tl

= c̄.

3. ckτ > c̄ for all τ ∈ (tk−1, t) and ckt = c̄.

The expected payoff V of each agent in such an equilibrium is the value of an asset

that pays (p+ q)− (P + c̄) + V at the first time that the cost ct reaches c̄ when the

current cost is R. Letting β = 1
2
− µ/σ2 −

√
(µ/σ2 − 1

2
)2 + 2ρ/σ2 < 0, the value V

satisfies the equation:

V = [(p+ q)− (P + c̄) + V ](R/c̄)β, (6)

which yields the following expression for V :

V = (R/c̄)β[(p+ q)− (P + c̄)]/[1− (R/c̄)β]. (7)

Note that c̄ must satisfy the incentive constraint (p+ q)− (P + c̄) + V ≥ q, which is

equivalent to:

V ≥ (P − p) + c̄. (8)
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We consider the problem of choosing the threshold c̄ ∈ [0, p+ q−P ] to maximize the

objective function in equation (7) given the constraint in equation (8). We show that

the maximization problem has a unique solution whenever the constraint is satisfied

for some c̄. To do so, we first show that the log of the objective function is concave

in c̄ whenever the objective function is nonincreasing, and we next show that the set

containing each value of c̄ that satisfies the constraint is an interval. It is also noted

that there exist parameter values such that this interval is nonempty.

The derivative of the log of the objective function with respect to c̄ is:

−1/[(p+ q)− (c̄+ P )] + β/{c̄[(c0/c̄)
β − 1]},

which is nonpositive if and only if −1/[(p+ q)− (c̄+P )] ≤ −β/{c̄[(c0/c̄)
β − 1]}. The

second derivative of the log of the objective function with respect to c̄ is:

−1/[(p+ q)− (c̄+ P )]2 + [β + (c0/c̄)
β(β − 1)β]/{c̄2[(c0/c̄)

β − 1]2},

which is no greater than the following whenever the derivative of the log of the

objective function is nonpositive:

−β2/{c̄2[(c0/c̄)
β − 1]2}+ [β + (c0/c̄)

β(β − 1)β]/{c̄2[(c0/c̄)
β − 1]2}. (9)

Expression (9) has the same sign as −β2 +[β+(c0/c̄)
β(β−1)β] = [1−(c0/c̄)

β](β−β2),

which is negative. It follows that the log of the objective function is concave whenever

the objective function is nonincreasing.

The constraint is equivalent to:

(c0/c̄)
βq + p− (c̄+ P ) ≥ 0. (10)

The first derivative of the expression on the left-hand side of (10) with respect to c̄ is

−[c̄+ (c0/c̄)
βqβ]/c̄, and the second derivative of the expression on the left-hand side

of (10) with respect to c̄ is (c0/c̄)
βqβ(1 + β)/c̄2, which is negative for β ∈ (−1, 0).

The constraint is never satisfied for β ≤ −1. It follows that the set containing each

value of c̄ that satisfies the constraint is an interval.

The constraint is not satisfied for c̄ = 0 or c̄ = p + q − P . However, note that

for any c̄ ∈ (0, p + q − P ), there exists β̄ < 0 such that the constraint is satisfied for
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β ∈ [β̄, 0). This shows that there exist parameter values such that the aforementioned

interval is nonempty. �

Lemma 18. Up to zero probability events, any maximal equilibrium must be Markov

on the path of play.

Proof. Suppose that there exists a maximal equilibrium. Let V denote the expected

payoff to each agent at the null history when a maximal equilibrium is played. If

V = 0, then there is a unique equilibrium in which no technology adoption occurs, and

so the claim holds. Therefore, assume that V > 0, in which case technology adoption

must occur with positive probability on the path of play in a maximal equilibrium.

Note also that the continuation payoff to each country after the adoption of T 1 cannot

differ from V with positive probability in a maximal equilibrium.

Now consider the following constrained optimization problem. The expression

on the right-hand side of equation (6) is maximized with respect to c̄ subject to

the constraint in (8), where V is treated as a constant. This problem has a unique

maximizer c∗. In particular, there must exist k > 0 such that the constraint is

satisfied for c̄ ∈ [0, k]. Otherwise, it would be impossible for an SPE to exist in which

technology adoption occurs, contradicting the assumption that V > 0. Moreover, it

can be shown that the derivative of the maximand with respect to c̄ is positive in the

limit as c̄ approaches zero and changes sign only once as c̄ increases from zero.

This shows that any maximal equilibrium must be Markov on the equilibrium

path up to the adoption of T 1, which happens with probability one at the first time

the cost reaches c∗. A similar argument can be applied to the adoption of T 2, and so

on. �

Lemma 19. Given any symmetric SPE π, there exists a symmetric SPE that is

Markov on the path of play and that yields no lower an expected payoff to each agent

than does π.

Proof. Let V denote the supremum of the expected payoffs to each agent that can be

supported in a symmetric SPE. We show that there exists a symmetric SPE that is

Markov on the path of play and that yields an expected payoff arbitrarily close to V ,

which proves the desired claim given lemma 18.

The value V cannot be greater than the value of the following constrained opti-

mization problemM. The value of an asset at cost R that pays (p+ q)− (P + c) +V
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at the first time that the cost reaches c is maximized with respect to c subject to the

constraint V ≥ (P − p) + c. If V ≤ P − p, then there is a unique symmetric SPE in

which no technology adoption occurs, and so the claim holds, with V = 0. Therefore,

assume that V > P − p. Let c∗ denote the maximizer in problem M. There are two

cases to consider. In the first case, the constraint in problem M is not binding. In

the second case, the constraint in problem M is binding.

Consider the first case. Choose any ε > 0. There exists a symmetric SPE φ1 in

grim-trigger strategies with the following properties that yields an expected payoff

greater than V − ε. On the equilibrium path, the adoption of T 1 occurs at the first

time the cost reaches the threshold c∗, and the agents after the adoption of T 1 play

a strategy profile that yields a continuation payoff W that does not depend on the

history up to the time when T 1 is adopted. Let Y denote the expected payoff to each

agent at the null history when playing strategy profile φ1. Note that V −Y ≤ V −W
because the behavior up to the adoption of T 1 when playing strategy profile φ1 is the

same as the behavior in problem M.

Since Y > W , there exists a symmetric SPE φ2 in grim-trigger strategies with

the following properties that yields an expected payoff greater than V − ε. On the

equilibrium path, the adoption of T 1 occurs at the first time the cost reaches the

threshold c∗, the adoption of T 2 occurs at the first time after the adoption of T 1

that the cost reaches the threshold c∗, and the agents after the adoption of T 2 play

a strategy profile that yields a continuation payoff W that does not depend on the

history up to the time when T 2 is adopted. In particular, the agents start by playing

φ1, and then after any history up to an arbitrary time on the equilibrium path after

the adoption of T 1, the agents play φ1 behaving as if the game just started after the

adoption of T 1.

