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Abstract

We study indivisible goods allocation problems under constraints and
provide algorithms to check whether a given matching is Pareto efficient.
We first show that the serial dictatorship algorithm can be used to check
Pareto efficiency if the constraints are matroid. To prove this, we develop
a generalized top trading cycles algorithm. Moreover, we show that the
matroid structure is necessary for obtaining all Pareto efficient matchings
by the serial dictatorship algorithm. Second, we provide an extension of
the serial dictatorship algorithm to check Pareto efficiency under general
constraints. As an application of our results to prioritized allocations, we
discuss Pareto improving the deferred acceptance algorithm.

1 Introduction

We study indivisible goods allocation problems, including real-life applications
such as student placement in public schools and refugee resettlement. These
applications are often subject to constraints. A school district requires specific
diversity of the student body at each school (type-specific quotas and propor-
tional constraints). A school needs at least a certain number of students to
operate (minimal quotas). In refugee resettlement, the central authority needs
to consider heterogeneous family sizes and numerous additional requirements
such as job training, language class, etc. (multidimensional constraints). In a
school district, multiple school programs often share one building. There is a
limit on the total number of students in these programs in addition to each
program’s capacity because the building also has a physical capacity (regional
quotas). Framing the allocation problem as a matching between students and
schools, we examine the Pareto efficiency (for students) in a general model of
matching with constraints, including all these constraints. Pareto efficiency is

∗We are grateful to Keisuke Bando, Fuhito Kojima, M. Bumin Yenmez, and Yu Yokoi for
their helpful comments. This work was partially supported by JSPS KAKENHI Grant Number
JP20K19739, JST PRESTO Grant Number JPMJPR2122, and Value Exchange Engineering,
a joint research project between Mercari, Inc. and the RIISE.
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desirable in an allocation problem and has received substantial attention from
both theoretical and practical perspectives (see Section 1.2 for details).

In this paper, we study how to check whether a given matching is Pareto
efficient or not. Checking Pareto efficiency is one of the fundamental steps
in developing a mechanism that satisfies desirable properties. For example,
consider the deferred acceptance (DA) mechanism, which may produce a Pareto
inefficient matching for students. Thus, we would like to examine whether a
current matching produced by the DA is Pareto efficient. Moreover, if the
current matching is Pareto inefficient, the subsequent interest would be to Pareto
improve the current matching. We provide mechanisms that find such a Pareto
improvement.

Checking Pareto efficiency under constraints is non-trivial. In a standard
model with capacity constraints, we can check the Pareto efficiency of a given
matching by repeatedly applying the following procedure: find a student who is
assigned to her best school among the available ones and fix the assignment of
the student.1 If the given matching is Pareto efficient, the process can continue
till the end; if the given matching is Pareto inefficient, the process cannot con-
tinue because such a student will not exist in some steps. The reason why the
procedure works stems from the property that any Pareto efficient matching can
be produced by the serial dictatorship (SD) with some order of the students.
Here, the order of the students corresponds to the one obtained in the above
procedure. This property does not hold under a general constraint, that is,
some Pareto efficient matchings cannot be produced by the SD. The following
example illustrates this fact.

Example 1. Suppose there are three students i1, i2, i3 and two schools s1, s2.
The preference ≻i of student i is as follows:

s2 ≻i1 s1, s1 ≻i2 s2, and s2 ≻i3 s1.

The constraint Fs of school s is as follows:

Fs1 =
{
∅, {i1}, {i2}, {i3}, {i1, i3}

}
and Fs2 =

{
∅, {i1}, {i2}, {i3}

}
.

Here, Fs2 is a capacity constraint, but Fs1 is not. In fact, {i1, i3} ∈ Fs1 and
{i1, i2}, {i2, i3} ̸∈ Fs1 . Constraints like Fs1 appear as a budget constraint (e.g.,
i2 has a disability and incurs more cost) or an anti-bullying constraint (e.g., i2
has bullied i1 and i3 and cannot be in the same place with them).

Let us consider the matching µ = {(i1, s1), (i2, s2), (i3, s1)}. Note that µ
is feasible and Pareto efficient (which can be verified by examining all possible
matchings). However, the SD does not produce µ with any order since no
student is assigned to her best school at µ. Thus, we cannot check the Pareto
efficiency of µ by the SD.2

1This procedure can also be interpreted as the top trading cycle (TTC) mechanism, that
is, a self-loop is selected in each iteration of the mechanism.

2One might think that we can use the top trading cycle (TTC) algorithm to check Pareto

2



1.1 Our contribution

This paper provides SD-type algorithms to check whether a given matching is
Pareto efficient under given constraints. First, we identify which feature of Fs1

in Example 1 prevents the SD from finding the Pareto efficient matching µ: Fs1

is not a matroid. Specifically, we show that the SD can find all Pareto efficient
matchings if the constraint is a matroid (even when it is distributional). To prove
this, we develop a generalized top trading cycles (TTC) algorithm. Moreover, we
prove the converse direction: the matroid structure is also a necessary condition
to find all Pareto efficient matchings via the SD.

Our second result is an algorithm to check Pareto efficiency under general
constraints, including the constraint Fs1 in Example 1 and all constraints listed
in the first paragraph of Introduction. Our algorithm, which we call the con-
strained serial dictatorship (CSD), is based on the SD. Unlike the SD, the CSD
is defined on the set of feasible matchings and works under general constraints.
In the CSD, a student is assigned to her best school to the extent that the
remaining students can be feasibly assigned. The CSD can be used to check
the Pareto efficiency of a given matching. To do this, we add an individual
rational constraint to the set of feasible matchings in the CSD: every student
is weakly better than a given matching. If a matching produced by the CSD is
the same as a given matching, then it is Pareto efficient. We also discuss the
computational aspects of CSD.

