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Abstract 
 

We investigate the implementation of social choice functions with asymmetric 
information concerning the state from an epistemological perspective. Although agents 
are either selfish or honest, they do not expect other participants to be honest. However, 
an honest agent may exist not among participants but in their higher-order beliefs. We 
assume that “all agents are selfish” never happens to be common knowledge. We show 
a positive result in general asymmetric information environments, demonstrating that 
with a minor restriction on signal correlation called information diversity, any 
incentive-compatible social choice function, whether ethical or nonethical, is uniquely 
implementable in the Bayesian Nash equilibrium. 
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1. Introduction 

 

 In this study, we examine the implementation problem of social choice functions 

(SCFs) with asymmetric information. A central planner attempts to implement a 

desirable allocation implied by an SCF, contingent on the state. The central planner 

does not know the state, unlike multiple agents (participants) who are partly and 

privately informed of it. Although they receive only inadequate information about the 

state, combining their information can provide the central planner with a complete 

picture of the state. The central planner seeks to hear from these agents about their 

private signals, but they might lie and manipulate the information to render the central 

planner’s decisions more beneficial for them. Hence, the central planner attempts to 

design a decentralized mechanism that comprises message spaces, an allocation rule, 

and a payment rule and incentivizes these agents to announce sincerely. This study 

clarifies the conditions under which the central planner can implement the SCF despite 

agents’ potential manipulation. 

 The SCF must be incentive-compatible, that is, require truthful revelation, to be a 

Bayesian Nash equilibrium (BNE) in the direct revelation game associated with the 

SCF. However, this is not enough because, depending on the specifications of the 

underlying information structures, unwanted equilibria that fail to achieve the SCF 

values may exist. We clarify a range of asymmetric information environments in which 

any incentive-compatible SCF is uniquely implementable in a BNE; that is, a 

mechanism that has a unique BNE exists and this unique BNE correctly achieves the 

SCF values. Moreover, we demonstrate that this range is quite wide once we consider 

the epistemological possibility that an agent is not necessarily selfish. 

We assume that each agent is either selfish or honest. A selfish agent is only 

concerned about their material utility, that is, the utility derived directly from the central 

planner’s decisions. By contrast, an honest agent is only concerned about the intrinsic 

preference for honesty regarding their attitude in situations in which they announce 

messages about the state. However, we do not assume that an honest agent exists as a 

participant in the central planner’s problem. Instead, we consider the epistemological 

possibility that an honest agent exists not in the mechanism but in the participants’ 

higher-order beliefs, regarding which, the other agent types are between honest and 
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selfish. Hence, we assume incomplete information concerning the agents’ 

epistemological types, as well as incomplete (asymmetric) information concerning the 

state. 

We also assume only a slight possibility of an honest agent in higher-order beliefs, 

that is, we assume “no common knowledge of selfishness” (NCKS) in the sense that 

“all agents are selfish” never happens to be common knowledge. Agents do not 

necessarily expect the possibility of the existence of an honest participant; they may 

have mutual knowledge that all agents are selfish (i.e., all agents know that all agents 

are selfish). We show that despite these weaknesses in honesty requirements, the central 

planner can elicit correct information from all agents if the epistemology satisfies 

NCKS. With this finding, we can demonstrate a positive result such that in a wide range 

of asymmetric information environments, any incentive-compatible SCF, whether 

ethical or nonethical, is uniquely implementable in a BNE. 

 The early literature on implementation theory assumes that “all agents are selfish” 

is common knowledge. Under this assumption, ethical SCFs, that is, SCFs that consider 

social factors such as ethics and fairness unrelated to participants’ selfish motives, are 

excluded from consideration (Arrow, 1951; Hurwicz, 1972; Gibbard, 1973; 

Satterthwaite, 1975; Maskin, 1977/1999; Abreu and Matsushima, 1992a; 1992b).3  4 

Recent progress in this literature indicates that by excluding such common knowledge 

of selfishness from considerations, the scope of implementable SCFs can be greatly 

expanded. Matsushima (2008a) considers the possibility that agents are not purely 

selfish but honest as well, and then show a positive result, illustrating that with complete 

(i.e., symmetric) information concerning the state, any SCF, whether ethical or 

nonethical, is uniquely implementable if such honest agents exist in the mechanism. 

Starting with Matsushima (2008a), many subsequent studies including 

Matsushima (2008b), Dutta and Sen (2012), Matsushima (2013), Kartik, Tercieux, and 

Holden (2014), Saporiti (2014), Ortner (2015), Mukherjee, Muto, and Ramaekers 

(2017), Yadav (2016), Lombardi and Yoshihara (2018), Dogan (2017), and Savva 

 
3  Arrow (1951) considers the social choice theory as a problem of preferences 
aggregation, which inevitably excludes some aspects of ethics and fairness concerns. 
4 An exception is Matsushima (2021), who assumes that the state is ex-post verifiable 
with a positive probability and showed that ethical SCFs are implementable. 
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(2018) show positive results. As a particularly important contribution, Matsushima 

(2022a) introduces the epistemological type space and demonstrate that under complete 

information environments concerning the state, any SCF is uniquely implementable in 

a BNE with three or more agents if NCKS holds. 

 The main result of this study is the generalization of Matsushima (2022a) from 

complete information to asymmetric information. Instead of assuming information 

symmetry (i.e., complete information), we assume information diversity (ID), implying 

that no private signal changes the prior in the same direction as any other private signal 

does. We then show that with ID and NCKS, any incentive-compatible SCF, whether 

ethical or nonethical, is uniquely implementable in a BNE. 