Applying this procedure iteratively, one can show that there exists a symmetric

SPE φ in grim-trigger strategies with the following properties that yields an expected

payoff greater than V − ε. For any positive integer m, the adoption of Tm occurs on

the equilibrium path at the first time after the adoption of Tm−1 that the cost reaches

the threshold c∗, where the adoption of T 0 is said to occur at time 0. This shows for

the first case that there exists a symmetric SPE that is Markov on the path of play

and that yields an expected payoff arbitrarily close to V .

Consider the second case. Choose any ε > 0. There exists a symmetric SPE ψ1

in grim-trigger strategies with the following properties that yields an expected payoff

36



Y1 greater than V − ε. On the equilibrium path, the adoption of T 1 occurs at the

first time the cost reaches the threshold c1, and the agents after the adoption of T 1

play a strategy profile that yields a continuation payoff W1 that does not depend on

the history up to the time when T 1 is adopted. Moreover, because the constraint in

problemM is binding, the threshold c1 can be chosen such that W1 = (P −p)+ c1 by

choosing c1 to maximize the expected payoff under ψ1 given the continuation payoff

W1.

Applying such an argument to any subgame after the adoption of T 1 on the

equilibrium path, there exists a symmetric SPE ψ′2 in grim-trigger strategies with

the following properties that yields an expected payoff greater than V − ε. On the

equilibrium path, the adoption of T 1 occurs at the first time the cost reaches the

threshold c1, the adoption of T 2 occurs at the first time after the adoption of T 1 that

the cost reaches a threshold c2, and the agents after the adoption of T 2 play a strategy

profile that yields a continuation payoff W2 that does not depend on the history up

to the time when T 2 is adopted. Moreover, because the constraint in problem M is

binding, the threshold c2 can be chosen such that W2 = (P − p) + c2 by choosing

c2 to maximize the expected payoff under ψ′2 given the first threshold c1 and the

continuation payoff W2. Let Y2 be the continuation payoff after the adoption of T 1

on the equilibrium path when playing ψ′2.

Note that W1 > W2 if c1 > c2, W1 < W2 if c1 < c2, and W1 = W2 if c1 = c2. It

must also be that Y1 > Y2 if c1 > c2, Y1 < Y2 if c1 < c2, and Y1 = Y2 if c1 = c2. If

c2 > c1, then let ψ2 = ψ′2. If c2 ≤ c1, then let ψ2 be the strategy profile in which the

agents start by playing ψ1, and then after any history up to an arbitrary time on the

equilibrium path after the adoption of T 1, the agents play ψ1 behaving as if the game

just started after the adoption of T 1.

Continuing in this way, one can show that there exists a symmetric SPE ψ in

grim-trigger strategies with the following properties that yields an expected payoff

greater than V − ε. For any positive integer m, the adoption of Tm occurs on the

equilibrium path at the first time after the adoption of Tm−1 that the cost reaches

the threshold cm, where the adoption of T 0 is said to occur at time 0. Moreover, cm

is nondecreasing in m, and the continuation payoff Qm after the adoption of Tm is

greater than V − ε.
Let x denote the limit of the sequence {cm}. Consider the grim-trigger strategy

profile ξ in which for any positive integer m, the adoption of Tm occurs on the path
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of play at the first time after the adoption of Tm−1 that the cost reaches the threshold

x, where the adoption of T 0 is said to occur at time 0. The expected payoff B under

strategy profile ξ is no less than V − ε because Qm ≥ V − ε for all m, where B is the

limit of the sequence {Qm}. Moreover, the incentive constraint B ≥ (P − p) + x is

satisfied because the incentive constraint Qm ≥ (P − p) + cm is satisfied for all m.

This shows for the second case that there exists a symmetric SPE that is Markov on

the path of play and that yields an expected payoff arbitrarily close to V . �

C.4 Inventory Restocking Model

There is a retailer R and a distributor D of a good. At each moment of time t ∈ [0,∞),

the retailer chooses between actions B and z, and the distributor chooses between

actions S and z. The action B means that the retailer visits the distributor to buy

the good, and z stands for the retailer not doing so. The action S means that the

distributor is open to sell the good to the retailer, and z stands for the distributor

being closed.

The retailer has a capacity constraint f > 0 on the amount of the good it can

keep in stock, and the initial value of the stock is f . The good depreciates at the

rate δ > 0 in the inventory of the retailer. If B and S are simultaneously chosen at

time t, then the retailer replenishes its stock so that its inventory reaches f , and the

retailer pays the distributor a flat fee p > 0, which is exogenous and independent of

the quantity purchased.10 Otherwise, the retailer and distributor do not transact at

time t, in which case they do not incur any cost at that time.

A customer comes to the retailer according to a Poisson process with arrival rate

λ > 0. Any customer that comes buys the entire stock that the retailer keeps, so that

the stock reaches zero upon the arrival of the customer.11 Let q be an exogenous unit

price that the retailer charges a customer for the good. When a customer arrives, the

retailer receives a revenue equal to q times the supply available at that time.12 The

10It is assumed without loss of generality that the distributor can produce and supply the good
at zero cost. The equilibria that we characterize would not change if the distributor were to face a
constant cost strictly less than the price.

11The actions of the retailer and distributor at time t are taken after learning whether a customer
has arrived at time t.

12The supply available at time t > 0 is defined as the limit of the stock as time approaches t from
the left. With probability one, such a left-hand limit exists at every time t > 0 given the traceability
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discount rate is ρ > 0.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = R,D.13 Call the game with such strategy spaces the restocking

game. It is characterized by (f, p, q, δ, λ, ρ). The analysis in sections 3 and 4 implies

that an SPE is well defined.

A Markov perfect equilibrium is defined as an SPE in Markov strategies. A

strategy is said to be Markov if the action prescribed at any history up to a given

time depends only on the stock at the current time. As in section C.5, the model has

multiple equilibria. We consider the Markov perfect equilibrium that maximizes the

expected payoff of the retailer.

Proposition 20. For any profile (f, δ, λ, ρ), there exists α < ∞ such that for any

q > αp, any Markov perfect equilibrium that maximizes the retailer’s expected payoff in

the restocking game with (f, p, q, δ, λ, ρ) satisfies the following. There exists k ∈ (0, f)

such that:

1. If the current stock level is 0 or k, then the retailer chooses B, and the distributor

chooses S.

2. If the current stock level is greater than k, then the retailer chooses z.

When the unit price q paid by consumers is high relative to the cost p of restocking

the good, the retailer obtains a high payoff when the consumer buys a large quantity

of the good, and the cost of maintaining a large supply of the good is relatively low.

Therefore, the retailer has an incentive to replenish its inventory of the good even if

the current stock is not zero. The distributor is willing to be open since it can do so

at zero cost.

Remark 8. 1. (Relationship to inertia) In a Markov perfect equilibrium that max-

imizes the retailer’s expected payoff, uniform inertia is violated. For any ε > 0,

there is positive probability that a customer arrives at some τ ∈ (t, t + ε), in

which case the retailer and distributor respectively take actions B and S in the

time interval (t, t+ ε). Thus, there cannot exist ε > 0 such that either firm does

not move during the time interval (t, t + ε). However, each agent’s strategy is

pathwise inertial in such an equilibrium. For any time t and any realization of

and frictionality assumptions on strategies.
13Formal definitions of histories and strategy spaces are provided in section C.4.1.
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the Poisson process, there exists ε > 0 such that the stock level is not equal to

0 or k at any time τ ∈ (t, t + ε), and so the agents are not required to move

during the time interval (t, t+ ε).