Subsequently, we study a model of indivisible goods allocation with priori-
ties. As applications of our generalized TTC and the CSD, we provide mecha-
nisms that Pareto improve the DA. If the constraint induced by a priority (or
a choice function) forms a matroid, then we can apply our generalized TTC
by setting the DA matching as an initial matching. This mechanism Pareto
improves the DA and is Pareto efficient. In the model with general priorities
(path-independent choice functions), we can use the CSD to Pareto improve the
DA. Moreover, the CSD is Pareto efficient.

1.2 Related literature

This paper contributes to the literature of matching with constraints. There
are two approaches to represent constraints. The first approach considers con-
straints imposed separately on individual schools. The second approach consid-
ers distributional constraints, which are imposed jointly on subsets of schools.
This paper considers both those approaches.

The class of matroid constraints, which we first study, subsumes many con-
straints in the literature. A typical example of individual matroid constraints
is the type-specific quotas, which is introduced for diversity concerns in school
choice [1, 2]. As a distributional matroid constraint, Kamada and Kojima [3]

efficiency, but this is not the case. Suppose that µ is the initial matching. While i1 (or i3)
and i2 can be better off by trading their assignments, {i2, i3} (or {i1, i2}) is not feasible for
s1. As a result, the top trading cycles algorithm produces an infeasible matching. Thus, due
to the constraint, the TTC algorithm does not work.
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study regional quotas and introduce a stability concept inspired by medical res-
idency matching in Japan. Kamada and Kojima [4] consider a more general
matroidal case where regions are hierarchical. Fleiner [5, 6] shows some results
including the existence of a stable matching under the matroid constraints.

General constraints that are not a matroid have also been studied in the lit-
erature. Recently, Kamada and Kojima [7] introduce general upper-bound. The
following constraints studied in recent works as real-life applications belong to
general upper-bound: refugee resettlement [8], college admissions with budgets
constraints [9], school choice with bullying [10], and daycare allocation [11].
Lower bound constraints [12] and proportionality constraints [13] are examples
that do not belong to general-upper bound. A class of generalized-matroid (g-
matroid) constraints has a good property as matroid constraints and includes
upper and lower bound constraints [14].

The TTC algorithm introduced by Shapley and Scarf [15] can be used to
check Pareto efficiency for the unit demand case, and is generalized to some
cases [16, 1, 17, 8]. Suzuki et al. [17] generalize the TTC for the case that
the distributional constraints are represented as an M-convex set, which is a
generalization of a matroid. This algorithm is closely related to ours, but our
algorithm is applicable to a more general case than theirs. Their algorithm only
works for constraints over the numbers of students in different schools, while
our algorithm works for constraints that depend on the identity of the students.
Note that, unlike our work, they deal with strategic issues.

Some papers studying stable matching under constraints are closely related
to our paper. Kojima et al. [18] show that the generalized DA mechanism satis-
fies several desirable properties when a constraint is a matroid. Goto et al. [19]
deal with general upper-bound constraints and develop a stable and strategy-
proof mechanism. Relative to the literature, we focus on Pareto efficiency, not
stability (or fairness). As noted above, our algorithms would help in devel-
oping a mechanism that satisfies desirable properties; thus, these studies are
complementary to each other.

This paper also relates to works that study indivisible goods allocation prob-
lems by SD-type algorithms. Fragiadakis et al. [20] modify the SD to accommo-
date minimum quotas. Our model is more general than theirs, and their algo-
rithm is special case of our CSD. However, Fragiadakis et al. [20] also deal with
strategic issues. We also provide a characterization of the set of Pareto efficient
matchings under matroid constraints by the SD: a matching is Pareto efficient
if and only if it is produced by the SD with some order. Thus, our result is a
generalization of the corresponding characterization under capacity constraints.
This characterization provides a clear understanding of the structure of the set
of Pareto efficient matchings and the foundation for several theoretical studies.
The equivalence between the random SD and the core from random endow-
ments serves as an example [21, 22, 23, 24, 25]. The equivalence is based on the
characterization.3 Another example is the study by Manea [26]. Motivated by
the characterization, Manea [26] investigates the relationship between Pareto

3We need to consider all Pareto efficient matchings to get an equivalent mechanism to the
core from random endowment. The idea of the core from random endowment consists of two
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efficiency and the SD in a general setting where each agent receives multiple
goods.

2 Preliminaries

2.1 Model

A market is a tuple (I, S, (≻)i∈I ,F). I is a finite set of students, and S is a
finite set of schools. Each student i has a strict preference ≻i over S ∪ {∅},
where ∅ means being unmatched (or an outside option). We write s ⪰i s′ if
either s ≻i s

′ or s = s′ holds. F is a family of subsets of student-school pairs
I × S that reflects distributional constraints of school side.

Let E = {(i, s) ∈ I × S : s ≻i ∅} be the set of acceptable student-school
pairs. A matching µ is a subset of E such that each student appears at most
one pair of µ; that is, for any (i, s), (i′, s′) ∈ µ, we have s = s′ if i = i′. We
write µ(s) = {i ∈ I : (i, s) ∈ µ} for each s ∈ S. Also, for each i ∈ I, we write
µ(i) to denote the partner of i at µ, that is, µ(i) = s if (i, s) ∈ µ and µ(i) = ∅
if (i, s) ̸∈ µ for all s ∈ S. A matching is called feasible if µ ∈ F . For notational
simplicity, we sometimes add an unmatched pair (i,∅) to a matching, but we
ignore such a pair, e.g., for a matching µ, we treat µ ∪ {(i,∅)} as µ.

A matching µ Pareto dominates µ′ if µ(i) ⪰i µ
′(i) for all i ∈ I and µ(i) ≻i

µ′(i) for some i ∈ I. LetM be a set of matchings. A matching µ ∈M is called
Pareto efficient with respect toM if there exists no feasible matching µ′ ∈ M
that Pareto dominates µ.