ID is a weak restriction on private signal correlation: it is much weaker than any 

informational restriction discussed in the implementation literature, such as Bayesian 

monotonicity (Jackson, 1991), measurability (Abreu and Matsushima, 1992b), non-

consistent deception (Matsushima, 1993), and various dimensionality requirements. 

Unlike these informational restrictions, ID does not require any relationship between 

the state and the agents’ material utilities. Therefore, ID can render any ethical SCF that 

meets incentive compatibility uniquely implementable. 

Matsushima (2008b) is the first and only one to investigate asymmetric 

information environments with honest agents. Matsushima (2008b) demonstrates that 

even under asymmetric information, any incentive-compatible SCF is uniquely 

implementable in a BNE if all agents consider honesty. By contrast, we do not assume 

the possibility that such an honest agent exists as a participant in the central planner’s 

problem. 

Similar to Matsushima (2022a), in this study, we require each agent to announce 

probability distributions over private signals (not pointwise private signals) and utilize 

a quadratic scoring rule (Brier, 1950) that aligns agents’ payoffs with the distance 

between their messages. The quadratic scoring rule plays a significant role in 

incentivizing selfish agents to announce sincerely in information elicitations. However, 

our generalization from complete information to asymmetric information is not 

straightforward, and we need an additional mechanism design device. In a complete 

information environment, we can utilize a simple form of a quadratic scoring rule with 

single announcements. The usefulness of this simple form depends substantially on the 
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complete information setting. To prove the positive result in general asymmetric 

information environments, we need a more elaborate design method with multiple 

messages that have a nested structure of the quadratic scoring rule and its variants. This 

method can induce agents to gradually reveal their private signals through multiple 

announcements. We need multiple message announcements because, unlike complete 

information, no one else knows the same thing, which dissuades each agent from being 

honest on the first attempt. By inducing agents to speak a lot, we can gradually expand 

the selfish types that have an incentive to be honest (at least virtually). 

This study’s scientific contribution lies in proving that all incentive compatible 

SCFs, whether ethical or nonethical, are uniquely implementable in a BNE even under 

asymmetric information if we eliminate the common knowledge of selfishness. By 

adopting the new design method with multiple announcements, the central planner 

succeeds in extracting correct information about ethics and fairness that is scattered and 

buried among agents who are not interested in it due to personal motives for allocations. 

Abeler, Nosenzo, and Raymond (2019) empirically and experimentally show that 

subjects who trade-off material interest against honesty forego a lot of potential benefits 

from lying, such as those derived from adversarial motives. Their report supports the 

validity of this study’s assumptions. 

 The remainder of this paper is organized as follows. Section 2 presents the 

implementation problem, ID, NCKS, and the main theorem (Theorem 1). Section 3 

considers the information elicitation problem as a special case, demonstrates the nested 

quadratic scoring rule design, and illustrates the proof of Theorem 1 for this case 

(Proposition 1). Section 4 presents the proof of Theorem 1. Section 5 discusses weak 

honesty. Section 6 concludes. 

 

2. The Model 

 

 We investigate a situation in which a central planner attempts to achieve a 

desirable allocation contingent on the state as follows. Let {1,..., }N n  denote a finite 

set of all agents, where 2n   . Let A   denote the non-empty and finite set of all 

allocations. Let   denote a non-empty and finite set of states. The SCF is defined as 
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: ( )f A  . 5  For every    , ( ) ( )f A    implies a desirable allocation 

distribution at state  .6 The central planner does not know the state. 

 We consider asymmetric information environments concerning the state where 

each agent is only partly and privately informed of the state. Let 

    i
i N

    , i i  , and ( )i i N i
i N

   
    . 

Each agent i N   is informed of the i th   component i   as their private signal. 

For each j i , let , ( | ) : [0,1]i j i jp     denote the probability distribution on j  

conditional on i i  . We assume that a common prior : [0,1]p   exists from 

which , ( | )i j ip    is derived. Let : [0,1]i ip     denote the prior distribution over 

i , where ( ) ( )
i i

i ip p


 
 

   for all i i  . 

 

ID: For every i N , \{ }j N i , i i  , and i i   , no 0   exists such that 

     , ,( | ) ( ) ( | ) ( )i j i j i j i jp p p p         . 

 

 ID implies that no private signal changes the prior in the same direction as any 

other private signal does. ID excludes the case in which private signals are independent 

of each other. Hence, ID implies that , ( | ) ( )i j i jp p    and , ,( | ) ( | )i j i i j ip p     for 

all j i . However, ID permits each private signal i  to have a mixture on i  and 

( ) \{ }i i i    , which brings the same posterior as i   does; that is, 

, ,( | ) ( | )i j i i j ip p    , where we denote , ,( | ) ( | ) ( )
i i

i j i i j i i ip p


   


   . Hence, ID 

can be considered a very weak restriction on private-signal correlations. 