2. (Relationship to admissibility) Uniform F1 is not satisfied by a Markov perfect

equilibrium that maximizes the retailer’s expected payoff. The number of moves

is not uniformly bounded because the inventory may be restocked unboundedly

many times in any proper time interval. Pathwise F1 is also violated. The

requirements of pathwise F1 hold on but not off the path of play. Given any

times t and t̂ with t̂ < t, any positive integer r, and any realization of the

Poisson process with at least two arrival times in the interval [t̂, t], there exists

a history up to time t such that the retailer and distributor have each chosen

B or S no less than r times in the time interval [0, t̂). Since the retailer and

distributor respectively choose B and S at the time of a Poisson hit, there is

no upper bound on the number of times each of them moves during the time

interval [0, t].

It follows from proposition 3 that property F2 applies.

The strong continuity assumption F3 is violated. Suppose that no customer

arrives after time t̂. When the retailer and distributor choose z at time t̂ and

respectively choose B and S at time t̂+ ε with ε > 0, the next restocking of the

good occurs later than when the retailer and distributor respectively choose B

and S at time t̂. Hence, a small difference in the timing of moves affects future

behavior.

3. (Non-z action at a time without a Poisson hit) The agents’ strategies in the

Markov perfect equilibrium described in proposition 20 would not satisfy a

condition requiring that a non-z action be taken only at the times of discrete

changes in the shock. Although the retailer and distributor transact at any

time that the available supply reaches k, there is zero probability of a discrete

change in the shock at such a time, where the set of times at which the shock

discretely changes is defined as the set of Poisson arrival times.
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C.4.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and sequence (tk)Kk=1 of past arrival times of a cus-

tomer. A history up to time t is represented by
(
(tk)Kk=1, w, {(aiτ )i∈{R,D,G}}τ∈[0,t)

)
,

where {aiτ}τ∈[0,t) denotes the action path of agent i ∈ {R,D} up to time t with the

action spaces being {B, z} for R and {S, z} for D. There is also a customer G, whose

action path up to time t is {aGτ }τ∈[0,t) with action space R+∪{z}. A move by agent G

represents the amount bought, and action z means no arrival by agent G. The term

w ∈ {yes, no} indicates whether or not a customer arrives at time t.

For any u ≤ t, let tB,S(u) be the maximum of zero and the supremum of the

set consisting of every time τ < u such that aRτ = B and aDτ = S. For any u ≤ t,

let tG(u) be the maximum of zero and the supremum of the set consisting of every

time τ < u such that aGτ 6= z. Define the available supply of the good at time u as

xu = fe−δ[u−t
B,S(u)] if tB,S(u) ≥ tG(u) and as xu = 0 if tB,S(u) < tG(u).

The set of all histories up to an arbitrary time is denoted by H. We partition it

as follows.

1. For any c ∈ [0, f ], let Hyes,c be the set consisting of every history up to any

time t that has the form
(
(tk)Kk=1, yes, {(aiτ )i∈{R,D,G}}τ∈[0,t)

)
with xt = c where

aGτ = z at any τ ∈ [0, t) such that τ 6= tk for all k ∈ {1, 2, . . . , K} and where

aGτ = xτ at any τ ∈ [0, t) such that τ = tk for some k ∈ {1, 2, . . . , K}.

2. Let Hno be the set consisting of every history up to any time t that has the

form
(
(tk)Kk=1, no, {(aiτ )i∈{R,D,G}}τ∈[0,t)

)
where aGτ = z at any τ ∈ [0, t) such that

τ 6= tk for all k ∈ {1, 2, . . . , K} and where aGτ = xτ at any τ ∈ [0, t) such that

τ = tk for some k ∈ {1, 2, . . . , K}.

The feasibility constraints are as follows. For i ∈ {R,D}, ĀR(ht) = {B, z} and

ĀD(ht) = {S, z}, where ht ∈ H. For i = G, ĀG(ht) = {c} if there exists c ∈ R+ such

that ht ∈ Hyes,c, and ĀG(ht) = {z} if ht ∈ Hno.

The sets of feasible strategies are:

Π̄R = {πR : H → {B, z} | πR(ht) ∈ ĀR(ht) for all ht ∈ H}

Π̄D = {πD : H → {S, z} | πD(ht) ∈ ĀD(ht) for all ht ∈ H}

Π̄G = {πG : H → R+ ∪ {z} | πG(ht) ∈ ĀG(ht) for all ht ∈ H}

.
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The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for agent i = R,D,G.

The shock process st is formally defined as a pair comprising the calendar time t

and an indicator w ∈ {yes, no} for the existence of a Poisson hit at that time. The

instantaneous utility function vi is specified as follows for i = R:

vR[(aRτ , a
D
τ , a

G
τ ), sτ ] =



(qc− p)e−ρτ if (aRτ , a
D
τ ) = (B, S) and aGτ = c ∈ R+

−pe−ρτ if (aRτ , a
D
τ , a

G
τ ) = (B, S, z)

qce−ρτ if (aRτ , a
D
τ ) 6= (B, S) and aGτ = c ∈ R+

0 otherwise

,

and as follows for i = D:

vD[(aRτ , a
D
τ , a

G
τ ), sτ ] =

pe−ρτ if (aRτ , a
D
τ ) = (B, S)

0 otherwise
,

with vG being arbitrarily defined.

C.4.2 Proofs

Proof of Proposition 20. Consider any strategy profile in which (S,B) is never chosen

when the current stock is 0. The retailer’s continuation payoff is 0 from following such

a strategy profile when the current stock is 0. Let V denote the retailer’s continuation

payoff when the current stock is 0 from following a Markov strategy profile in which

(S,B) is chosen if and only if the current stock is zero. The value V satisfies:

V =

∫ ∞
0

(qfe−δx + V )(e−ρx)(λe−λx)dx− p,

which gives V = (λ+ ρ)[fqλ− p(δ + λ+ ρ)]/[ρ(δ + λ+ ρ)]. Note that for any profile

(f, δ, λ, ρ), there exists φ <∞ such that V > 0 whenever q > φp.

Consider a Markov strategy profile in which (S,B) is chosen if and only if the

current stock is 0. For any ε ∈ (0, 1), the following is the retailer’s continuation

payoff from following such a strategy profile when the current stock is εf :∫ ∞
0

(qεfe−δx +W − p)(e−ρx)(λe−λx)dx = qεfλ/(δ + λ+ ρ) + λ(W − p)/(λ+ ρ),
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where W is the retailer’s expected payoff when the current stock is f from following

a strategy profile in which (S,B) is chosen if and only if the current stock is 0. If the

agents instead follow a strategy profile in which (S,B) is chosen at the current time

and thereafter (S,B) is chosen if and only if the current stock is 0, then the following

is the retailer’s continuation payoff:∫ ∞
0

(qfe−δx +W )(e−ρx)(λe−λx)dx− p = qfλ/(δ + λ+ ρ) + λW/(λ+ ρ)− p.