For a student i ∈ I and a subset of schools S′ ⊆ S, we define argmax≻i
S′

to be the school or the outside option that i prefers the most among S′ ∪ {∅}.
Note that if S′ is empty, we have argmax≻i

S′ = ∅.

2.2 Constraints

We say that distributional constraints F is individual if there exists Fs ⊆ 2I

for s ∈ S such that F =
{
X ⊆ I × S : X(s) ∈ Fs (∀s ∈ S)

}
, where X(s) =

{i′ : (i′, s) ∈ X}. We sometimes write (Fs)s∈S to represent such an individual
F . Also, we call F as the aggregated constraints of (Fs)s∈S .

An important class of constraints is the matroids. A family of subsets F
is a matroid if it satisfies the following three properties: (I1) ∅ ∈ F , (I2) if
X ∈ F and X ′ ⊆ X, then X ′ ∈ F , and (I3) if X,Y ∈ F and |X| < |Y |, there is
y ∈ Y \X such that X ∪ {y} ∈ F . We note that an aggregated constraint F is
also a matroid if Fs is a matroid for every s ∈ S.

A special case of matroid constraints is a capacity constraint : a feasibility of
a school Fs is a capacity constraint if there exists a positive integer q such that
Fs = {X ⊆ 2I : |X| ≤ q}. Matroid constraints include many other constraints

steps. First, it randomly chooses a feasible matching. Then, it improves this initial matching
by the TTC. Since any feasible matching can be an initial matching, this mechanism assigns
positive probabilities to all Pareto efficient matchings. This characterization guarantees that
the SD can find all Pareto efficient matchings.
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besides a capacity constraint. Let us provide real-life examples of constraints.
A school district requires specific diversity of the student body at each school.
Abdulkadiroğlu and Sönmez [1] formalize this requirement is to impose type-
specific quotas for each school.4 Each Fs is a matroid and thus the aggregate
constraints F is also a matroid. Kamada and Kojima [3] study the regional
maximum quotas in the context of medical residency matching in Japan. Under
the regional maximum quotas, each school belongs to a region, and there is an
upper bound on the number of students who can be matched in each region.

Of course, not all constraints of interest are matroids. Kamada and Kojima
[7] introduce general upper-bound. A constraint F belongs to general upper-
bound if X ′ ⊆ X ∈ F implies X ′ ∈ F (i.e., property (I2)). Thus, a matroid
belongs to general upper-bound. A class of constraints that belongs to gen-
eral upper-bound but not to the matroid is the budget constraints.5 Another
important class of constraints is the g-matroids (which is also called the M♮-
convex families [27]). A nonempty family of subsets F is a g-matroid if for any
X,Y ∈ F and e ∈ X \ Y , we have (i) X \ {e}, Y ∪ {e} ∈ F or (ii) there is
e′ ∈ Y \X such that (X \ {e}) ∪ {e′} and (Y ∪ {e}) \ {e′} are in F . Note that
a g-matroid F is a matroid if ∅ ∈ F .

Before completing this section, we present some properties related to ma-
troids that will be used later. For a matroid F ⊆ 2E and X ⊆ E, the contraction
of F by X is defined as F/X := {Y ⊆ E \X : Y ∪X ∈ F}. It is well known
that the set family F/X is also a matroid.

Lemma 1 (see, e.g., [28]). Let (E,F) be a matroid with X ∈ F . Suppose that
Y ⊆ E, |Y | = |X|, and the bipartite graph G = (X,E\X; {(x, y) ∈ X×(E\X) :
(X \ {x}) ∪ {y} ∈ F}) contains a unique perfect matching between X \ Y and
Y \X. Then, Y ∈ F .

2.3 Serial dictatorship mechanism

Now, we introduce the serial dictatorship mechanism (SD) for our setting. The
SD mechanism, which is formally described in Algorithm 1, considers the stu-
dents in a certain order and assigns to each student her best school among
available ones. Let Σ be the set of all permutations of the students. For σ ∈ Σ,
we denote SDσ to be the outcome matching of the SD mechanism.

Since the SD mechanism allocates students greedily, it does not always out-
put a feasible matching in general.6 To overcome this issue, we define a modified
version of the SD, which we call constrained serial dictatorship (CSD). Different

4Formally, there exist a partition of students (It)t∈T with types T , i.e., I =
⋃

t∈T It and
It ∩ It′ = ∅ for any distinct t, t′ ∈ T . A feasible constraint Fs for a school s satisfies the
following: there exist a capacity q ∈ N and a type-t quota qt ∈ N for every t ∈ T such that
Fs = {X ⊆ I : |X| ≤ q and |X ∩ St| ≤ qt}.

5Formally, there exist weights (ai)i∈S and a budget b, a feasible constraint Fs for a school
s is represented as {X ⊆ I :

∑
i∈X ai ≤ b}.

6For example, let us consider a market (I, S, (≻)i∈I ,F) where I = {i1, i2}, S = {s}, s is
acceptable only for both students, and F =

{
{(i1, s), (i2, s)}

}
. Then, we have SDσ = ∅ for

any σ ∈ Σ.
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Algorithm 1: SD

input : matching market (I, S, (≻)i∈I ,F), σ ∈ Σ
output: a matching SDσ

1 Let µ(0) ← ∅;
2 for k ← 1, 2, . . . , |I| do
3 Let r ← argmax≻σ(k)

{s ∈ S : µ(k−1) ∪ {(σ(k), s)} ∈ F};
4 if r ∈ S then µ(k) ← µ(k−1) ∪ {(σ(k), r)};
5 return µ(n);

from the SD, the CSD allocates each student to her most preferred school under
the constraint that a feasible matching exists. Fixing a set of feasible matching
M, the CSD mechanism is formally described in Algorithm 2. We will set M
not only as the set of school feasible matchings, but also as the set of school
feasible matchings that are also individually rational for a given matching.