We assume that each agent is either selfish or honest. No agent knows whether the 

other agents are selfish or honest. Following Matsushima (2022a), to describe agents’ 

 
5 ( )Z  denotes the space of probability measures on the Borel field of a measurable 

space Z  . If Z   is finite and ( )Z   satisfies ( ) 1z    for some z Z  , we 
simply write z  . 
6 We consider both deterministic and stochastic SCFs. 
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higher-order beliefs about their selfishness and honesty, we define an epistemological 

type space separately from the private signal space: 

    ( , , )i i i i NT     , 

where i it T   is the agent 'i s   epistemological type, : ( )i i iT T   , and 

: {0,1}i iT   .7  The agent i   is selfish (honest) if ( ) 0i it    ( ( ) 1i it   ). The agent 

i  expects that the epistemological types of other agents are distributed according to 

the probability measure ( ) ( | ) ( )i i i i it t T      . We assume that a common prior 

( )T   exists from which ( )i i N   is derived, where i N iT T . We assume that 

iT   is non-empty and finite for each i N  , and that    and t   are independently 

drawn. 

 We call a subset of epistemological type profiles E T   an event. We write 

( | ) ( ( ) | )i i i i i iE t E t t     for convenience, where we denote 

( ) { | ( , ) }i i i i i iE t t T t t E      . Let *E T  denote the event in which all agents are 

selfish, that is, 

    * { | : ( ) 0}i iE t T i N t     . 

For each agent i N , we define the set of all selfish types as 

    * { | ( ) 0}i i i i iE t T t   . 

 Consider an arbitrary event E T . Let 

    1( ) { | ( | ) 1}i i i i iV E t T E t   , 

which denotes the set of agent 'i s  types who know the occurrence of E . Let 

    2 1( ) { | ( ( ) | ) 1}i i i i j ij N
V E t T V E t


    , 

which denotes the set of agent 'i s  types who know the occurrence of 1( )jj N
V E


 , that 

is, are aware that all agents know the occurrence of E . Recursively, for each positive 

integer 2h  , let 

    1( ) { | ( ( ) | ) 1}h h
i i i i j ij N

V E t T V E t 


    , 

 
7 We denote ii N

Z Z


  , i jj i
Z Z 

  , ( )i i Nz z Z  , and ( )i j j i iz z Z    . 
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which denotes the set of agent 'i s  types who know the occurrence of 1( )h
jj N

V E


 , 

that is, are aware that all agents know the occurrence of 2 ( )h
jj N

V E


 . We then define 

    
1

( ) ( )h
i i

h
V E V E





  . 

An event E T  is said to be common knowledge in an epistemological type profile 

t T  if ( )ii N
t V E


  . Note that if E  is common knowledge at t T , then 

    ( ) 1i j ij N
V E t 



   
 

 for all i N . 

We explain later that whether the event of “all agents are selfish” (i.e., *E E  ) is 

common knowledge has a decisive impact on the implementability of SCFs. 

 

NCKS: “All agents are selfish” never happens to be common knowledge: 

    *( )ii N
V E 


  . 

 

Fix an arbitrary positive but small real number 0   as agents’ limited liability. 

We define a mechanism as ( , , )G M g x , where ii N
M M


  , iM  denotes agent 'i s  

message space, : ( )g M A  denotes an allocation rule, ( )i i Nx x   a payment rule, 

and : [ , ]ix M      the payment rule for the agent i   (with limited liability   ). 

Each agent i  simultaneously announces a message i im M . The central planner then 

determines the allocation according to )( ()g Am    and pays a monetary amount

( )ix m R  to each agent i . 

Each agent 'i s   material payoff at state     is given by ( , )i iv a r   , 

provided the central planner determines the allocation a A  and offers the monetary 

amount ir R  to the agent i . If agents announce m M , then the resultant expected 

material payoff is given by ( ( ), ) ( )i iv f m x m   , where we denote 

( , ) ( , ) ( )i i
a A

v v a a   


 . 



9 
 

We consider a mechanism ( , , )M g x  in which a positive integer L  exists such 

that 

1

L
l

i i
l

M M


   for each i N . 

From a semantic perspective, we focus on mechanisms ( , , )M g x  such that 

( )l
i i iM      for all {1,..., }l L . 

Each agent i  announces L  sub-messages at once. At each l th  sub-message, the 

agent i  announces a probability distribution over the private signal ( )l
i im   . At 

each of the agent 'i s   sub-messages, we assume the agent i   announces more 

truthfully, as their announcement at this sub-message grants a greater probability to the 

true private signal. An agent can announce different distributions across sub-messages. 

 Denote ( ( )) ( )
i i

l l
i i i im m      . At each l th   sub-message, the agent i  

announces that each private signal i i    occurs with the probability of 

( ) [0,1]l
i im    . We simply write l

i im    if ( ) 1l
i im    . We also denote 

1( ) ( ( )) [0,1]l L L
i i i i lm m    . We consider the agent i  with a private signal i  acting 

more honestly when they announce im  rather than im , if the vector im  assigns a 

higher probability to the true private signal than the vector im  in each component, that 

is, 

( ) ( )i i i im m    and ( ) ( )i i i im m   .8 

 We define a strategy for the agent i  as 

    :i i i is T M   , 

according to which, the agent i  with private signal i  and epistemological type it  

announces ( , )i i i i im s t M   . Denote 1( )l L
i i ls s   , :l l

i i i is T M    , and 

1( , ) ( ( , ))l L
i i i i i i ls t s t    , where ( , )l

i i is t   represents the agent 'i s   l th   sub-

message. We also denote 1( , )( ) ( ( , )( )) [0,1]l L L
i i i i i i i i ls t s t       , where the agent i  

 
8 For two vectors 1( )l L

lz z   and 1( )l L
lz z  , we write z z   if and only if l lz z   

for all {1,..., }l L . 
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with a private signal i  and epistemological type it  announces as their l th  sub-

message that each private signal i i   occurs with the probability of 

( , )( ) [0,1]l
i i i is t   . We simply write ( , )l

i i i is t   if ( , )( ) 1l
i i i is t   . 

