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Abstract

We study no-transfer allocation of indivisible objects under weak preferences

and constraints. A case in point is the allocation of time slots for vaccination

among residents. Under the assumption that the constraints constitute a dis-

crete structure called an integral polymatroid, we show that our new mechanism

is efficient, respects priorities, and is strategy-proof and polynomial-time com-

putable. The mechanism determines a final allocation through an algorithm

that adjusts the so-called rank profile in response to excess demands, which is

similar in spirit to auction mechanisms.
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1 Introduction

Receiving vaccinations have become more common than ever during the COVID-

19 pandemic. Accelerating vaccination involves the problem of how to distribute

the time slots for vaccination among residents. The distribution is often conducted

through a centralized system of the following form:1 an authority sets up dates on

which residents can be vaccinated, each resident submits her possible dates in accor-

dance with her preference, and then, the authority decides who is vaccinated on which

date. This allocation problem possesses two key features that are typically precluded

from the standard model: (i) weak preferences and (ii) constraints. Regarding (i), it

is often the case that an agent is available on several dates, i.e., that she is indifferent

between them.2 Regarding (ii), each date has its quota, i.e., the maximum number

of residents who can be vaccinated on that day. Furthermore, the sum of vaccinated

people throughout the dates cannot exceed the number of available vaccine doses.

Determining vaccination venues and dates further complicates the constraints.

Motivated by this allocation problem, the current paper introduces a new mech-

anism for object allocation problems without monetary transfers under weak pref-

erences and constraints. The critical elements of our model are (1) agents have

single-unit demand, (2) preferences are ordinal, (3) assignments are deterministic

rather than probabilistic, and (4) constraints are enforced on feasible allocations. We

assume that the set of feasible allocations constitutes a discrete structure called an

integral polymatroid, a concept in discrete mathematics. As will be detailed later,

the class of integral polymatroids permits, as a special case, hierarchical constraints,

which are widely observed in real problems.

We introduce a new mechanism that works under the above assumption on fea-

1A centralized system is adopted in British Columbia (Government of British Columbia, 2022)
and Washington state (Washinton State Department of Health, 2022), among others.

2In general allocation/matching problems, indifferences in preferences emanate from other
sources such as a lack of information. For a detailed account, see the Introduction of Erdil and
Ergin (2017).
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sible allocations. Our main theorem states that the mechanism satisfies desirable

properties: it is efficient, respects priorities, and is strategy-proof. Here, the second

property of respecting priorities is a fairness condition; assuming that there is a prior-

ity order over agents (which is identical across objects), the property guarantees that

no agent envies the outcome of an agent with a lower priority. We also show that the

mechanism is polynomial-time computable by using the techniques of discrete convex

analysis (Murota, 2003). To the best of our knowledge, this study is the first to deal

with weak preferences and constraints simultaneously and develop a mechanism with

desirable welfare, incentive, and computational properties.

We formulate our mechanism as an algorithm that takes an allocation problem

as an input and outputs an allocation. The key to the algorithm is to define “excess

demand” for allocation problems without money and iteratively reduce it by adjusting

the so-called rank profile. We argue that the algorithm can be viewed as a no-transfer

analogue of the auction mechanisms developed by Demange et al. (1986) and Gul and

Stacchetti (2000).

Related literature

To handle indifferences inherent in weak preferences, a common approach is to

break ties and then apply a mechanism under strict preferences, most notably the se-

rial dictatorship mechanism (Satterthwaite and Sonnenschein, 1981).3 However, this

approach is not appealing in our problem, because the resulting mechanism violates

efficiency.4 Svensson (1994) first overcomes the inefficiency problem by developing

a new mechanism for allocation problems under weak preferences. His mechanism

satisfies efficiency, fairness, and strategy-proofness. Our contribution is to generalize

3Svensson (1999) proves that a mechanism is neutral and group strategy-proof if and only if it
is a serial dictatorship mechanism. For a generalization of this result, see Pápai (2000) or Pycia and
Ünver (2017).

4This fact was previously pointed out by Bogomolnaia et al. (2005); see the first paragraph of
Section 4 therein.
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Svensson’s mechanism by accommodating a wider class of constraints while preserving

computational efficiency.

Building upon Svensson’s (1994) result, Bogomolnaia et al. (2005) characterize a

class of mechanisms that satisfy efficiency, strategy-proofness and other desiderata as

a selection from the so-called bi-polar serially dictatorial rule. Jaramillo and Man-

junath (2012) consider an exchange market under weak preferences and introduce

a generalization of Gale’s TTC algorithm (Shapley and Scarf, 1974). Our analysis

is distinguished from theirs in that constraints and fairness are taken into account.