In social choice literature, a serial dictatorship is defined in a more abstract
way and includes the CSD as a special case (see, e.g., [29]). Specifically, by
extending a preference of agent to a weak preference over the set of feasible
matchings, we can define a “serial dictatorship” in the context of social choice.
Algorithm 2 provides an implementation of this abstract rule in our setting.
Moreover, the CSD is a natural extension of the SD, which is more familiar in
market design literature.

Algorithm 2: constrained serial dictatorship (CSD)

input : σ ∈ Σ, preference profile ≻, feasible matchingsM
output: a matching CSDσ,M

1 Let µ(0) ← ∅;
2 for k ← 1, 2, . . . , |I| do
3 LetM(k) =

{
µ ∩ ({σ(1), . . . , σ(k)} × S) : µ ∈M

}
;

4 Let r ← argmax≻σ(k)

{
s ∈ S : µ(k−1) ∪ {(σ(k), s)} ∈ M(k)

}
;

5 if r ∈ S then µ(k) ← µ(k−1) ∪ {(σ(k), r)};
6 return µ(n);

It is not difficult to see that the SD and the CSD are equivalent (i.e., SDσ =
CSDσ,M) if F belongs to general upper-bound andM is the set of school feasible
matchings.

Theorem 1. If F belongs to general upper-bound, the outcome matching SDσ

is Pareto efficient for any σ ∈ Σ.

Proof. To obtain a contradiction, suppose that µ := SDσ is Pareto inefficient for
some σ ∈ Σ. Let µ′ be a feasible matching that Pareto dominates µ and let k∗

be the minimum index such that µ′(σ(k∗)) ̸= µ(σ(k∗)). By definition, we have
µ′(σ(k)) = µ(σ(k)) for all k = 1, 2, . . . , k∗ − 1 and µ′(σ(k∗)) ≻σ(k∗) µ(σ(k∗)).
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As µ′ ∈ F and F belongs to general upper-bound, the student σ(k∗) must be
matched with a school that is no worse than µ′(σ(k∗)) at line 4 in Algorithm 1,
a contradiction.

3 Condition to check Pareto efficiency by SD:
matroid

In this section, we characterize the condition that Pareto efficiency of a given
matching can be determined by the serial dictatorship mechanism (Algorithm 1).
To be precise, we prove that any Pareto efficient matching can be obtained by
the serial dictatorship mechanism if F is a matroid. Also, we show that a Pareto
efficient matching may not be obtained by the serial dictatorship mechanism if
F is not a matroid.

Let us first observe that checking Pareto efficiency of a given matching by
TTC is not straightforward even when F is a matroid.

Example 2. Let I = {i1, i2, i3, i4} and S = {s1, s2}. Suppose that i1 and i2
prefer s2 to s1, while i3 and i4 prefer s1 to s2. The constraint F is a (partition)
matroid that is defined by the aggregation of

Fs1 =
{
I ′ ⊆ I : |I ′ ∩ {i1, i3}| ≤ 1 and |I ′ ∩ {i2, i4}| ≤ 1

}
,

Fs2 =
{
I ′ ⊆ I : |I ′ ∩ {i1, i4}| ≤ 1 and |I ′ ∩ {i2, i3}| ≤ 1

}
.

Consider a matching µ = {(i1, s1), (i2, s1), (i3, s2), (i4, s2)}. Note that µ is
not Pareto efficient because it is Pareto dominated by µ∗ = {(i1, s2), (i2, s2),
(i3, s1), (i4, s1)}.

Now, we try to apply a TTC-like mechanism to the market of Example 2.
A natural implementation of TTC in our setting is to repeatedly execute the
following procedure: (i) each student points to students who are matched to her
most preferred school, (ii) identify a cycle, (iii) implement the trade indicated
by this cycle, and (iv) remove all the involved students. The cycle obtained by
this process at µ is (i1, i3), but the matching after the trade by this cycle, i.e.,
{(i1, s2), (i2, s1), (i3, s1), (i4, s2)}, is not feasible.

The reason why the above mechanism fails is that it does not take into
account the feasibility of the schools. To resolve this issue, we construct a
trading graph on I × (S ∪ {∅}), instead of I. Our TTC mechanism is for-
mally defined in Algorithm 3. Throughout the algorithm, µ ∪ µ̃ represents
the current matching, and µ̃ represents the fixed part. Intuitively, each stu-
dent i (with her current partner µ(i)) points to her most preferred school
qi among those that can accept her by rejecting some student. Then, each
student-school pair (i, qi) determines the matched pairs (i′, µ(i′)) such that
(µ \ {(i′, µ(i′))}) ∪ {(i, qi)} ∈ F . Note that the graph must contain at least one
cycle because each node has out-degree at least one. Implementing the trade
indicated by this cycle must yield a matching. For the instance in Example 2,
C = ((i1, s1), (i1, s2), (i4, s2), (i4, s1), (i2, s1), (i2, s2), (i3, s2)) is the unique cycle
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in the graph constructed in the first round. Implementing the trade indicated
by C yields µ∗.

Here, selecting a shortest cycle is crucial to keep feasibility of the school side
when F is a matroid.7 For example, let us consider a market that is almost the
same as the one in Example 2, but the school constraints is a matroid F ′ which
is defined as the aggregation of

F ′
s1 =

{
I ′ ⊆ I : |I ′ ∩ {i3, i4}| ≤ 1 and |I ′| ≤ 2

}
and F ′

s2 =
{
I ′ ⊆ I : |I ′| ≤ 2

}
.

Note that F ′ is also a matroid. Then C is also a cycle in the graph constructed
in the first round. However, implementing the trade indicated by C yields µ∗,
which is infeasible. From a computational perspective, such a shortest cycle can
be found in linear time (O(|U |+|V |+|E|) = O(|I|·|S|) time) by the breadth-first
search algorithm.