 Each agent i N  is either selfish ( ( ) 0i it  ) or honest ( ( ) 1i it  ). An honest 

agent ( ( ) 1i it  ) always announces truthfully, whereas a selfish agent maximizes their 

expected material payoff: 

    [ ( ) 0i it  ] 

     [ ( , ) arg max [ ( ( ), ) ( ) | , , ]
i i

i i i i i i i i
m M

s t E v g m x m t s   


  ], 

where we assume that the other agents announce according to ( )i j j is s  .9 A strategy 

profile s  is said to be a BNE in the mechanism G  if for every i N , i i  , and 

i it T , 

( , )l
i i i is t      if ( ) 1i it  , 

and 

    [ ( ( ( , ), ), ) ( ( , ), ) | , , ]i i i i i i i i i i i i iE v g s t m x s t m t s       

    [ ( ( , ), ) ( , ) | , , ]i i i i i i i i iE v g m m x m m t s      for all i im M  

if ( ) 0i it  . 

A mechanism G  is said to uniquely implement an SCF f  if a unique BNE s  exists, 

and s  satisfies 

    ( ( , )) ( )g s t f   for all    and t T , 

where we denote ( , ) ( ( , ))i i i i Ns t s t   . An SCF is said to be uniquely implementable 

if a mechanism that uniquely implements it exists. An SCF f  is said to be incentive-

compatible if for every i N  and i i  , 

    [ ( ( )) | ] [ ( ( , )) | ]i i i i i iE v f E v f      for all i i . 

 

 
9 [ | ]E   denotes the expectation operator conditional on  . 
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Theorem 1: An incentive-compatible SCF f  is uniquely implementable if NCKS and 

ID hold. 

 

3. Special Case: Information Elicitation 

 

To understand how to prove Theorem 1, investigating the information elicitation 

problem as a special case, where each agent’s material payoff is irrelevant to the 

allocation, is helpful, that is, 

    ( , ) 0iv a    for all i N , a A , and   . 

Note that any SCF satisfies incentive compatibility in this information elicitation 

problem. However, we have a serious multiplicity of unwanted equilibria. As each 

agent’s material payoff is independent of the state, we cannot elicit correct information 

from an agent by relying solely on the agent’s selfish motives. Therefore, honesty is 

expected to resolve the incentive issue in terms of uniqueness. Moreover, in the 

information elicitation problem, each agent’s material payoff is independent of the 

allocation as well. Hence, an SCF can be interpreted as primarily related to the welfare 

of citizens in a society other than these agents. 

 

Proposition 1: In the information elicitation problem, any SCF f   is uniquely 

implementable if ID and NCKS hold. 

 

3.1. Mechanism Design 

 

To prove Proposition 1, we design a mechanism ( , , )G M g x  as follows. Fix an 

arbitrary positive integer H , which is set sufficiently large. Let 

( 1)L n H  . 

We denote ( , )j h  and ,
h
i jM  for l  and l

iM , respectively, where we denote 

( 1)( 1)l n h j       if j i , 

and 

( 1)( 1) 1l n h j       if j i . 
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Hence, we write 

    
1

H
h

i i
h

M M


   and ,
h h
i i jj i

M M


  . 

While each agent i   simultaneously announces multiple (i.e., ( 1)L n H   ) sub-

messages, we call ,( )h h h
i i j j i im m M   the h-th sub-message and , ,

h h
i j i jm M  its sub-

sub-message for convenience. That is, each agent i  announces H  messages, each of 

which consists of 1n   sub-sub-messages. We then specify 

    , { ( ) | ( , ) [0,1] : (1 ) }h
i j i i i i i i iM p              . 

Note that , ( )h
i i j iM       and for each , , \{ }h h

i j i j im M p  , ( , ) (0,1]i i     

uniquely exists such that , (1 )h
i j i im p     . Hence, we can define 

: ( ) ( )i i iI      as follows: 

    ( )i i iI     if (1 )i i ip      for some (0,1]  , 

and 

    ( )i i iI p    if no such i  exists. 

Note that ( )i i iI     implies that the announcement of i   (virtually) reveals a 

private signal i , whereas ( )i i iI p   implies that the announcement of i  reveals 

nothing. For every ,
h

i i jM  , we have 

[ ( )i i iI p  ] [ i ip  ], 

and that whenever ,
h
i j im p occurs, the announcement of ,

h
i jm  reveals some private 

signal, whether true or not. 

For each {1,..., }h H , we define : ( )h h
i i iI M    as follows: 

    ( )h h
i i iI m    if ,( )h

i i j iI m   for some j i  and 

        ,( ) { , }h
i i j i iI m p  for all j i , 

and 

    ( )h h
i i iI m p   if no such i  exists. 

Note that ( )h h
i i iI m   implies that an h-th sub-sub-message of the agent i  exists that 

reveals i   and no other h-th sub-sub-message of the agent i   exists that reveals a 
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different private signal. In this case, the agent i  is considered to (virtually) reveal i  

in their h-th sub-message. Otherwise, the agent i  is considered to reveal nothing in 

their h-th sub-message (i.e., ( )h h
i i iI m p ). 

Fix an arbitrary allocation *a A  as the default. We specify the allocation rule 

g  as follows: for every m M , 

    ( ) ( )g m f    if ( ( , ))H H
i i i i iI s t   for all i N , 

and 

    *( )g m a   if no such   exists. 