In a recent study, Krysta et al. (2019) identify the maximum possible number of

agents who receive a non-null object under a strategy-proof mechanism. While shar-

ing the same interest in weak preferences, they do not incorporate constraints into

the analysis.

The issue of indifferences arises not only in object allocation problems but also

in matching problems. The most well-known example is school choice, where school

priorities over students invlove ties. Erdil and Ergin (2008) and Abdulkadiroğlu et al.

(2009) work on how to find a student-optimal stable matching under weak priorities.

While these authors assume that the agents on the “many” side (i.e., schools) have

weak priorities, we assume that the agents on the “one” side have weak preferences.

Erdil and Ergin (2017) develop a two-sided matching model under weak preferences

for both sides and introduce a new algorithm that finds a Pareto-efficient stable

matching. The key differences from our result are that our mechanism can handle

constraints and satisfies strategy-proofness.

A notable feature of our analysis is to utilize the notion of matroid for analyzing

constrints. Matroid and its variations have been integrated into the notion of M-

convexity in discrete convex analysis (Murota, 2003). Prior work has revealed that

M-convexity is fundamental for running the DA/TTC algorithms under constraints;

see Hafalir et al. (2022) and the literature review therein. An integral polymatroid

used in our study is a special case of an M\-convex set, a variation of an M-convex
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set. Our novelty is to develop a new method for dealing with weak preferences under

discrete convex constraints. As noted earlier, matroidal constraints contain hierar-

chical constraints as a special case, which have been studied in allocation problems

with strict preferences; see Budish et al. (2013) or Kamada and Kojima (2018).

While we consider only deterministic assignments of objects, existing studies have

also analyzed random assignments. Hylland and Zeckhauser (1979) introduce the

pseudo-market mechanism that achieves an efficient outcome. Their ingenious idea

is to assign artificial prices for probability shares and iteratively adjust them until

demand and supply are brought into balance.5 In our mechanism, we identify ranks

of objects in a preference order as “prices” and iteratively adjust them.

The remainder is organized as follows. Section 2 introduces our model. Section

3 defines our new mechanism and presents the main theorem about its properties.

Section 4 concludes. The proof of the main theorem is relegated to Section 5.

2 Model

Let N = {1, . . . , n} be a set of agents and let K be a set of objects (more

precisely, object types). There is a special object, called the null object, denoted φ;

let K̄ := K ∪{φ}. An allocation is a vector µ := (µi)i∈N that assigns object µi ∈ K̄

to agent i. For an allocation µ, we define xµ ∈ ZK≥0 by

xµk = |{i ∈ N : µi = k}| for all k ∈ K,

representing the vector of the number of agents who receive each object (except the

null object). There is a set of feasible vectors F ⊆ ZK≥0; we assume that F is

nonempty and bounded. An allocation µ is said to be feasible if xµ ∈ F . Let A

denote the set of feasible allocations.

5A recent study by Gul et al. (2020) substantially generalizes Hylland and Zeckhauser’s (1979)
result by establishing the existence of Walrasian equilibrium in economies with possibly limited
transfers and constraints.
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We illustrate feasible vectors in the example of allocating time slots for vaccination.

Suppose that there are two dates, K = {k, `}, on which residents can get vaccinated.

Up to 100 residents can be accommodated on either day, but there are only 150

vaccine doses in total. Then,

F =
{
x ∈ ZK≥0 : 0 ≤ xk ≤ 100, 0 ≤ x` ≤ 100, 0 ≤ xk + x` ≤ 150

}
. (1)

Remark 1. We assume F ⊆ ZK≥0 rather than F ⊆ ZK̄≥0, thus imposing no restriction

on the number of the null object allocated to the agents. The underlying assumption

is that the null object is not scarce.

Each agent i has a weak (complete and transitive) preference relation over

K̄, denoted %i; let �i and ∼i denote the strict and indifference relations induced

from %i, respectively. We denote by R the set of all weak preference relations. Let

%:= (%i)i∈N ∈ RN denote the preference profile of all agents. For j ∈ N , we use

the notation %−j:= (%i)i∈N\{j}.

Following Svensson (1994) and Pathak et al. (2021), we assume that there is a

baseline priority order D, which is a weak relation over N ; let B denote the induced

strict relation. To quote Pathak et al. (2021): “This priority order captures the ethical

values guiding the allocation of the scarce medical resources.” In the context of time

slot allocation for vaccination, if j ∈ N is an elderly person or essential personnel and

h ∈ N is a young healthy person, then j is given a higher priority than h, which is

represented as j B h.6 Without loss of generality, we assume that

1 D 2 D · · · D n− 1 D n. (2)

Namely, an agent with a smaller index has a weakly higher priority.