Algorithm 3: Top Trading Cycle (TTC)

input : a market (I, S, (≻)i∈I ,F) and a feasible matching µ
output: a matching TTCµ

1 Let µ̃← ∅ and R← I;
2 while R ̸= ∅ do
3 Construct a bipartite graph G = (U, V ;E) as follows:

• U = {ui : i ∈ R} where ui = (i, µ(i)),

• V = {vi : i ∈ R} where vi =
(
i, argmax≻i

{
s ∈ S : {(i, s)} ∈ F/µ̃

})
,

• E =
{
(ui, vi) : i ∈ R

}
∪
{
(v, u) ∈ V × U : (µ \ {u}) ∪ {v} ∈ F/µ̃

}
;

4 Identify a shortest cycle in G, and let (uτ(1), vτ(1), . . . , uτ(k), vτ(k))
be the cycle;

5 Let µ← µ \ {uτ(1), . . . , uτ(k)} and µ̃← µ̃ ∪ ({vτ(1), . . . , vτ(k)};
6 Remove all the involved students, i.e., R← R \ {τ(1), . . . , τ(k)};
7 return µ̃;

In what follows, we prove that our TTC mechanism always outputs a Pareto
efficient matching TTCµ that Pareto dominates the given matching µ if F is a
matroid. Moreover, we show that SDσ is equal to TTCµ when we set σ as the
order that the students are removed in the TTC mechanism. As a consequence,
we conclude that any Pareto efficient matching can be obtained by the SD if F
is a matroid.

We first prove that TTCµ Pareto dominates µ.

Lemma 2. If F is a matroid, then TTCµ is a feasible matching that Pareto
dominates the given matching µ.

7For constraints more general than matroids, selecting a shortest cycle does not guarantee
the feasibility of the school side.
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Proof. We show that, at the beginning of any iteration of the while-loop in
Algorithm 3, µ ∪ µ̃ is feasible matching that Pareto dominates µ. In the first
round, the statement clearly holds from the definition of µ and µ̃. In each
iteration, µ ∪ µ̃ remains contained in F by Lemma 1. In addition, the partner
of a student i at µ∪ µ̃ does not get worse because {(i, µ(i))} must be in F/µ̃ if
µ(i) ∈ S by µ ∪ µ̃ ∈ F .

Next, we show that TTCµ can be represented as SDσ where σ is the order
that the students are removed in the TTC mechanism.

Lemma 3. If F is a matroid, SDσ = TTCµ when we set σ as the order in
which the students are removed within the TTC mechanism.

Proof. We prove the lemma by induction on the while-loop iterations. At the
beginning, µ̃ = ∅, which is consistent the outcome of the SD when no stu-
dent is assigned. In each iteration, student τ(j) (j ∈ {1, . . . , k}) is assigned
to TTCµ(τ(j)) = argmax≻τ(j)

{
s ∈ S : {(τ(j), s)} ∈ F/µ̂

}
. Meanwhile, the

SD mechanism assigns τ(j) to SDσ(τ(j)) = argmax≻τ(j)

{
s ∈ S : {(τ(j), s)} ∈

F/(µ̂ ∪ ({vτ(1), . . . , vτ(j−1)})
}
. Here, as TTCµ is feasible by Lemma 2, we

have {(τ(j),TTCµ(τ(j)))} ∈ F/(µ̂ ∪ ({vτ(1), . . . , vτ(j−1)})
}
. Hence, we obtain

TTCµ(τ(j)) = SDσ(τ(j)). Therefore, SDσ = TTCµ.

Theorem 2. If F is a matroid, we have

{SDσ : σ ∈ Σ} = {µ : µ is a Pareto efficient matching}.

Proof. By Theorem 1, it is sufficiently to prove that any Pareto efficient match-
ing µ can be represented as SDσ for some σ ∈ Σ. Fix such an efficient matching
µ. By Lemma 2, TTCµ must be equal to µ. Thus, by taking σ as shown in
Lemma 3, we can conclude that SDσ = TTCµ = µ.

Conversely, we show that the matroid structure is a necessary condition to
represent every Pareto efficient matching as an outcome of the SD mechanism.
The class of matroid constraints subsumes many practical cases, but there are
some constraints that are not matroid, such as school admissions with budget
constraints. A natural question is whether the conclusion of Theorem 2 holds
without the assumption of matroid. The following result shows that the answer
to this question is negative.

Theorem 3. Fix a set of students I, a set of schools S with |S| ≥ 2, and a
school s ∈ S and its constraint Fs. Suppose Fs is not a matroid. Then there
exist a preference profile (≻)i∈I and a capacity constraint profile F−s such that

{SDσ : σ ∈ Σ} ≠ {µ : µ is a Pareto efficient matching}. (1)

Proof. First, suppose that Fs violates property (I1). Then we have

{SDσ : σ ∈ Σ} = {∅} ≠ ∅ = {µ : µ is a Pareto efficient matching}

10



when every school is unacceptable for all students.
Next, suppose that Fs violates property (I2), i.e., there exist X,Y ⊆ I such

that X ⊆ Y , Y ∈ Fs, and X ̸∈ Fs. Consider a preference profile such that each
student i ∈ Y only accepts s and each student i ̸∈ Y accepts no school. Then,
there is a unique Pareto efficient matching {(i, s) : i ∈ Y }. On the other hand,
for σ such that σ−1(x) < σ−1(y) for any x ∈ X and y ∈ Y \X, some student in
X must be rejected by s in SDσ. Hence, SDσ ̸= {(i, s) : i ∈ Y } for such σ, and
(1) holds.

Finally, suppose that Fs violates only property (I3), i.e., there exist X,Y ∈
Fs such that |X| < |Y | and X ∪ {i} ̸∈ Fs for all i ∈ Y \X. Let s′ be a school
that is different from s. We will choose a capacity constraint Fs′ , a preference
profile (≻i)i∈I , and a matching µ such that

• µ is Pareto efficient;

• SDσ ̸= µ for any σ ∈ Σ.