The central planner selects the allocation according to ( )f   if every agent i  reveals 

i  in the H-th (final) sub-message. Otherwise, they select the default *a . 

 We define 2: ( )i i R     as a quadratic scoring rule: 

    2( , ) { ( ) ( )}
i i

i i i i i i i


      


    . 

Note that i i    uniquely maximizes ( , )i i i    . We further define 

, : ( ) ( )i j i j R       as a variant of the following quadratic scoring rule: 

    , ,( , ) ( ( | ), )i j i j j i j i jp       . 

Note that i   uniquely maximizes , ( , )i j i j     whenever , ( | ) ( )i j i jp      . We 

specify the payment rule x : for every m M  and i N , 

    1 1 1
, , ,

2

( ) ( , ) ( , ( ))
( 1)

H
h h h

i i i j i i j i j j j
j i h

x m m p m I m
n H

    

 

     
  . 

Clearly, the specified x   satisfies the limited liability (i.e., ( )ix m      for all 

i N  and m M ). 

 

3.2. Proof of Proposition 1 

 

We show, as follows, that the mechanism ( , , )M g x  designed in Subsection 3.1 

uniquely implements the SCF f  in the information elicitation problem. By definition, 

any honest agent announces their private signal truthfully at every sub-message. Given 
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the quadratic scoring rules 1
,( , )i i j im p , each selfish agent i  announces 1

,i j im p  for 

all j i  , that is, reveals nothing at the first sub-message. However, at each of the 

subsequent sub-messages, any selfish agent who expects another agent to (at least 

virtually) reveal truthfully with a positive probability at the previous sub-message is 

willing to (virtually) reveal their private signal truthfully. This property is derived from 

the application of the variants of the quadratic scoring rule 1 1
, ,( , ( ))h h h

i j i j j jm I m   , along 

with ID. Given the nested structure of the quadratic scoring rule and its variant, the 

range of selfish agents who reveal truthfully expands as the sub-message becomes later. 

Moreover, given NCKS, at the final sub-message, no agent exists who reveals nothing, 

and every agent is willing to reveal their private signal truthfully. 

 

Example: Let 2n   , 1 2 {1,2}     , 1 {1,2}T   , 2 {1,2,3}T   , (1) (2) 0i i    

for each {1,2}i , and 2(3) 1  . The common priors, ( )p   and ( )t , are presented 

in Figures 1 and 2, respectively. Note 1(1) 3 10p   , 2 2( ) 2 5p    , 1 *
1 ( ) {2}V E   , 

1 *
2 ( ) {1,2,3}V E  , 2 *

1 ( ) {2}V E  , 2 *
2 ( )V E  , 3 *

1 ( )V E  , and 3 *
2 ( )V E  . 

 

Figure 1: 1 2( , )p    

 1 1 

1 1 10  1 5  

2 3 10  2 5  

 

Figure 2: 1 2( , )t t  

 1 2 3 

1 0 1 4  1 4  

2 1 4  1 4  0 

 

Let 4H  . As type 2 3t   is honest, we have 

2,1 2
hm   for all {1,..., 4}h  if 2 3t  . 
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As any other type is selfish, according to the maximization of 1
,( , )i i j im p , the first sub-

message must satisfy 

1
,i j im p  if 3it  . 

Consider the second sub-message announcement by type it , where we assume that this 

type is selfish (i.e., 3it  ). If 1 *( )i it V E , then the agent knows that the other agent 

reveals nothing at the first sub-message announcement. Hence, according to the 

expected value maximization of 2 1 1 2
, , , ,( , ( )) ( , )i j i j j j i j i j jm I m m p  , their second message 

must satisfy 

2
,i j im p  if 1 *( )i it V E . 

If 1 *( )i it V E , then they know that with a positive probability, the other agent is honest 

and reveals their private signal truthfully at the first sub-message announcement. Hence, 

according to the maximization of the expected value of 2 1 1
, ,( , ( ))i j i j j jm I m , their second 

message must satisfy 

2
, (1 )i j i im p     if 1 *( )i it V E , 

where    is the conditional probability that the other agent is honest. Hence, type 

1 *( )i it V E  (virtually) reveals their private signal 

    2 2( )i i iI m     if 1 *( )i it V E , that is, 1i   and 1it  , 

whereas 

    2 2( )i i iI m p    if 1 *( )i it V E . 

Consider the third sub-message announcement by type it . Similar to the above, we 

have 

3 3( )i i iI m     if 2 *( )i it V E , that is, 1i   and 1it  , 

whereas 

    3 3( )i i iI m p    if 2 *( )i it V E , that is, 1i   and 2it  . 

Similarly, we have 

4 4( )i i iI m     if 3 *( )i it V E , 

whereas 
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    4 4( )i i iI m p    if 3 *( )i it V E . 

As 3 * 3 *
1 2( ) ( )V E V E    , any selfish type, whether agent 1 or agent 2 (at least 

virtually), reveals their private signal truthfully at the fourth sub-message 

announcement. 

 

To be precise, for each {1,..., }h H , we define 

    ( , ) { | ( ( , )) }h h
i i i i i i i i i iT s t T I s t p    , 

and 

    ( , , ) { | ( ( , )) }h h
i i i i i i i i i i iT s t T I s t       . 