A mechanism ϕ : RN → A maps preference profiles to feasible allocations. At

%∈ RN , agent i is assigned object ϕi(%). We focus on the following three properties:

6The order D could represent other fairness considerations such as needs or waiting time.
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• ϕ is efficient if, for any %∈ RN , ϕ(%) is efficient at %, i.e., there exists no

µ ∈ A such that

[
µi % ϕi(%) for all i ∈ N

]
and

[
µj � ϕj(%) for some j ∈ N

]
.

• ϕ respects priorities if, for any %∈ RN , there exist no j, h ∈ N with j B h

such that

ϕh(%) �j ϕj(%).

• ϕ is strategy-proof if, for any %∈ RN , there exists no j ∈ N and %′j∈ R such

that

ϕj(%
′
j,%−j) �j ϕj(%).

The first and third properties are standard in the mechanism design literature. The

second property was introduced by Svensson (1994) under the name of “weak fair-

ness”; Pathak et al. (2021) and Aziz and Brandl (2021) introduce a related property

in the context of medical rationing. It states that an agent j never envies the outcome

of another agent h who has a strictly lower priority than j. In the context of time

slot allocation, if an elderly person j cannot get vaccinated on any of her possible

dates, then a young healthy person h with j B h cannot get vaccinated on any of j’s

possible dates either.

3 New mechanism

This section consists of five subsections. Section 3.1 introduces an additional

assumption on F . Section 3.2 introduces preliminary concepts, which are used to

define our new mechanism in Section 3.3. Section 3.4 deals with computational issues.
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Section 3.5 presents the main result about the properties of the new mechanism.

We introduce two pieces of notation. For k ∈ K, let 1lk ∈ ZK≥0 denote the k-th

unit vector, i.e., 1lkk = 1 and 1lk` = 0 for all ` 6= k. For L ⊆ K and x ∈ ZK≥0, let

x(L) :=
∑

k∈L xk.

3.1 Integral polymatroid

We say that F ⊆ ZK≥0 with F 6= ∅ is an integral polymatroid (Welsh, 1976) if

it satisfies the following two conditions:

(M1) For any x ∈ F and y ∈ ZK≥0 with y ≤ x, it holds that y ∈ F .

(M2) For any x, y ∈ F with x(K) < y(K), there exists k ∈ K with xk < yk such that

x+ 1lk ∈ F .

The former condition implies that we deal with an upper bound constraint. The

latter condition is the key property of a matroid, stating that a vector x with a

smaller coordinate sum than y can move “one step close” to y while staying inside

F . Figure 1 illustrates this move by using an example of an integral polymatroid for

K = {k, `}.

Figure 1. Example of an integral polymatroid for K = {k, `} (shaded area).

Remark 2. One can verify the following claim: under (M1), if a mechanism ϕ satisfies

efficiency, then it satisfies individual rationality, i.e., for any %∈ RN and any

i ∈ N , it holds that ϕi(%) %i φ.
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To see a concrete example of an integral polymatroid, we introduce an additional

definition. We say that F is hierarchical if:

• there exists a collection of subsets K ⊆ 2K with K 6= ∅ such that, for any

L,L′ ∈ K, either L ∩ L′ = ∅ or L ⊆ L′ or L′ ⊆ L holds; and

• for each L ∈ K, thete exists qL ∈ Z≥0 such that

F =
{
x ∈ ZK≥0 : x(L) ≤ qL for all L ∈ K

}
. (3)

One can verify that F given by (3) is an integral polymatroid. This type of constraints

naturally appear in real problems. One such example is provided in (1). Another

example is when x vaccine doses are available in January and additional y doses are

available in February. In this case, the sum of vaccinated residents in January is no

greater than x and the total number of vaccinated residents in January and February

is no greater than x+y. This case also can be accommodated by hierarchical feasible

vectors.

3.2 Rank of objects and requirement function

We introduce key concepts for defining our new mechanism. Fix %∈ RN through-

out this section. For i ∈ N , take an integer ri ∈ {1, . . . , |K̄|}, which we call a rank.

We define the set of top ri ranked objects (at %i), denoted K̄i(ri;%i), inductively

as follows:

K̄i(1;%i) = {k ∈ K̄ : k %i ` for all ` ∈ K̄},

K̄i(ri;%i) =
{
k ∈ K̄ : k %i ` for all ` ∈ K̄\K̄i(ri − 1;%i)

}
for all ri = 2, . . . , |K̄|.