The latter expression is greater than the former if and only if q/p > ρ(δ + λ +

ρ)/[fλ(λ+ ρ)(1− ε)].
Hence, for any profile (f, δ, λ, ρ), one can find ψ < ∞ such that if q > ψp,

then there exists ε ∈ (0, 1) such that for all η ∈ (0, ε], the retailer obtains a higher

continuation payoff when the current stock is ηf from a strategy profile in which

(S,B) is chosen at the current time and thereafter (S,B) is chosen if and only if the

current stock is 0 than from a Markov strategy profile in which (S,B) is chosen if

and only if the current stock is 0. Iteratively applying this argument, it can be shown

that for any profile (f, δ, λ, ρ), one can find ψ < ∞ such that if q > ψp, then there

exists ε ∈ (0, 1) such that for all η ∈ (0, ε], the retailer obtains a higher expected

payoff when the current stock is ηf from a Markov strategy profile in which (S,B) is

chosen if and only if the current stock is ηf or 0 than from a Markov strategy profile

in which (S,B) is chosen if and only if the current stock is 0.

Fixing any profile (f, δ, λ, ρ), the preceding argument implies that one can find

α <∞ such that if q > αp, then there exists ε ∈ (0, 1) such that the following three

statements hold for any η ∈ (0, ε]: (i) There is a Markov perfect equilibrium in which

(S,B) is chosen if and only if the current stock is 0. Denote by π0 this Markov perfect

equilibrium. (ii) There is a Markov perfect equilibrium in which (S,B) is chosen if

and only if the current stock is 0 or ηf . Denote by πη this Markov perfect equilibrium.

(iii) The Markov perfect equilibrium π0 yields a lower expected payoff to the retailer

than πη for η < ε and the same expected payoff to the retailer as πη for η = ε.

Consider a Markov perfect equilibrium in which (S,B) is chosen if and only if the

current stock is 0 or ηf , where η ∈ [0, ε]. Since the expected payoff to the retailer in

such an equilibrium is a continuous function of η, it follows from the extreme value

theorem that there exists ω ∈ [0, ε] such that a strategy profile in which (S,B) is

chosen if and only if the current stock is 0 or ωf is a Markov perfect equilibrium that
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maximizes the expected payoff of the retailer. Noting that ω > 0, the proposition

follows from setting k = ωf .

C.5 Retailer and Distributor with a Single Unit

The example below involves a retailer R and a distributor D who make decisions in

continuous time. The distributor chooses when to open its salesroom for the retailer

to buy a good, while the retailer chooses when to visit the distributor and when to

sell the good to a consumer.

At each time t ∈ [0,∞), the distributor chooses between the actions S and z, and

the retailer chooses among the actions B, C, V , and z. The action S means that the

distributor is open to sell the good, whereas z stands for being closed. The action B

means that the retailer visits the distributor to buy the good for inventory. When the

retailer has already obtained but not yet sold the good, the action C means that the

retailer sells the good to the consumer. When the retailer has not yet obtained the

good from the distributor, the action V means that the retailer visits the distributor

to buy the good for immediate sale to the consumer. The action z by the retailer

stands for doing nothing. The retailer acquires the good at time t if and only if the

distributor chooses S and the retailer chooses B or V at that time.

When the retailer buys the good, it pays an exogenously fixed price p > 0 to

the distributor. The price qt at which the retailer can sell the good to the consumer

evolves according to a geometric Brownian motion: dqt = µqtdt+ σqtdzt, with initial

condition q0 = q̃ for some q̃ ∈ R++. At the time of sale, the retailer incurs a fixed

cost c > 0 for packaging the product for sale to the consumer. Both the distributor

and retailer discount the future at rate ρ > 0.

Defining β = 1
2
− µ/σ2 +

√
(µ/σ2 − 1

2
)2 + 2ρ/σ, attention is restricted to the case

where β ∈ (1, 1 + c/p). The condition β > 1 ensures that the model has an SPE

in which the retailer sells the good to the consumer with positive probability. The

further restriction β < 1+ c/p enables us to solve for an SPE of the form described in

proposition 21, where there is a delay between when the retailer buys the good from

the distributor and sells the good to the consumer.

We consider traceable, frictional, calculable, and feasible strategies, denoted Π̄C
i

for each agent i = R,D.14 Call the game with such strategy spaces the retailer-

distributor game. It is characterized by (p, c, µ, σ, ρ). The analysis in sections 3 and

14Formal definitions of histories and strategy spaces are provided in section C.5.1.
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4 implies that an SPE is well defined.

This model has multiple SPE because the retailer takes possession of the good

from the distributor if and only if the two parties coordinate their behavior so that

the retailer makes a visit at a time when the distributor is open. For this reason, we

restrict attention to the SPE that maximizes the distributor’s expected payoff.15

Proposition 21. In the retailer-distributor game with (p, c, µ, σ, ρ), an SPE maxi-

mizing the distributor’s expected payoff exists, and there exist ν1 and ν2 with 0 < ν1 <

ν2 < ∞ such that in any SPE that maximizes the distributor’s expected payoff, the

following hold on the path of play at any history up to an arbitrary time t.

1. If qt < ν1, then the retailer chooses z.

2. If qt ∈ [ν1, ν2) and qτ < ν1 for all τ < t, then the retailer chooses B, and the

distributor chooses S.

3. If qt ∈ [ν1, ν2) and qτ ≥ ν1 for some τ < t, then the retailer and distributor each

choose z.

4. If qt ≥ ν2 and qτ < ν2 for all τ < t, then the retailer chooses C for t > 0 and V

for t = 0, and the distributor chooses z for t > 0 and S for t = 0.

5. If qt ≥ ν2 and qτ ≥ ν2 for some τ < t, then the retailer and distributor each

choose z.

Remark 9. 1. (Relationship to inertia) In any SPE that maximizes the distribu-

tor’s expected payoff, each agent’s strategy violates uniform inertia if q0 < ν1.

To see this, fix a history on the equilibrium path up to an arbitrary time t with

qt < ν1 such that the firms have not yet transacted. For any ε > 0, there is

positive conditional probability that qτ = ν1 for some τ ∈ (t, t + ε), in which

case the retailer takes action B and the distributor takes action S in the time

interval (t, t + ε). Thus, there cannot exist ε > 0 such that either firm does

not move during the time interval (t, t+ ε). Similarly, the requirement that the

retailer choose C at the first time on the equilibrium path that qt reaches ν2

also results in a violation of uniform inertia.

15In item 4 of remark 9, we consider the SPE that maximizes the retailer’s expected payoff.
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However, due to the continuity of the sample path of geometric Brownian mo-

tion, pathwise inertia is satisfied in an SPE that maximizes the distributor’s

expected payoff. To see this, consider any history up to time t and any real-

ization of the retail price process {qτ}τ∈(t,∞) after time t. If qt < ν1, then there

exists ε > 0 such that qτ 6= ν1 for all τ ∈ (t, t + ε). If ν1 ≤ qt < ν2, then there

exists ε > 0 such that qτ 6= ν2 for all τ ∈ (t, t + ε). In each case, the retailer

and the distributor are not required to move during the time interval (t, t+ ε).