Note that ( , )h
i i iT s  is the set of the agent 'i s  types that reveal nothing at the h th  

sub-message when their private signal is i , whereas ( , , )h
i i i iT s   is the set of the 

agent 'i s  types that reveal i  at the h th  sub-message when their private signal 

is i . According to the iterative eliminations of dominated strategies from the 1-st sub-

message to the H-th sub-message, we prove that a unique BNE s   exists and s  

satisfies 

    ( , , )H
i i i i iT s T    for all i N  and i i  , 

that is, the H-th sub-messages of all agents succeed in revealing their private signals 

truthfully. 

Consider the 1-st sub-message. Due to the specification of x , any selfish agent 

i   maximizes the sum of quadratic scoring rules 1
,( , )i i j i

j i

m p

  . This maximization 

uniquely determines 

1 1
, , ( , )i j i j i i im s t p   for all j i . 

Hence, we have 

    1 1( ( , ))i i i i iI s t p  , 

that is, any selfish agent reveals nothing at the 1-st sub-message. Clearly, any honest 

agent truthfully reveals their private signal, that is, 1 1( ( , ))i i i i iI s t  . Hence, no agent 

reveals incorrectly at the 1-st sub-message. Accordingly, we have 
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    1 *( , )i i i iT s E  , 

1 1( , , ) \ ( , )i i i i i i i iT s T T s   , 

and 

1( , , )i i i iT s     for all i i   . 

As 1( , )i i iT s  is independent of i , we can write 

1 1( ) ( , )i i i i iT s T s . 

 Consider the 2-nd sub-message. Any selfish agent i   maximizes the expected 

value of 2 1 1
, ,( , ( ))i j i j j jm I m  . If the agent i   is selfish and expects an agent j i   to 

belong to 1( )j jT s  with certainty, they maximize the value of the quadratic scoring rule 

2
, ,( , )i j i j jm p . This maximization uniquely determines 

2 2
, , ( , )i j i j i i im s t p  . 

Hence, if the agent i  is selfish and expects any other agent j i  to belong to 1( )j jT s  

with certainty, then we have 

    2 2( ( , ))i i i i iI s t p  . 

By contrast, if the agent i   is selfish and expects an agent j i   to belong to 

1( )\j j jT T s   with a positive probability, a 0    exists such that the agent i  

maximizes the expected value of 2
, , ,( , ( | ) (1 ) )i j i j i j i jm p p       . Given ID, this 

maximization uniquely determines 

2 2
, ( , ) (1 )i j i i i i im s t p      . 

Hence, this selfish agent reveals their private signal correctly; we have 

    2 2( ( , ))i i i i iI s t  . 

Any honest agent reveals their private signal correctly and no agent reveals it 

incorrectly at the 2-nd sub-message. Accordingly, we have 

    2 1 *( , ) ( )i i i iT s V E  , 

2 2( , , ) \ ( , )i i i i i i i iT s T T s   , 

and 
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2 ( , , )i i i iT s     for all i i   . 

As 2 ( , )i i iT s  is independent of i , we can write 2 2( ) ( , )i i i i iT s T s . 

 Consider an arbitrary {3,...., }h H  and the h-th sub-message. Suppose that for 

every i N , i i  , and {1,..., 1}h h  , ( , )h
i i iT s  is independent of i , that is, 

we can write ( ) ( , )h h
i i i i iT s T s  . Further, suppose that for every i N , i i  , and 

{1,..., 1}h h  , 

    ( , , ) \ ( )h h
i i i i i i iT s T T s   , 

    ( , , )h
i i i iT s      for all i i   , 

and 

    1 *( ) ( )h h
i i iT s V E  . 

Similar to the argument for the 2-nd sub-message, if the agent i  is selfish and expects 

all agents j i  to belong to 1( )h
j jT s  with certainty, then we have ( ( , ))h h

i i i i iI s t p  . 

If the agent i  is selfish and expects some agent j i  to belong to 1( )\ h
j j jT T s  with 

a positive probability, then we have ( ( , ))h h
i i i i iI s t  . If the agent i  is honest, then 

( ( , ))h h
i i i i iI s t  . Accordingly, we have 

    1 *( , ) ( )h h
i i i iT s V E  , 

( , , ) \ ( , )h h
i i i i i i i iT s T T s   , 

( , , )h
i i i iT s     for all i i   , 

and ( , )h
i i iT s  is independent of i , that is, we can write ( ) ( , )h h

i i i i iT s T s . 

From the above observations, we have 

   1 *( ) ( )H H
i i iT s V E , 

( , , ) \ ( )H H
i i i i i i iT s T T s   , 

and 

( , , )H
i i i iT s     for all i i   . 
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As the epistemological type space is finite, we can derive the common knowledge event 

through finite iteration steps; that is, for each event E T  , a positive integer K  

exists such that 

    ( ) ( )k
i iV E V E   for all k K  and i N . 

Hence, from ID and NCKS, a K   exists such that *( )k
iV E    for all k K  . By 

selecting H K , we obtain 1 *( ) ( )H H
i i iT s V E   , which implies  

    ( , , )H
i i i i iT s T   , 

that is, 

    ( , , )H
i i i i iT s T    for all i N , i i  , and i it T . 

Hence, Proposition 1 is proven. 

 

4. General Case 

 

4.1. Mechanism Design 

 

To prove Theorem 1 generally, we design the following mechanism ( , , )G M g x  

as an extension of the mechanism designed in Subsection 3.1. We fix arbitrary positive 

integers H  and K , which are set sufficiently large. Let 

( 1)L n H K   , 

and specify 

1

H K
h

i i
h

M M



  . 