Intuitively, we gather indifferent objects in batches and then refer to the most pre-

ferred batch as the top 1 ranked objects, refer to the most preferred and the second
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most preferred batches as the top 2 ranked objects, and so on. For example, if

K̄ = {k, `, φ} and 1’s preference is k ∼1 ` �1 φ, then

K̄1(1;%1) = {k, `}, K̄1(2;%1) = {k, `, φ}, K̄1(3;%1) = {k, `, φ}.

We often write K̄i(ri) rather than K̄i(ri;%i) when the preference relation is clear from

the context. Note that K̄i(ri) ⊆ K̄i(r
′
i) whenever ri ≤ r′i.

For i ∈ N , we define i’s requirement function ρi : 2K × {1, . . . , |K̄|} → {0, 1}

as follows:

ρi(L, ri;%i) =

1 if K̄i(ri) ⊆ L,

0 otherwise.

(4)

We often write ρi(L, ri) rather than ρi(L, ri;%i). In words, ρi(L, ri) = 1 means that

i requires, or demands, at least one object in L in order to receive an object ranked

ri or higher. Since L is chosen not from 2K̄ but from 2K , the following implication

holds:

for any L ∈ 2K , φ ∈ K̄i(ri) =⇒ ρi(L, ri;%i) = 0. (5)

Take an agent set {1, . . . ,m} ⊆ N (1 ≤ m ≤ n) and a profile r := (ri)i∈N (called

a rank profile). We say that excess demand occurs at ({1, . . . ,m}, r) if there

exists L ∈ 2K such that

m∑
i=1

ρi(L, ri) > max
x∈F

x(L). (6)

The objects in L are in short supply at r in the sense that we cannot give all the

agents in {1, . . . ,m} a top ri ranked object. We say that excess demand does not

occur at ({1, . . . ,m}, r) if there exists no L ∈ 2K that satisfies (6).

The requirement function was previously introduced in an auction setting; see
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Demange et al. (1986) or Gul and Stacchetti (2000). Their auction algorithms proceed

by increasing the prices of the commodities in excess demand. Our novelty is to

transfer the technique to a setting without monetary transfers by drawing an analogy

between ranks and prices.

We characterize feasible allocations in terms of excess demand.

Proposition 1. Let %∈ RN and r be a rank profile. Suppose that F is an integral

polymatroid. Then, the following are equivalent:

(i) Excess demand does not occur at (N, r).

(ii) There exists µ ∈ A such that µi ∈ K̄i(ri) for all i ∈ N .

Proof. The proof is based on Yokote (2020); see the Appendix.

This proposition states that the “no excess demand” condition is essential for

guaranteeing the existence of a feasible allocation. To make use of this result, our

new mechanism iteratively reduces excess demand by adjusting the rank profile.

3.3 Generalized Svensson mechanism

As in the previous section, fix %∈ RN . We are ready to define our new algorithm,

the generalized Svensson mechanism:

• Step 0: Let i0 = 1 and r0 = (1, . . . , 1).

• Step t ≥ 1:

(a) If excess demand occurs at ({1, . . . , it−1}, rt−1), then define

it = it−1, rti =

r
t−1
i + 1 if i = it−1,

rt−1
i if i 6= it−1.

Go to step t+ 1.
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(b) Otherwise, define it = it−1 + 1 and rt = rt−1.

∗ If it ≤ n, then go to step t+ 1.

∗ Otherwise, terminate the algorithm and define the outcome as a fea-

sible allocation µ ∈ A such that µi ∈ K̄i(r
t
i) for all i ∈ N (such an

allocation always exists by Proposition 1).7

The outcome of this mechanism coincides with that of Svensson’s (1994) mechanism

(up to indifferences) when

F =
{
x ∈ ZK≥0 : xk ≤ 1 for all k ∈ K

}
.

In Section 3.5, we present an example of how this algorithm proceeds. Here we

explain it in words. The algorithm proceeds by iteratively adjusting two variables: the

set of agents (controlled by it ∈ {1, 2, . . . , n}) and the rank profile (controlled by rt).

We call {1, . . . , it} the set of active agents; intuitively, these are the agents whose

demands are taken into account, where the word “demand” is used in the sense of the

requirement function (see the interpretation of the function after (4)). Initialization

is i0 = 1 (only agent 1 is active) and r0 = (1, . . . , 1) (all the agents demand their

first-ranked objects). At each step t ≥ 1, we check whether excess demand occurs at

({1, . . . , it−1}, rt−1).

• If excess demand occurs (i.e., (a) holds), then we increase the rank of the lowest-

priority agent it−1 by 1.