By Y ∈ Fs and (I2), there exists Z ⊆ X∪Y such that Z ∈ Fs and |Z| = |X|+1.
Choose Z ∈ argmaxZ⊆X∪Y {|Z∩X| : Z ∈ Fs, |Z| = |X|+1}. Note that X ̸⊆ Z
by the assumption that X ∪ {i} ̸∈ Fs for all i ∈ Y \X. Let Fs′ be a capacity
constraint with capacity |X \ Z|. Construct a matching µ and a preference
profile (≻i)i∈I as follows:

• for i ∈ X \Z, s ≻i s
′ ≻i ∅ ≻i t for any school t ∈ S \{s, s′} and µ(i) = s′,

• for i ∈ Z ∩X, s ≻i ∅ ≻i t for any school t ∈ S \ {s} and µ(i) = s,

• for i ∈ Z \X, s′ ≻i s ≻i ∅ ≻i t for any school t ∈ S \ {s, s′} and µ(i) = s,

• for i ∈ I \ (X ∪ Z), ∅ ≻i t for any school t ∈ S and µ(i) = ∅.

We show that µ is Pareto efficient by contradiction. Suppose that µ′ Pareto
dominates µ. As µ′ is a feasible matching, we have µ′(s) ⊆ X ∪ Z and µ′(s) ∈
Fs. Also, as µ′ Pareto dominates µ, we have µ′(i) = s for all i ∈ Z ∩ X
and µ′(i) = s for some i ∈ X \ Z. Hence, we have |µ′(s) ∩ X| > |Z ∩ X|.
This implies |µ′(s)| < |Z| by the maximality of Z. Thus, we obtain |µ′(s′)| =
|X ∪ Z| − |µ′(s)| > |X ∪ Z| − |Z| = |X \ Z|, which contradicts the feasibility of
µ′. What is left is to show that SDσ ̸= µ for any σ ∈ Σ. If σ−1(i) < σ−1(i′) for
some i ∈ Z \X and i′ ∈ X \ Z, we have SDσ(i) = s′ but µ(i) = s. Otherwise
(i.e., σ−1(i) > σ−1(i′) for any i ∈ Z \X and i′ ∈ X \ Z), we have SDσ(i′) = s
for all i′ ∈ X \ Z by X ∈ Fs and (I2), but µ(i′) = s′. Hence, SDσ ̸= µ for any
σ ∈ Σ.

This result shows that Theorem 2 cannot be generalized further in the sense
that the class of matroids is a “maximal domain.” Specifically, a matroid is the
most permissive restriction on constraints imposed on individual schools which
guarantees that the SD finds all Pareto efficient matchings. Note that, if Fs

violates only property (I3), we can replace (1) in Theorem 3 with

{SDσ : σ ∈ Σ} ⊊ {µ : µ is a Pareto efficient matching}

by Theorem 1.
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4 Checking Pareto efficiency

In this section, we show that Pareto efficiency of a given matching can be checked
by the CSD mechanism (Algorithm 2) for general constraints. Specifically, we
apply the CSD with M as the set of school feasible matchings that are also
individually rational for the given matching. We prove that the outcome of
the CSD is a Pareto efficient matching that weakly Pareto dominates the given
matching. As a consequence, we can conclude that Pareto efficiency of a given
matching can be checked by the CSD.

Let us first observe that if a matching is Pareto efficient under an individ-
ual rational constraint, then the matching is also Pareto efficient without the
constraint.

Lemma 4. For a set of matchingsM and a matching µ ∈ M, letM′ = {µ′ ∈
M : µ′(i) ⪰i µ(i) (∀i ∈ I)}. If µ is Pareto efficient within M′, then it is also
Pareto efficient withinM.

Proof. We prove the contraposition. Let µ∗ ∈M′ be a matching that is Pareto
inefficient within M. Then, there exists a matching µ′ ∈ M that is a Pareto
improvement of µ∗. Here, µ′ must be inM′ because µ′(i) ⪰i µ

∗(i) ⪰i µ(i) for
every i ∈ I. Hence, µ∗ is also Pareto inefficient withinM′.

Theorem 4. LetM be the set of school feasible matchings that are also indi-
vidually rational for a given matching µ. Suppose thatM ≠ ∅. Then, for any
σ ∈ Σ, the matching CSDσ,M is Pareto efficient and weakly Pareto dominate µ.

Proof. By Lemma 4, it is sufficient to prove that CSDσ,M is Pareto efficient
within M. To obtain a contradiction, suppose that µ := SDσ is Pareto in-
efficient for some σ ∈ Σ. Let µ′ ∈ M Pareto dominates µ and let k∗ be
the minimum index such that µ′(σ(k∗)) ̸= µ(σ(k∗)). By definition, we have
µ′(σ(k)) = µ(σ(k)) for all k = 1, 2, . . . , k∗ − 1 and µ′(σ(k∗)) ≻σ(k∗) µ(σ(k∗)).
As µ′ ∈ M, the student σ(k∗) must be matched with a school that is no worse
than µ′(σ(k∗)) at line 5 in Algorithm 2, a contradiction.

Finally, let us discuss computational issues. We observe that Algorithm 2
can be implemented to run in polynomial time if F is a g-matroid (provided a
membership oracle and an initial independent set). To do this, it is sufficient to
show that the condition “µ(k−1) ∪ {(σ(k), s)} ∈ M(k)” at line 4 can be checked
in polynomial time. We reduce the checking problem to the g-matroid intersec-
tion problem defined as follows: given two g-matroids F1 and F2, determining
whether F1∩F2 is nonempty. The g-matroid intersection problem can be solved
in polynomial time [30, 31]. Define

F ′ =

X ⊆ I × S :
|X ∩ ({i} × S)| ≤ 1 (∀i ∈ I),
(i, s) ̸∈ X if µ(i) ≻i s (∀i ∈ I, ∀s ∈ S),
µ(k−1) ∪ {(σ(k), s)} ⊆ X

 ,
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which is a g-matroid representing the set of individually rational matchings that
contains µ(k−1)∪{(σ(k), s)}. Hence, the condition “µ(k−1)∪{(σ(k), s)} ∈ M(k)”
holds if and only if F ∩ F ′ is nonempty.