If ν2 ≤ qt, then there is no ε > 0 such that the agents have to move during the

time interval (t, t+ ε).

2. (Relationship to admissibility) Noting that the retailer moves at most twice

and the distributor moves at most once in equilibrium, there exists an SPE

maximizing the distributor’s expected payoff that satisfies both the uniform and

pathwise versions of criterion F1. Condition F2 is satisfied given proposition 3.

However, criterion F3 is violated. Suppose that t̂ > 0 is the least time t such

that qt ≥ ν2. If the only non-z actions before time t̂ were that the retailer chose

B and the distributor chose S at time t̄ < t̂, then the retailer would choose C

at time t̂ in equilibrium. If the only non-z actions before time t̂ were that the

retailer chose B at time t̄ < t̂ and the distributor chose S at time t̄ + ε < t̂

with ε > 0, then the retailer could not choose C at time t̂. Hence, the strong

continuity requirement F3 does not hold because a small difference in the timing

of past moves affects current behavior.

3. (Comparative statics) The threshold ν1 is increasing in p, c, and ρ while being

decreasing in µ and σ. The reason is that ν1 is chosen so as to make the retailer

indifferent between buying the good when the current retail price is qt and never

buying the good. If p or c increases, then the cost to the retailer of procuring

or packaging the good becomes higher, making the retailer reluctant to buy the

good unless it can be sold to the consumer at a higher price. When µ or σ

increases, the prospect of a high retail price qt in the future becomes better, so

the retailer is more willing to buy the good. When ρ is high, the payoff from the

future sale of the good to the consumer is heavily discounted, which discourages

the retailer from buying the good. The threshold ν2 is increasing in c, µ, and σ

but decreasing in ρ. Intuitively, when the cost c for preparing the good for sale

is higher, it is optimal for the retailer to wait for a higher price to sell the good
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to the consumer. An increase in µ or σ raises the prospect of a high retail price

in the future, which encourages the retailer to wait for a higher price. Finally, a

higher value of ρ means that the retailer is more impatient and thus less willing

to postpone the payoff from a sale. The threshold ν2 clearly does not depend

on p.16

4. (Maximization of retailer’s expected payoff) An SPE maximizing the retailer’s

expected payoff exists as well, and on the path of play of any SPE that max-

imizes the retailer’s expected payoff, there exists a threshold ν ∈ (0,∞) such

that the retailer would not choose a non-z action until the first time that qt is

no less than ν. At the first time on the equilibrium path that qt is greater than

or equal to ν, the retailer and distributor would respectively choose V and S.

Such a strategy profile involves strategies for the retailer and distributor that

belong to Π̄C
R and Π̄C

D. It can be argued as in items 1 and 2 of this remark

that uniform inertia is violated but pathwise inertia is satisfied and that both

uniform and pathwise F1 as well as F2 are satisfied but F3 is violated.

C.5.1 Formal Definitions of Histories and Strategy Spaces

Choose any time t ∈ [0,∞) and retail price process {qτ}τ∈[0,t] up to that time. A

history up to time t is represented by
(
{qτ}τ∈[0,t], {(aiτ )i∈{R,D}}τ∈[0,t)

)
, where {aiτ}τ∈[0,t)

denotes the action path of agent i ∈ {R,D} up to time t with the action spaces being

{B,C, V, z} for R and {S, z} for D.

The set of all histories up to an arbitrary time is denoted by H. We partition it

as follows.

1. Let H∅ be the set consisting of every history up to any time t that has the form(
{qτ}τ∈[0,t], {(aiτ )i∈{R,D}}τ∈[0,t)

)
where there is no τ < t such that (aRτ , a

D
τ ) =

(B, S) or (aRτ , a
D
τ ) = (V, S).

2. Let HB be the set consisting of every history up to any time t that has the form(
{qτ}τ∈[0,t], {(aiτ )i∈{R,D}}τ∈[0,t)

)
where there exists τ ′ < t such that aRτ = z or

aDτ = z for all τ < τ ′, aRτ = z and aDτ = z for all τ > τ ′, and (aRτ ′ , a
D
τ ′) = (B, S).

3. Let HC,V be the set consisting of every history up to any time t that has the

form
(
{qτ}τ∈[0,t], {(aiτ )i∈{R,D}}τ∈[0,t)

)
where either of the following holds:

16Proofs of these comparative statics results are provided in section C.5.2.
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(a) There exists τ ′ < t such that aRτ = z or aDτ = z for all τ < τ ′, aRτ = z and

aDτ = z for all τ > τ ′, and (aRτ ′ , a
D
τ ′) = (V, S).

(b) There exists (τ ′, τ ′′) with τ ′ < τ ′′ < t such that aRτ = z or aDτ = z for all

τ < τ ′, aRτ = z and aDτ = z for all τ > τ ′ with τ 6= τ ′′, and (aRτ ′ , a
D
τ ′) = (B, S)

and (aRτ ′′ , a
D
τ ′′) = (C, z).

The feasibility constraints are as follows. For R,

ĀR(ht) =


{B, V, z} if ht ∈ H∅

{C, z} if ht ∈ HB

{z} if ht ∈ HC,V

.

For D,

ĀD(ht) =

{S, z} if ht ∈ H∅

{z} if ht ∈ HB ∪HC,V
.

The sets of feasible strategies are:

Π̄R = {πR : H → {B,C, V, z} | πR(ht) ∈ ĀR(ht) for all ht ∈ H}

Π̄D = {πD : H → {S, z} | πD(ht) ∈ ĀD(ht) for all ht ∈ H}.

The set of traceable, frictional, calculable, and feasible strategies can then be defined

and is denoted by Π̄C
i for agent i = R,D.

The shock process st is formally defined as a pair comprising the retail price qt

and the calendar time t. The instantaneous utility function vi is specified as follows

for i = R:

vR[(aRτ , a
D
τ ), sτ ] =



−pe−ρτ if (aRτ , a
D
τ ) = (B, S)

qτe
−ρτ if aRτ = C

(−p+ qτ )e
−ρτ if (aRτ , a

D
τ ) = (V, S)

0 otherwise

,
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and as follows for i = D:

vD[(aRτ , a
D
τ ), sτ ] =

pe−ρτ if (aRτ , a
D
τ ) ∈ {(B, S), (V, S)}

0 otherwise
.

C.5.2 Proofs

Proof of Proposition 21. For any qt > 0, consider the problem of choosing r ≥ qt so

as to maximize the expression (r− c)(qt/r)β, which is the value of an asset that pays

r− c at the first time that the retail price reaches r when the retail price is currently

qt.
17 The solution to the maximization problem is given by the greater of qt and

ν2 = c[β/(β−1)]. Consider any history up to an arbitrary time such that the retailer

has already bought but not yet sold the good. In any SPE, the retailer at such a

history chooses C when qt ≥ ν2 and chooses z when qt < ν2, and the expected payoff

to the retailer at such a history is qt− c if qt ≥ ν2 and (β− 1)β−1β−βc1−βqβt if qt < ν2.

Next consider any SPE along with a history up to an arbitrary time at which the

retailer and distributor transact. The retailer chooses V if qt ≥ ν2 and chooses B if

qt < ν2, and the expected payoff to the retailer at such a history is qt− c−p if qt ≥ ν2

and (β − 1)β−1β−βc1−βqβt − p if qt < ν2.