• If excess demand does not occur (i.e., (b) holds), then we expand the set of

active agents by increasing it−1 by 1.

The following claim holds:

Claim 1. Case (a) holds at most |K̄| − 1 consecutive times.

7If there are multiple feasible allocations, we choose an arbitrary one.
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Proof. Suppose that case (b) holds in step t − 1 and then case (a) holds |K̄| − 1

consecutive times, i.e., case (a) holds in every step t′ with t ≤ t′ ≤ (t− 1) + (|K̄|− 1).

Let t∗ := (t − 1) + (|K̄| − 1) + 1. We show that case (b) holds in step t∗. Since the

it−1-th coordinate of the rank profile is adjusted |K̄| − 1 times, we get rt
∗−1
it−1 = |K̄|.

Since φ is always included in a top |K̄| ranked object, by (5),

ρit−1(L, rt
∗−1
it−1 ) = 0 for all L ∈ 2K . (7)

Since case (b) holds in step t−1, excess demand does not accur at ({1, . . . , it−2}, rt−2)

(note that it−2 = it−1 − 1). By the definition of the algorithm, for any i with

1 ≤ i ≤ it−2, it holds that rt−2
i = rt

∗−1
i . Therefore, excess demand does not oc-

cur at ({1, . . . , it−2}, rt∗−1). Together with (7), excess demand does not occur at

({1, . . . , it−1}, rt∗−1) = ({1, . . . , it∗−1}, rt∗−1). We conclude that case (b) holds in step

t∗.

Case (b) holds at most n times because there are n agents. Together with the

above claim, the number of steps is at most |K̄−1|×n, which is a polynomial function

in |K̄| and n. In the next section, we show that the computational time in each step

is also bounded by a polynomial function.

3.4 Computational issues

Our mechanism involves two computational problems:

(I) to check whether excess demand occurs or not at every step, and

(II) to find a feasible allocation at the end of the algorithm.

We show that both problems can be solved in time polynomial in the number of

agents and objects. To this end, we assume that there is a sufficiently large number

d ∈ R, independent of the number of agents and objects, such that max
{∑

k∈K xk :
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x ∈ F
}
≤ d. This means that there is a reasonable bound on the size of feasible

vectors, which typically holds true in practice.8

We begin with the first problem (I). Since excess demand concerns all subsets of

objects L ∈ 2K , it appears to be a hard problem to check whether excess demand

occurs or not. However, this problem turns out to be computationally easy. To

see this point, we define the excess demand function at ({1, . . . ,m}, r), denoted

ED : 2K → Z, as follows:

ED(L) =
m∑
i=1

ρi(L, ri)−max
x∈F

x(L) for all L ∈ 2K . (8)

One easily verifies from (6) that excess demand occurs at ({1, . . . ,m}, r) if and only

if max
L∈2K

ED(L) > 0.

Proposition 2. ED(·) is a supermodular function, i.e., for any L,L′ ∈ 2K, it holds

that ED(L) + ED(L′) ≤ ED(L ∪ L′) + ED(L ∩ L′).

Proof. It is well-known in the literature on discrete mathematics that, for an integral

polymatroid F , L 7→ −maxx∈F x(L) is supermodular; see, e.g., Theorem 4.15 of

Murota (2003). Since supermodularity is closed under taking the sum of functions,

it suffices to prove that, for an arbitrary chosen i ∈ N , ρi(L, ri) is supermodular.

Suppose not, i.e., there exist L,L′ ∈ 2K such that

ρi(L) + ρi(L
′) > ρi(L ∪ L′) + ρi(L ∩ L′). (9)

If the left-hand side is equal to 1, then ρi(L) = 1 or ρi(L
′) = 1. Together with

ρi(L) ≤ ρi(L ∪ L′) and ρi(L
′) ≤ ρi(L ∪ L′), (10)

we have ρi(L ∪ L′) = 1. Then, the right-hand side of (9) is no less than 1, a contra-

8For example, the number of people vaccinated on a single day in one vaccination venue is subject
to capacity and operational constraints and does not become arbitrarily large.
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diction to the strict inequality. The remaining possibility is that the left-hand side

of (9) is equal to 2, which is true only if ρi(L) = ρi(L
′) = 1. By (10), ρi(L ∪ L′) = 1.

Furthermore, ρi(L) = ρi(L
′) = 1 implies ρi(L ∩ L′) = 1. Thus, the right-hand side of

(9) is equal to 2, a contradiction to the strict inequality.