For each {1,..., }h H , let 

    ,
h h
i i jj i

M M


  . 

We specify ,
h
i jM  similarly as in Subsection 3.1: 

    , { ( ) | ( , ) [0,1] : (1 ) }h
i j i i i i i i iM p              . 
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Each agent i  announces the h-th sub-message ,
h
i jm  for each {1,..., }h H  similar to 

the mechanism designed in the information elicitation problem, which comprises 1n   

sub-sub-messages, that is, ,( )h h
i i j j im m  . 

In addition to these H   sub-messages, each agent announces K   more sub-

messages as follows. For each { 1,..., }k H H K    , each agent i   announces an 

element of i  as the k-th sub-message, where 

    k
i iM  . 

Hence, for each of the first H sub-messages, the agent i   makes 1n    sub-sub-

message announcements (i.e., , ( )h
i j im    for j i ), whereas, for each of the last K 

sub-messages, they make a single announcement (i.e., k
i im   ). The first H sub-

messages play a central role in making the (H+1)-th sub-messages truthful, and 

therefore, suitable for the reference in judging whether the last K-1 sub-messages are 

correct. The last K-1 sub-messages play a central role in determining the allocation and 

side payment decisions. Note that in contrast to the mechanism designed for the 

information elicitation problem, the H-th sub-messages have no direct effect on the 

determination of allocation and side payment decisions. 

We specify the allocation rule g  as follows: 

    2

( )
( )

1

H K
k

k H

f m
g m

K



 



 for all m M . 

Note that ( )g m   is independent of the first H+1 sub-messages. The central planner 

randomly selects { 2,..., }k H H K    from the last K-1 sub-message profiles and 

then determines the allocation according to ( ) ( )kf m A . 

We now specify the payment rule x . We define ˆ : [ 2,0]iw M    as follows: 

    ˆ ( ) 1iw m     if { 2,..., }k H H K    exists such 

that 1k H
i im m  , and 1k H

j jm m   for all 

{ 2,..., 1}k H k    and j N , 

and 
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    ˆ ( ) 0iw m    if no such { 2,..., }k H H K    exists. 

Note that ˆ ( )iw m  indicates whether the agent i  is the first deviant from their (H+1)-

th sub-message (the reference). 

Let ˆ ( ) {0,..., 1}i ir m K    denote the number of integers, { 2,..., }k H H K    

such that 1k H
i im m  , that is, the number of the agent 'i s  misannouncements during 

the last K-1 sub-message announcements. 

We specify the payment rule ix  for the agent i  as a combination of the payment 

rule specified in the information elicitation problem, the above-specified functions ˆiw  

and îr , and a quadratic scoring rule given by 1
, ,( , ( ))H H H

i j i j j jm I m   as follows: for every 

m M  and i N , 

1 1 1
, , ,

2

1
( ) ( , ) ( , ( ))

3 ( 1)

H
h h h

i i i j i i j i j j j
j i h

x m m p m I m
n H

  


 

 

       
   

1
, ,

ˆ ( )
ˆ( , ( )) ( )

1
H H H i i

i j i j j j i
j i

r m
m I m w m

K
  




    
 , 

where 0   is an arbitrarily positive real number, which is sufficiently large. Note 

that the specified x  satisfies the limited liability. We select a sufficiently large H and 

K to satisfy that for every i N  and   , 

(1)    
2( , )

3
max { ( , ) ( , )} 1i i
a a A

K v a v a
  

  

    . 

 The aforementioned payment rule comprises three parts. The first part, which is 

given by 

1 1 1
, , ,

2

1
( , ) ( , ( ))

( 1)

H
h h h

i i j i i j i j j j
j i h

m p m I m
n H

   

 

    
  , 

corresponds to the payment rule designed for the information elicitation problem. As in 

Subsection 3.2, we can demonstrate that all agents reveal their private signals truthfully 

at the H-th sub-message. 

The second part is the variant of the quadratic scoring rule that is given by 

    1
, ,( , ( ))H H H

i j i j j j
j i

m I m  


 , 
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which, along with the truthful revelations at the H-th sub-message, succeeds in 

incentivizing selfish agents to make their H+1-th sub-message truthful and is regarded 

as the reference. 

The third part, which is given by 

    
ˆ ( )

ˆ ( )
1

i i
i

r m
w m

K



, 

corresponds to the Abreu–Matsushima mechanism design, which is the general 

standard method in unique implementation for eliminating unwanted equilibria that are 

inconsistent with the references (Abreu and Matsushima, 1992a; 1992b). 

 

4.2. Proof of Theorem 1 

 

 We show that the mechanism G   designed in Subsection 4.1 uniquely 

implements the SCF f . The proof of Theorem 1 is divided into two parts: “information 

elicitation” and “implementation with provability.” 

 

Part 1 (Information Elicitation): As H is sufficiently large, we can show in the same 

manner as in the information elicitation problem (in Subsection 3.2) that any BNE s  

satisfies 

( ( , ))H H
i i i i iI s t   for all i N , i i  , and i it T . 

Hence, any agent truthfully reveals their private signal at the H-th sub-message 

announcement. As in Subsection 3.2, we also have a uniqueness in BNE for the first H 

sub-message announcements. 