Unfortunately, it is coNP-hard to distinguish whether a given matching is
Pareto efficient or not even when Fs is a budget constraint for each s ∈ S.
To observe this, we reduce the subset sum problem. The problem is known to
be NP-complete [32] and defined as below: given positive integers a1, a2, . . . , aℓ
and a0 (≤

∑ℓ
j=1 aj), deciding whether there exists a subset J ⊆ {1, 2, . . . , ℓ}

such that
∑

j∈J aj = a0. Given an instance of the subset sum problem, we
construct a matching market where I = {i0, i1, . . . , iℓ}, S = {s1, s2}, s1 ≻i0 s2,
s2 ≻ij s1 (j = 1, 2, . . . , ℓ), and

Fs1 =
{
I ′ ⊆ I :

∑
ij∈I′ aj ≤

∑ℓ
j=1 aj

}
and Fs2 =

{
I ′ ⊆ I :

∑
ij∈I′ aj ≤ a0

}
.

Consider a matching µ = {(i0, s2), (i1, s1), . . . , (iℓ, s1)}. If the subset sum in-
stance a yes-instance, i.e., there exists J ⊆ {1, 2, . . . , ℓ} such that

∑
j∈J aj = a0,

then {(i, s1) : i ∈ I \ J} ∪ {(i, s2) : i ∈ J} Pareto dominates µ. On the other
hand, if a matching µ′ Pareto dominates µ, then the subset sum instance must
be a yes-instance since

∑
(ij ,s2)∈µ′ aj = a0 and (i0, s2) ̸∈ µ′. Hence, µ is not

Pareto efficient if and only if the subset sum instance a yes-instance.

Theorem 5. Checking Pareto efficiency of a given matching is coNP-hard even
if F is individual budget constraints.

Although Pareto efficiency is computationally hard to check, the CSD can
be implemented to run practically fast in most cases by using an integer pro-
gramming solver such as Gurobi or CPLEX. For example, for individual budgets
constraints, the condition argmax≻σ(k)

{
s ∈ S : µ(k−1) ∪ {(σ(k), s)} ∈ M(k)

}
∈

S ∪ {∅} at line 4 can be done computed by the following integer programming:

max
∑

s∈S

∑
s′∈S: s′⪰s xσ(k),s′

s.t.
∑

s∈S xi,s ≤ 1 ∀i ∈ I,∑
i∈I ai,sxi,s ≤ bs ∀s ∈ S,

xi,s = 1 ∀(i, s) ∈ µ(k−1),
xi,s = 0 ∀(i, s) ∈ I × S with µ(i) ≻i s,
xi,s ∈ {0, 1} ∀(i, s) ∈ I × S.

Here, xi,s means that i is matched with s or not.

5 Application to prioritized allocations

In this section, we study a model of indivisible goods allocation with priorities.
As applications of our generalized TTC and the CSD, we provide mechanisms
that Pareto improve the DA.
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5.1 Model

Suppose that each school s is endowed with a priority, which is represented by
a choice function over sets of students. Let Chs : 2

I → 2I be the choice function
of s ∈ S, where Chs(I

′) ⊆ I ′ for all I ′ ⊆ I. The aggregate choice function
Ch: 2I×S → 2I×S for (Chs)s∈S is defined as

Ch(X) =
{
(i, s) : s ∈ S, i ∈ Chs(X(s))

}
for X ⊆ I × S.

A matching µ is called individually rational if Ch(µ) = µ. Note that this
condition can be seen as the feasibility of the school side. A matching µ is
stable if it is individually rational and there exists no (i, s) ∈ I × S such that
s ≻i µ(i) and i ∈ Chs(µ(s) ∪ {i}). The stability leads a fairness notion in a
model of indivisible goods allocation with priorities [33].

We introduce conditions that restrict the priorities. A choice function Ch
satisfies:

• substitutability if for every x ∈ X ⊆ Y , x ∈ Ch(Y ) implies x ∈ Ch(X),

• path-independence if for everyX and Y , Ch(X∪Y ) = Ch(Ch(X)∪Ch(Y )),
and

• the law of aggregate demand (LAD) if for every X ⊆ Y , |Ch(X)| ≤
|Ch(Y )|.

Path-independence leads to substitutability, and substitutability and LAD to-
gether lead to path-independence. For each property, the aggregate choice func-
tion satisfies the property if all the choice functions of the schools satisfy the
property.

The responsive choice functions are the most standard ones that satisfies
substitutability and LAD. For school s, let qs denote the capacity and ≻s denote
a priority order of the students. The responsive choice function Chs with respect
to qs and ≻s is defined as

Chs(I
′) =

{
I ′ if |I ′| ≤ qs,

{i ∈ I ′ : i ⪰s i
∗} otherwise,

where i∗ ∈ I ′ is the student such that |{i ∈ I ′ : i ⪰s i
∗}| = qs.