It is known that the maximum value of a supermoduolar function can be computed

in time polynomial in the number of agents and objects; see, e.g., Section 10.2 of

Murota (2003). Thus, given a pair ({1, . . . ,m}, r), checking whether max
L∈2K

ED(L) > 0

is true or not can be done in polynomial time.

We can also solve the second problem (II) quickly by formulating it as a so-called

submodular flow problem. Consider a directed graph G = (V,A) with the set of

vertices V := N ∪ K̄ and the set of arcs A := N × K̄. A function ξ : A → {0, 1} is

called a flow. For a flow ξ, we define ∂ξ ∈ ZV (called the boundary of flow ξ) by

(∂ξ)i =
∑
k∈K̄

ξ(i, k) for all i ∈ N, (∂ξ)k = −
∑
i∈N

ξ(i, k) for all k ∈ K̄.

Figure 2 gives an example for N = {1, 2, 3} and K̄ = {k, φ}.

Figure 2. Example of a directed graph, a flow, and its boundary.
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We define

B1 =
{
x ∈ ZN : xi = 1 for all i ∈ N

}
, B2 =

{
x ∈ ZK̄ : (xk)k∈K ∈ F ,

∑
k∈K̄

xk = n
}
.

Let B := B1 × (−B2) ⊆ ZV , where −B2 = {x ∈ ZK̄ : −x ∈ B2}. A flow ξ is said to

be feasible if ∂ξ ∈ B. For a feasible flow ξ and i ∈ N , by the definition of B1, there

exists a unique object k ∈ K̄ such that ξ(i, k) = 1; let µξ denote the allocation that

gives the unique object to each i ∈ N . Then, for each k ∈ K, −(∂ξ)k represents the

number of agents who receive object k at allocation µξ. By the definition of B2, µξ is

a feasible allocation. Thus, finding a feasible flow tantamounts to finding a feasible

allocation.

If F is an integral polymatroid, then B forms a discrete structure called an M-

convex set.9 Under this assumption, the problem of finding a feasible flow is an

instance of a submodular flow problem, for which we can apply an existing algorithm,

such as the successive shortest path algorith. The computational time is polynomial

in the number of agents and objects; see Section 10.4.2 of Murota (2003) and the

literature therein for a detailed account.

3.5 Properties of the new mechanism

Let ϕGS denote the generalized Svensson mechanism. We are in a position to state

our main theorem.

Theorem 1. Suppose that F is an integral polymatroid. Then, ϕGS is efficient,

respects priorities, and is strategy-proof.

Proof. See Section 5.

9The definition of M-convexity is given in Section 4 of Murota (2003). An integral polymatroid
satisfies a condition called M\-convexity (see, e.g., Fujishige (2005) or Murota and Shioura (2018)),
which implies M-convexity of −B2 (see Section 4.7 of Murota (2003)). Since B1 consists of a single
point, B = B1 × (−B2) is an M-convex set.
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It is noteworthy that ϕGS does not satisfy group strategy-proofness, a stronger

notion than strategy-proofness.10 For M ⊆ N , let %M := (%i)i∈M and %−M := (%i

)i∈N\M .

• ϕ is group strategy-proof if, for any %∈ RN , there exists no M ⊆ N and

%′M∈ RM such that

ϕi(%
′
M ,%−M) %i ϕi(%) for all i ∈M, and

ϕj(%
′
M ,%−M) �j ϕj(%) for some j ∈M.

To see that ϕGS violates this condition, let N = {1, 2, 3}, K̄ = {k, `, φ}, and

F =
{
x ∈ ZK≥0 : xk ≤ 1, x` ≤ 1

}
.

Suppose that the agents have the following true preferences:

• Agent 1: k ∼ ` � φ.

• Agent 2: ` � φ � k.

• Agent 3: k � φ � `.

Our algorithm proceeds as follows:

• Step 1: N0 = {1}, r0 = (1, 1, 1). Excess demand does not occur. Expand the

set of active agents.

• Step 2: N1 = {1, 2}, r1 = (1, 1, 1). Excess demand does not occur. Expand the

set of active agents.

10This observation is consistent with Ehlers’s (2002) theorem stating that there exists no efficient
and group strategy-proof mechanism under weak preferences.
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• Step 3: N2 = {1, 2, 3}, r2 = (1, 1, 1). Excess demand occurs.11 Increase r2
3 from

1 to 2.

• Step 4: N3 = {1, 2, 3}, r3 = (1, 1, 2). Excess demand does not occur. The

algorithm terminates with final allocation µ1 = k, µ2 = `, µ3 = φ.

Now, suppose that 1 and 3 collude and submit the following preferences:

• Agent 1: ` � φ � k.