Letting ν1 be the value of qt that solves the equation p = (β − 1)β−1β−βc1−βqβt ,

we have ν1 = [(p/c)(β − 1)]1/βc[β/(β − 1)]. Note that 0 < ν1 < ν2 <∞ holds by the

parameter restriction β ∈ (1, 1 + c/p). Consider any history up to an arbitrary time

such that the retailer has not yet obtained the good from the distributor. If qt < ν1,

then the retailer and distributor cannot transact at this history because the retailer

would get a negative expected payoff whereas the retailer could secure a payoff of

zero by always choosing z. Hence, the SPE that maximize the expected payoff of

the distributor at the null history have the following property on the path of play.

The retailer and distributor transact at the first time the retail price satisfies qt ≥ ν1,

and the retailer sells the good to the consumer at the first time that the retail price

satisfies qt ≥ ν2.

Proof of Item 3 in Remark 9. Note that β is decreasing in µ and σ but increasing in

ρ. The threshold ν2 is increasing in c and decreasing in β. Hence, ν2 is increasing in

17McDonald and Siegel (1986) solve a similar problem, and the analysis of the model in Kamada
and Rao (2018) involves an infinite sequence of such problems.
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µ and σ but decreasing in ρ. The threshold ν1 is clearly increasing in p and c. The

partial derivative of ν1 with respect to β is given by ∂ν1/∂β = ν1[log(ν2)− log(ν1)]/β.

Hence, ν1 is increasing in β as ν2 > ν1. Thus, the threshold ν1 is decreasing in µ and

σ but increasing in ρ.

D Traceable Strategies without Consistent History

As mentioned in footnote 19 in section 3.2, the following is an example of a profile

of traceable strategies such that there does not exist a history that is consistent with

them at every time.

Example 15. Suppose I = {1, 2}. Let Āi(ht) = {x, z} for each i ∈ {1, 2} and all

ht ∈ H. Consider the following strategies for agents 1 and 2. If there is no positive

integer n such that t = 1/n, then neither strategy specifies a transaction at time t.

The strategy ψ1 of agent 1 is as follows. Consider any time t for which there exists

a positive integer c such that t = 1/c. Suppose first that c is odd. If there is no u < t

such that agent 2 chose x at time u, then agent 1 chooses x at time t. If agent 2 chose

x at some time v < t such that v = 1/b for some odd positive integer b and agent 2

did not choose x at any time u < t such that there exists an even positive integer d

satisfying u = 1/d, then agent 1 chooses x at time t. If neither of the two previous

cases holds, then agent 1 chooses z at time t. Suppose next that c is even. If agent

2 chose x at some time v < t such that v = 1/b for some even positive integer b and

agent 2 did not choose x at any time u < t such that there exists an odd positive

integer d satisfying u = 1/d, then agent 1 chooses x at time t. Otherwise, agent 1

chooses z at time t.

The strategy ψ2 of agent 2 is as follows. Consider any time t for which there exists

a positive integer c such that t = 1/c. Suppose first that c is odd. If there is no u < t

such that agent 1 chose x at time u, then agent 2 chooses x at time t. If agent 1 chose

x at some time v < t such that v = 1/b for some even positive integer b and agent 1

did not choose x at any time u < t such that there exists an odd positive integer d

satisfying u = 1/d, then agent 2 chooses x at time t. If neither of the two previous

cases holds, then agent 2 chooses z at time t. Suppose next that c is even. If agent

1 chose x at some time v < t such that v = 1/b for some odd positive integer b and

agent 1 did not choose x at any time u < t such that there exists an even positive

integer d satisfying u = 1/d, then agent 2 chooses x at time t. Otherwise, agent 2
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chooses z at time t. Note that by definition, strategies ψ1 and ψ2 are traceable.

We now prove by contradiction that no history is consistent with the strategy pro-

file ψ = (ψ1, ψ2) ∈ Π. Suppose to the contrary that the history h = {st, (a1
t , a

2
t )}t∈[0,T )

is consistent with ψ1 and ψ2 at every time. It must be that a1
t = a2

t = z for any t

such that there does not exist a positive integer n satisfying t = 1/n. Suppose that

there exists b such that for any positive integer d > b, a1
t = a2

t = z at time t = 1/d.

Then for any odd positive integer c > b, h would not be consistent with ψ1 and ψ2 at

time 1/c.

Therefore, the history h must have at least one of the following four properties.

First, there exists an increasing sequence {r1
k}∞k=1 of positive even integers such that

for all k, a1
t = x at time t = 1/r1

k. Second, there exists an increasing sequence {r2
k}∞k=1

of positive odd integers such that for all k, a1
t = x at time t = 1/r2

k. Third, there exists

an increasing sequence {r3
k}∞k=1 of positive even integers such that for all k, a2

t = x

at time t = 1/r3
k. Fourth, there exists an increasing sequence {r4

k}∞k=1 of positive odd

integers such that for all k, a2
t = x at time t = 1/r4

k.

Consider the first case, where there exists an increasing sequence {r1
k}∞k=1 of pos-

itive even integers such that for all k, a1
t = x at time t = 1/r1

k. In order for the

history h to be consistent with ψ1 at each time in this situation, there must exist an

increasing sequence {r3
k}∞k=1 of positive even integers such that for all k, a2

t = x at

time t = 1/r3
k. In order for the history h to be consistent with ψ2 at each time given

the existence of such a sequence {r3
k}∞k=1, there must exist p such that for any even

positive integer d > p, a1
t = z at time t = 1/d. This contradicts the first sentence of

this paragraph.

Consider the second case, where there exists an increasing sequence {r2
k}∞k=1 of

positive odd integers such that for all k, a1
t = x at time t = 1/r2

k. Suppose that

there exists g such that for any positive integer d > g, a2
t = z at time t = 1/d. In

order for h to be consistent with ψ2 at each time in this situation, there must exist

an increasing sequence {r1
k}∞k=1 of positive even integers such that for all k, a1

t = x

at time t = 1/r1
k. This contradicts the result that h cannot have the first property.

Therefore, assume that no such g exists. In order for the history h to be consistent

with ψ2 at each time in this situation, there must exist an increasing sequence {r3
k}∞k=1

of positive even integers such that for all k, a2
t = x at time t = 1/r3

k. In order for the

history h to be consistent with ψ1 at each time given the existence of such a sequence

{r3
k}∞k=1, there must exist p such that for any odd positive integer d > p, a1

t = z at
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time t = 1/d. This contradicts the first sentence of this paragraph.

Consider the third case, where there exists an increasing sequence {r3
k}∞k=1 of

positive even integers such that for all k, a2
t = x at time t = 1/r3

k. Since the history h

cannot have the first two properties, there exists g such that for any positive integer

d > g, a1
t = z at time t = 1/d. In order for the history h to be consistent with ψ2 at

each time in this situation, it must be that for any even positive integer c > g, a2
t = z

at time t = 1/c. This contradicts the first sentence of this paragraph.