When every choice function satisfies path-independence, a stable matching
exists, and the DA, which is formally defined in Algorithm 4, finds a stable
matching [34, 35]. Moreover, it finds the student-optimal stable matching, i.e.,
the stable matching that Pareto dominates any other stable matchings. Assum-
ing both substitutability and LAD, we obtain some more useful properties.8

8The DA is strategy-proof; the rural hospital theorem holds; the set of stable matchings is
a lattice [36].
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Algorithm 4: Deferred Acceptance (DA)

input: a market (I, S, (≻)i∈I) and an aggregate choice function Ch
1 Let R← I × S;
2 while true do
3 Y ←

{
(i, argmax≻i

{s : (i, s) ∈ R}) : i ∈ I
}
;

4 Z ← Ch(Y ) and R← R \ (Y \ Z);
5 if Y = Z then return Y ;

5.2 Pareto improvement from the DA

While the DA is one of the most important mechanisms in practice and the-
ory, it may produce a Pareto inefficient matching for students under a path-
independent choice function. We use our generalized TTC and the CSD to
Pareto improve the DA for students. In what follows, we consider Pareto effi-
ciency only with respect to students.

The DA is weakly Pareto efficient if the choice function satisfies path-independence
and LAD [37].9 However, it is still Pareto inefficient. The size of the matching
is unchanged by any Pareto improvement from the DA. The efficiency-adjusted
deferred acceptance (EADA) mechanism Pareto improves the DA and is Pareto
efficient [38, 39].10 If a constraint induced by a choice function forms a matroid
(e.g., matroidal choice functions [42]), then there is another way of improvement
based on our result: apply our generalized TTC by setting the DA matching as
an initial matching.11 This mechanism Pareto improves the DA and is Pareto
efficient. Pápai [43] and Alcalde and Romero-Medina [44] study this mechanism
in the model with responsive choice functions.

Without LAD, inefficiency of the DA would be worse. The DA is not even
weakly Pareto efficient. Moreover, we could obtain a lager matching that Pareto
dominates the one produced by the DA. The following example illustrates this
fact.

Example 3. Let I = {i1, i2, i3} and S = {s1, s2}. Suppose that i1 and i3
prefer s2 to s1, while i2 prefer s1 to s2. School s1 has a quota qs1 = 1 and
a weak priority order i1 ≻s1 i2 ∼s1 i3. Also, school s2 has a quota qs2 =
1 and a strict priority order i2 ≻s2 i3 ≻s2 i1. The choice function Chs2 is
responsive. The choice function Chs1 is defined as Chs1(I

′) is I ′ if |I ′| ≤ qs1
and {i ∈ I ′ : i ⪰s1 i∗} otherwise, where i∗ is the highest priority student such

9A matching µ strictly Pareto dominates µ′ if µ(i) ≻i µ′(i) for all i ∈ I. A matching
µ ∈ M is called weakly Pareto efficient with respect to M if there exists no feasible matching
µ′ ∈ M that strictly Pareto dominates µ.

10Kesten [38] introduce the EADA in the model with responsive choice functions. Bando
[40] and Tang and Yu [41] propose equivalent mechanisms to the EADA. Ehlers and Morrill
[39] generalize EADA to the settings where choice functions satisfy path-independence and
LAD.

11In general, a constraint induced by path-independence and LAD is not necessarily a
matroid.
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that |{i ∈ I ′ : i ⪰s1 i∗}| ≥ qs1 .
12 Note that Chs1 satisfies path-independence,

but not LAD.
The matching of the DA is

µ = {(i1, s1), (i2, s2)}.

On the other hand,
ν = {(i1, s2), (i2, s1), (i3, s1)}

strictly Pareto dominates µ and is Pareto efficient.

The size of matching is a crucial criterion in some applications such as refugee
resettlement [47]. Therefore, Pareto improving from the DA would be benefi-
cial in this setting. Even without LAD, the EADA is well-defined and Pareto
improves the DA. However, it is Pareto inefficient. Intuitively, this is because
Pareto efficiency of the EADA relies on weak Pareto efficiency of the DA. To
be more specific, the EADA identifies an “irrelevant agent” at the matching
produced by the DA (e.g., i3 in Example 3). Using weak Pareto efficiency, we
observe that the irrelevant student cannot be better off for any Pareto improve-
ment from the DA. The fact enables us to fix the irrelevant student with the
school assigned under the DA. This does not hold without LAD: as illustrated
in Example 3, while ν Pareto dominates the matching produced by the DA, the
irrelevant student i3 can be better off.

By Theorem 4, we can use the CSD to Pareto improve the DA by setting
the matching produced by the DA as an initial matching. Moreover, the CSD
is Pareto efficient. There are various ways to do that. Any matching Pareto
improving the DA can be an initial matching. For example, we can also set
the matching produced by the EADA as an initial matching. In addition, any
ordering of the students works. For example, an ordering can be defined by
utilizing the EADA. Specifically, the ordering of the students can be obtained
by iteratively processing the following: identify an irrelevant student for the
outcome of the DA, insert her to the head of the list, and remove her from the
market.

6 Conclusion

We studied methods to check Pareto efficiency in indivisible goods allocation
problems under general constraints. We started with the observation that the
standard approach by the SD does not work in general. Our first main result
characterizes the constraints that the SD can use to check whether a given
matching is Pareto efficient. These are matroid constraints. Our result also
generalizes the characterization of Pareto efficient matchings by the SD in the
standard model with capacity constraints. Our second main result provides
an algorithm to check the Pareto efficiency of a given matching under general

12This choice function is studied in the college admissions problem with weak priorities
[45, 46].
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constraints. Finally, as an application of our generalized TTC and the CSD, we
study how to Pareto improve the DA in a model with priorities.

A study on the incentive properties of a mechanism under constraints can
be considered in the future. Let us fix an order σ of the students. Then,
the CSDσ,M is strategy-proof if reporting preferences cannot affect the set of
feasible matchings M. However, the CSD is not strategy-proof under general
constraints. For example, the CSD would not be strategy-proof by adding the
individual rationality constraint to M. Fragiadakis et al. [20] assume no out-
side option and show that the CSD is strategy-proof in the model with minimal
quotas. Thus, a natural question is which class of constraints guarantees the
CSD is strategy-proof. More generally, it is important to design a Pareto effi-
cient and strategy-proof mechanism under general constraints. We leave such
investigations for future research.
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