• Agent 3: k � φ � ` (same as the true preference).

Then, our algorithm proceeds as follows:

• Step 1: N0 = {1}, r0 = (1, 1, 1). Excess demand does not occur. Expand the

set of active agents.

• Step 2: N1 = {1, 2}, r1 = (1, 1, 1). Excess demand occurs.12 Increase r1
2 from 1

to 2.

• Step 3: N2 = {1, 2}, r2 = (1, 2, 1). Excess demand does not occur. Expand the

set of active agents.

• Step 4: N3 = {1, 2, 3}, r3 = (1, 2, 1). Excess demand does not occur. The

algorithm terminates with final allocation µ1 = `, µ2 = φ, µ3 = k.

Compared to the allocation under the true preferences, agent 1 is indifferent and

agent 3 becomes strictly better off, showing that group strategy-proofness is violated.

11For L = {k, `}, the three agents require one of the two objects (agent 1 requires k or `, agent 2
requires `, and agent 3 requires k), but only two units are available in total (object k has one unit
and object ` has one unit). Theorefore, excess demand occurs.

12For L = {`}, the two agents require object `, but only one unit is available. Therefore, excess
demand occurs.
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4 Conclusion

In this paper we have developed an efficient, priority-respecting, and strategy-

proof mechanism when preferences involve indifferences and constraints are imposed

on feasible allocations. The key idea is to reject an agent as being not qualified for

object k only if excess demand occurs whenever the agent receives k. Our method-

ological contribution is to show that ranks of an object in a preference ordering can

be identified with “prices” in allocation problems with money. This idea might prove

useful in other allocation problems with ordinal preferences.

5 Proof of Theorem 1

Throughout this section, we abbreviate “generalized Svensson mechanism” as GS.

Proof of efficiency: Fix %∈ RN . Suppose for a contradiction that ϕGS(%) is not

efficient. Then, there exists µ ∈ A such that every agent receives a weakly better

object than that under ϕGS(%) and at least one agent receives a strictly better object.

For each i ∈ N , we define r∗i by

r∗i = min
{
ri ∈ {1, . . . , |K̄|} : µi ∈ K̄i(ri)

}
.

Let t be the first step of GS under % at which rt−1
j = r∗j and rtj > r∗j for some j ∈ N ;

since there is at least one agent who strictly preferes the object under µ than that

under ϕGS(%), such a step t always exists. Since t is the first step, we have

rt−1
i ≤ r∗i for all i = 1, . . . , j − 1. (11)
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By the definition of r∗ and the fact that every agent weakly prefers the object under

µ than that under ϕGS(%),

rt−1
i ≥ r∗i for all i = 1, . . . , j − 1. (12)

Combining (11) and (12), together with rt−1
j = r∗j , it holds that

rt−1
i = r∗i for all i = 1, . . . , j.

This implies that, for any L ∈ 2K and any i = 1, . . . , j,13

ρi(r
t−1
i , L;%i) = 1 =⇒ µi ∈ L. (13)

Then, for any L ∈ 2K ,

max
x∈F

x(L) ≥ |{i ∈ {1, . . . , j} : µi ∈ L}| ≥
j∑
i=1

ρi(r
∗
i , L;%i),

where the first inequality follows from the fact that µ is a feasible allocation and the

second inequality follows from (13). We obtain a contradiction to the fact that excess

demand occurs at ({1, . . . , j}, rt−1).

Proof of respecting priorities: Fix %∈ RN . Suppose for a contradiction that

there exist j, h ∈ N with j B h such that

ϕGSh (%) �j ϕGSj (%).

By the assumption (2), we have h > j. Let k∗ := ϕGSh (%). By k∗ �j ϕGSj (%), there

exists a step t of GS under % at which k∗ ∈ K̄j(r
t−1
j ) and excess demand occurs, i.e.,

13To see that (13) holds, we consider the contrapositive. If µi /∈ L, then there exists a top r∗i
ranked object that is not included in L. Since rt−1i = r∗i , we get ρi(r

t−1
i , L;%i) = 0.
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there exists L ∈ 2K such that

j∑
i=1

ρi(r
t−1
i , L) > max

x∈F
x(L). (14)

Since excess demand does not occur when the agent set is {1, . . . , j − 1},

j−1∑
i=1

ρi(r
t−1
i , L) ≤ max

x∈F
x(L). (15)

Since the requirement function takes the value of either 0 or 1,

ρj(r
t−1
j , L) ≤ 1. (16)

Combining (14)-(16), the inequalities of (15) and (16) reduce to equalities. By (16)

(holding as equality),

K̄j(r
t−1
j ) ⊆ L,

which together with k∗ ∈ K̄j(r
t−1
j ) implies k∗ ∈ L. Together with (15) (holding as

equality),

j−1∑
i=1

ρi(r
t−1
i , L) = max

x∈F
x(L).