Consider the fourth case, where there exists an increasing sequence {r4
k}∞k=1 of

positive odd integers such that for all k, a2
t = x at time t = 1/r4

k. Since the history h

cannot have the third property, there does not exist an increasing sequence {r3
k}∞k=1

of positive even integers such that for all k, a2
t = x at time t = 1/r3

k. In order for

the history h to be consistent with ψ1 at each time given the existence of such a

sequence {r4
k}∞k=1 and the nonexistence of such a sequence {r3

k}∞k=1, there must exist

an increasing sequence {r2
k}∞k=1 of positive odd integers such that for all k, a1

t = x at

time t = 1/r2
k. This contradicts the result that h cannot have the second property.

Since h cannot have any of the four aforementioned properties, h cannot be con-

sistent with both ψ1 and ψ2 at every time. This contradicts our starting assumption

that h is consistent with those strategies at every time, completing the proof.

E Additional Example of Quantitative Strategy

As discussed in section 4.2, the following is an example of a strategy in ΠQ
i that is

contingent on the realization of the shock and the behavior of one’s opponent.

Example 16. Suppose I = {1, 2}. Let Āi(ht) = {x, z} for each i ∈ {1, 2} and all

ht ∈ H. Let t̄2 > t̄1 > 0 and s̄b 6= s̄a. Suppose that with probability 1
2

the value

of the shock st is s̄a for all t ∈ [0, t̄1] and that with probability 1
2

the value of the

shock st is s̄b for all t ∈ [0, t̄1]. The strategy that requires agent i to behave as follows

is quantitative. If agent −i chooses x at time t̄1 and s̄a is the realized value of the

shock at time t̄1, then agent i chooses x at time t̄2. Otherwise, agent i chooses z at

time t̄2. Agent i chooses z at any time t 6= t̄2. Given that agent i plays this strategy

and that agent −i plays any traceable and frictional strategy, the actions of agent −i
at time t̄1 and of agent i at time t̄2 are random variables with a one- or two-point

distribution.
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F Alternative Formulation of Equilibrium Conditions

As discussed in footnote 34 in section 4.3, we illustrate a simple method to check

whether a given strategy profile is an SPE. To this end, we extend the notations that

were introduced for traceable, frictional, and calculable strategies in the body of the

paper.

Choose any strategy profile π = (πj)j∈I with πj ∈ Πj for j ∈ I and any history

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to an arbitrary time u that satisfy the following.

With conditional probability one given {st}t∈[0,u] = {gt}t∈[0,u], there exists a unique

profile
(
{φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T )

)
j∈I of action paths with {φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T )

∈ Γj({bjt}t∈[0,u)) for each j ∈ I for which the history
{
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

is consistent with πi for each i ∈ I at every t ∈ [u, T ), and these action paths

satisfy {φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T ) ∈ Ξj(u) for each j ∈ I with conditional prob-

ability one. Whenever the conditional expectation is well defined, let Vi(ku, π) =

E{st}t∈(u,T )

[
V i
u

({
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

)
|{st}t∈[0,u] = {gt}t∈[0,u]

]
denote the

expected payoff to agent i ∈ I at ku, where V i
u

({
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

)
is as specified in the main text.

Next pick any strategy profile π = (πj)j∈I ∈ ×j∈IΠj and any action paths b =

{(bjt)j∈I}t∈[0,u) up to an arbitrary time u such that for any shock realization g =

{gt}t∈[0,u] until time u, the following holds with conditional probability one given

{st}t∈[0,u] = {gt}t∈[0,u]. There exists a unique profile
(
{φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T )

)
j∈I

of action paths with {φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T ) ∈ Γj({bjt}t∈[0,u)) for each j ∈ I for

which the history
{
st, [φ

j
t(ku, {sτ}τ∈(u,T ), π)]j∈I

}
t∈[0,T )

is consistent with πi for each i ∈
I at every t ∈ [u, T ), and these action paths also satisfy {φjt(ku, {sτ}τ∈(u,T ), π)}t∈[0,T ) ∈
Ξj(u) for each j ∈ I. Let ξib(π) be the stochastic process defined as follows for i ∈ I.

At any time t ∈ [0, u), the value of ξib(π) is z. Let g = {gt}t∈[0,u] represent the shock

realization until time u, and denote the resulting history up to time u by ku = (g, b).

Given the realization of the shock {sτ}τ∈(u,T ) after time u, the value of ξib(π) at each

time t ∈ [u, T ) is φit(ku, {sτ}τ∈(u,T ), π).

Proposition 22. A strategy profile (πi)i∈I with πi ∈ Π̄C
i for i ∈ I is an SPE if for

any ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
, Vi[ku, (πi, π−i)] ≥ Vi[ku, (ψi, π−i)] holds for every

ψi ∈ Π̄i satisfying the conditions below.

1. For any g̃ = {g̃t}t∈[0,u], there is conditional probability one given {st}t∈[0,u] =

{g̃t}t∈[0,u] of the following:
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(a) There exists a unique profile ({ajt}t∈[0,T ))j∈I of action paths with {ajt}t∈[0,T ) ∈
Γj({ajt}t∈[0,u)) for each j ∈ I such that the history h =

{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with ψi and π−i at each t ∈ [u, T ).

(b) These action paths satisfy {ajt}t∈[0,T ) ∈ Ξj(u) for each j ∈ I.

2. Denoting b = {(bjt)j∈I}t∈[0,u), ξ
i
b(ψi, π−i) and ξ−ib (ψi, π−i) are progressively mea-

surable.

The converse holds in the case where Āi(ht) = Ai for every ht ∈ H and each i ∈ I.

Proof. Fix i ∈ I, and choose any ψi ∈ Π̄i as well as any π−i ∈ Π̄C
−i. Let ku =(

{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
be any history up to time u, and denote b = {(bjt)j∈I}t∈[0,u).

We begin by noting that the strategy ψi is not calculable if ψi does not satisfy

the conditions in the statement of the proposition. Suppose first that there exists a

realization ḡ = {ḡt}t∈[0,u] of shock levels up to time u for which there is conditional

probability not equal to one given {st}t∈[0,u] = {ḡt}t∈[0,u] of there existing a unique

profile ({ajt}t∈[0,T ))j∈I of action paths with {ajt}t∈[0,T ) ∈ Γj({ajt}t∈[0,u)) for each j ∈ I
such that the history h =

{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with ψi and π−i at each

t ∈ [u, T ) and of these action paths satisfying {ajt}t∈[0,T ) ∈ Ξj(u) for each j ∈ I. Then

the strategy ψi cannot be calculable because π−i is calculable and it follows from the

main text that for every profile of calculable strategies and any history up to a given

time, there is conditional probability one of there existing a unique continuation path,

which has finitely many moves in any finite interval of time. Suppose next that no

such ḡ exists but that ξib(ψi, π−i) or ξ−ib (ψi, π−i) is not progressively measurable. Then

the strategy ψi cannot be calculable because π−i is calculable and the analysis in the

main text implies that ξib(ψi, π−i) and ξ−ib (ψi, π−i) must be progressively measurable

if ψi is calculable.