 

Part 2 (Implementation with Provability): Consider a strategy profile s  whose first 

H sub-message announcements satisfy the BNE property (i.e., Part 1). We define the 

sincere strategy for the agent i , denoted by 1ˆ ˆ( )k H K
i i ks s 

 , as 

    ˆh hs s  for all {1,..., }h H , 

and 

    ˆ ( , )k
i i i is t   for all { 1,..., }k H H K   . 
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Clearly, ŝ  induces the value of the SCF f . Part 2 shows that if s  is a BNE, then 

ˆs s  must hold. 

Note that as 

( )H H
j j jI m  , 

, ,( | ) ( | )i j i i j ip p     for all i i   , 

and    is sufficiently large, the nature of the variant of the quadratic scoring rule 

1
, ,( , ( ))H H H

i j i j j jm I m    implies that each agent i   is willing to announce 1
,
H
i j im    

uniquely, irrespective of the selection of 2( )k H K
i k Hm 

   (we must note that 1
,
H
i jm   is only 

relevant to 1
, ,( , ( ))H H H

i j i j j jm I m   in the mechanism). Hence, we have 

1 1ˆH Hs s  . 

If an agent i   announces a sub-message that differs from their (H+1)-th sub-

message as the first deviation among all agents starting from the (H+2)-th sub-messages, 

this agent is fined the monetary amount 
3




. As K is sufficiently large, that is, we 

have the inequality of (1), the impact of the selection of each sub-message on the 

determination of the allocation is small compared with the monetary amount 
3




. 

Following Abreu and Matsushima (1992a, 1992b), this drives agents into tail-chasing 

competition through which each agent avoids becoming the first deviant. Given that all 

agents reveal truthfully at their (H+1)-th sub-message, this competition drives them to 

announce the state truthfully from the (H+2)-th sub-message to the (H+K)-th sub-

message. 

 To be precise, consider an arbitrary { 2,..., }k H H K    and suppose that 

ˆk ks s   for all k k  . 

If k
j jm   for some j i , the agent i  strictly prefers announcing truthfully at the 

k-th sub-message because the agent i   can avoid being the first deviant (here, 

inequality (1) induces an incentive for this avoidance). Even if k
j jm   for all j i , 

the agent i  still strictly prefers announcing truthfully at the k-th sub-message because 
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they do not want to increase ( )i ir m and the SCF is incentive-compatible. Accordingly, 

through the iterative elimination of dominated strategies, we can inductively prove that 

ˆk ks s  for all { 2,..., }k H H K   . 

Hence, no BNE other than ŝ  exists. As ŝ  is a BNE and achieves the value of f , the 

proof of Theorem 1 is completed. 

 

5. Weak Honesty 

 

Throughout this study, we assume strict honesty, in the sense that honest agents 

never consider their material payoffs. A weaker version of honesty permits an agent to 

decide how to make announcements by weighing their preferences for honesty and 

material interest. Fortunately, we can illustrate the same positive result as in Theorem 

1 even if agents are either selfish or weakly honest (but not strictly honest). In our 

design of quadratic scoring rules and its variant, a weakly honest agent is willing to 

announce more honestly than a selfish agent. Hence, given the continuum of message 

spaces, even weakly honest agents will virtually reveal their private signals at the first 

sub-message announcement. 

The previous work by Matsushima (2022a) demonstrates a definition of weak 

honesty, where only a tiny cost of adopting dishonest attitudes is considered. 

Matsushima (2022a) then assumes that agents are either selfish or weakly honest and 

proves that under complete information environments with three or more agents, any 

SCF is uniquely implementable under NCKS. Although not specifically proven in this 

study, the generalizability of the study of weak honesty by Matsushima (2022a) for 

complete information to asymmetric information is almost self-evident. That is, even if 

we replace strict honesty with such weak honesty, we can prove the positive result that 

any SCF, whether ethical or nonethical, is uniquely implementable if NCKS and ID 

hold. 

 

6. Conclusion 
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This study investigates the unique implementation problem of SCFs in asymmetric 

information environments, in which we assume that agents are either selfish or honest. 

Following Matsushima (2022), we introduce the epistemological framework and 

assume NCKS, that is, an honest agent exists in agents’ higher-order beliefs. We show 

a positive result that any incentive-compatible SCF, whether ethical or nonethical, is 

uniquely implementable in BNE under the minor restriction on private signal 

correlation, termed ID. The generalization from complete information to asymmetric 

information is essential when considering the implementability of equitable social 

choice. This is because important information is dissipatively distributed and only 

privately known by people other than the person concerned who are not tied to their 

self-interests. This study presents a unique method to successfully extract information 

from such people who are privately informed but selfish people. 

We assume that an agent who is not selfish is honest. However, if we permit the 

possibility that an agent is neither selfish nor honest but adversarial (anti-social or 

spiteful), the situation may change. For example, the SCF can fail to be implementable 

even if an honest participant exists, and all participants are either selfish or honest. If 

agents expect adversarial agents to exist in their higher-order beliefs, any selfish 

participant may be willing to lie. 

Abeler, Nosenzo, and Raymond (2019) show that subjects who trade-off between 

material interest and honesty forego a large fraction of potential benefits from lying. 

Surely, they support the validity of this study; although, the support is not sufficient. 

The expected presence of even a few adversarial people in agents’ epistemology may 

cause all the differences, depending on the shape of the epistemological network 

structure. Under these circumstances, future research on implementation theory must 

further develop the epistemological framework by considering various non-selfish 

motives besides honesty.10 

 

  

 
10 See Matsushima (2022b), which considers adversarial types, as well as selfish and 
honest types. 
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