This implies that, at ϕGS(%), all the objects in L are allocated exhaustively to the

agents in {1, . . . , j− 1}. Since k∗ ∈ L, we obtain a contradiction to k∗ = ϕGSh (%) and

h > j.

Proof of strategy-proofness: Fix a true preference profile %∈ RN . Suppose for

a contradiction that an agent j ∈ N becomes stricly better off by submitting a false
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preference %′j∈ R, i.e.,

ϕGSj (%′j,%−j) �j ϕGSj (%).

Let r′ denote the rank profile at the end of GS under (%′j,%−j).

The proof goes in parallel with that of ϕ respecting priorities. Let k∗ := ϕGSj (%′j

,%−j). By k∗ �j ϕGSj (%), there exists a step t of GS under % at which k∗ ∈

K̄j(r
t−1
j ;%j) and excess demand occurs, i.e., there exists L ∈ 2K such that

j∑
i=1

ρi(r
t−1
i , L;%i) > max

x∈F
x(L). (17)

Since excess demand does not occur when the agent set is {1, . . . , j − 1},

j−1∑
i=1

ρi(r
t−1
i , L;%i) ≤ max

x∈F
x(L). (18)

Since the requirement function takes the value of either 0 or 1,

ρj(r
t−1
j , L;%j) ≤ 1. (19)

Combining (17)-(19), the inequalities of (18) and (19) reduce to equalities. By (19)

(holding as equality),

K̄j(r
t−1
j ;%j) ⊆ L,

which together with k∗ ∈ K̄j(r
t−1
j ;%j) implies k∗ ∈ L. Since all the agents in

{1, . . . , j − 1} submit the same preferences between % and (%′j,%−j), it holds that

rt−1
i = r′i for all i = 1, . . . , j − 1. Together with (18) (holding as equality),

j−1∑
i=1

ρi(r
′
i, L;%i) = max

x∈F
x(L).
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This implies that, at ϕGS(%′j,%−j), all the objects in L are allocated exhaustively to

the agents in {1, . . . , j − 1}. Since k∗ ∈ L, we obtain a contradiction to k∗ = ϕGSj (%′j

,%−j).

Appendix

We prove Proposition 1 by mimicking the proof of Corollary 1 of Yokote (2020).

Fix %∈ RN .

Proof of (ii) =⇒ (i): By (ii), there exists µ ∈ A such that

µi ∈ K̄i(ri) for all i ∈ N. (20)

Fix an arbitrary L ∈ 2K . By (20),

ρi(L, ri) = 1 =⇒ µi ∈ L for all i ∈ N. (21)

It follows that

∑
i∈N

ρi(L, ri) ≤ xµ(L) ≤ max
x∈F

x(L),

where the first inequality follows from (21) and the second inequality follows from

µ ∈ A. Since L is arbitrarily chosen, we conclude that excess demand does not occur

at (N, r).

Proof of (i) =⇒ (ii): We prove the contrapositive; suppose that

there does not exist a feasible allocation µ ∈ A such that µi ∈ K̄i(ri) for all i ∈ N .

(22)
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Let Xi(ri) := {1lk : k ∈ K̄(ri)} for all i ∈ N , with the notation 1lφ = 0. We denote

their Minkowski sum by X :=
∑

i∈N Xi(ri).
14 Then, (22) is equivalent to

X ∩ F = ∅. (23)

Since Xi(ri) for i ∈ N consists of unit vectors, the set satisfies a notion of discrete

convexity called M\-convexity (see Murota (2003)). By Theorem 4.23 of Murota

(2003), the Minkowski sum of M\-convex sets is also M\-convex, which implies that

X is M\-convex. Furthermore, it is well known in the literature that an integral

polymatroid F is an M\-convex set (see, e.g., Murota and Shioura (2018)). Hence,

(23) states that two M\-convex sets X and F are disjoint. By applying the so-called

discrete separation theorem as in the proof of Corollary 1 of Yokote (2020), there

exists L ∈ 2K such that

min
x∈X

1lL · x > max
x∈F

1lL · x,

where 1lL ∈ {0, 1}K denotes the characteristic vector of L, i.e., 1lLk = 1 if k ∈ L and

1lLk = 0 otherwise. The above strict inequality establishes that (6) holds true, i.e.,

excess demand occurs at (N, r).
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