In the case where Āi(ht) = Ai for every ht ∈ H and each i ∈ I, we now observe

that if the strategy ψi satisfies the conditions in the statement of the proposition,

then there exists a calculable and feasible strategy ψ′i such that (ψ′i, π−i) induces

the same continuation path as (ψi, π−i) at ku. Assume that the aforestated ḡ does

not exist and that ξib(ψi, π−i) and ξ−ib (ψi, π−i) are progressively measurable. Let ψ′i

with ψ′i(ht) = z for t < u be defined such that ψ′i
[(
{sτ}τ∈[0,t], {(djτ )j∈I}τ∈[0,t)

)]
=

φit
[(
{sτ}τ∈[0,u], {(bjτ )j∈I}τ∈[0,u)

)
, {sτ}τ∈(u,T ), (ψi, π−i)

]
for each realization of the shock

process {sτ}τ∈[0,T ) and any action path {(djτ )j∈I}τ∈[0,t) up to an arbitrary time t ≥ u.
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Note that ψ′i ∈ Π̄i given the assumption that Āi(ht) = Ai for all ht ∈ H and i ∈ I.

It follows from the definition of ψ′i that ψ′i ∈ ΠTF
i , that ψ′i ∈ ΠQ and hence ψ′i ∈ ΠC ,

that the stochastic process ξib(ψ
′
i, π
′
−i) is the same as ξib(ψi, π−i) for any π′−i ∈ ΠC

−i,

and that ξ−ib (ψ′i, π−i) is the same as ξ−ib (ψi, π−i).

The next result identifies a sufficient condition for a strategy profile to be an SPE.

It follows immediately from the foregoing analysis because any strategy ψi ∈ Π̄i that

has the properties stated in the above proposition also has the properties stated in

the corollary below.

Corollary 23. A strategy profile (πi)i∈I with πi ∈ Π̄C
i for i ∈ I is an SPE if for any

ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
, Vi[ku, (πi, π−i)] ≥ Vi[ku, (ψi, π−i)] holds for every

ψi ∈ Π̄i satisfying the conditions below.

1. There is conditional probability one given {st}t∈[0,u] = {gt}t∈[0,u] of the following:

(a) There exists a unique profile ({ajt}t∈[0,T ))j∈I of action paths with {ajt}t∈[0,T ) ∈
Γj({ajt}t∈[0,u)) for each j ∈ I such that the history h =

{
st, (a

j
t)j∈I

}
t∈[0,T )

is consistent with ψi and π−i at each t ∈ [u, T ).

(b) These action paths satisfy {ajt}t∈[0,T ) ∈ Ξj(u) for each j ∈ I.

2. Vi[ku, (ψi, π−i)] and V−i[ku, (ψi, π−i)] are well defined.

G From Measurable Attachability to Calculability Restriction

As stated in section 6.5, we define a weakened concept of equilibrium under the

restriction to measurably attachable strategy profiles and prove that any synchronous

strategy profile satisfying this notion of equilibrium is an SPE under the calculability

restriction. We say that π ∈ ΠA ∩ Π̄ is a pseudo-SPE of Γ(ΠA ∩ Π̄) if Vi(ku, π) ≥
Vi[ku, (π

′
i, π−i)] for each i ∈ I, any history ku =

(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
up to an

arbitrary time u, and every π′i ∈ Π̄TF
i for which there exists π′′ ∈ ΠA such that ξeb (π

′′)

with b = {(bjt)j∈I}t∈[0,u) is the same stochastic process as ξeb [(π
′
i, π−i)] for all e ∈ I.

The proposition below states that if the synchronous strategy profile π is a pseudo-

SPE under the restriction to measurably attachable strategy profiles, then π is an SPE

under the calculability restriction.

Proposition 24. If the synchronous strategy profile π ∈ ΠA is a pseudo-SPE of

Γ(ΠA ∩ Π̄), then π is an SPE of Γ
(
×i∈IΠ̄C

i

)
.
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Proof of Proposition 24. Let the synchronous strategy profile π ∈ ΠA be a pseudo-

SPE of Γ(ΠA ∩ Π̄). Assume that χi(ht, π̃) ≤ ζi(ht) for all π̃ ∈ ×j∈IΠ̄TF
j , ht ∈ H, and

i ∈ I. It suffices to show that π is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)

because it will then

follow from theorem 3 that π is an SPE of Γ
(
×i∈IΠ̄C

i

)
.

To show this, let ku =
(
{gt}t∈[0,u], {(bjt)j∈I}t∈[0,u)

)
be any history up to an arbi-

trary time u, and denote b = {(bjt)j∈I}t∈[0,u). For any i ∈ I, choose any π′i ∈ Π̄TF
i .

If there is some j ∈ I such that ξjb(π
′
i, π−i) is not progressively measurable, then

Ui[ku, (π
′
i, π−i)] = χi[ku, (π

′
i, π−i)] ≤ ζi(ku), whereas Ui(ku, π) = Vi(ku, π) ≥ ζi(ku).

Hence, Ui(ku, π) ≥ Ui[ku, (π
′
i, π−i)] holds in this case.

Suppose now that ξjb(π
′
i, π−i) is progressively measurable for all j ∈ I. First, we

construct π′′ ∈ ΠA such that ξeb (π
′′) with b = {(bjt)j∈I}t∈[0,u) is the same stochastic

process as ξeb [(π
′
i, π−i)] for all e ∈ I. For each e ∈ I, let π′′e with π′′e (ht) = z for t < u

be defined such that

π′′e
[(
{sτ}τ∈[0,t],{(djτ )j∈I}τ∈[0,t)

)]
=φet

[(
{sτ}τ∈[0,u],{(bjτ )j∈I}τ∈[0,u)

)
,{sτ}τ∈(u,T ),(π

′
i, π−i)

]
for each realization of the shock process {sτ}τ∈[0,T ) and any action path {(djτ )j∈I}τ∈[0,t)

up to an arbitrary time t ≥ u. By the definition of π′′, π′′e ∈ ΠTF
e for each e ∈ I,

the stochastic process ξjb(π
′′) is the same as ξjb(π

′
i, π−i) for all j ∈ I, and π′′ is a

measurably attachable strategy profile.

Second, note that since π is a pseudo-SPE of Γ(ΠA∩Π̄), π′′ ∈ ΠA and the property

that ξeb (π
′′) and ξeb [(π

′
i, π−i)] are the same stochastic process for all e ∈ I imply

that Vi(ku, π) ≥ Vi[ku, (π
′
i, π−i)]. Since Ui(ku, π) = Vi(ku, π) and Ui[ku, (π

′
i, π−i)] =

Vi[ku, (π
′
i, π−i)], we conclude that Ui(ku, π) ≥ Ui[ku, (π

′
i, π−i)] in this case, too.

Overall, no agent i has an incentive to deviate from πi to any π′i at ku, which

proves that π is an SPE of Γ
(
×i∈IΠ̄TF

i , (χi)i∈I
)
.

To prove this result, we first show that if the synchronous strategy profile π is an

SPE under the restriction to measurably attachable strategy profiles, then π is an

SPE when nonmeasurable behavior is assigned an expected payoff no greater than

the infimal feasible payoff. It then follows from theorem 3 that π is an SPE under

the calculability restriction.
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