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Abstract

This paper develops a framework to conduct a counterfactual analysis to regulate
matching markets with regional constraints that impose lower and upper bounds
on the number of matches in each region. Our work is motivated by the Japan
Residency Matching Program, in which the policymaker wants to guarantee the
least number of doctors working in rural regions to achieve the minimum standard
of service. Among the multiple possible policies that satisfy such constraints, a
policymaker wants to choose the best. To this end, we develop a discrete choice
model approach that estimates utility functions of agents from observed data and
predicts agents’ behavior under different counterfactual policies. Our framework
also allows the policymaker to design the welfare-maximizing tax scheme, which
outperforms the policy currently used in practice. Furthermore, a numerical experi-
ment illustrates how our method works.

1 Introduction

Matching with constraints, initiated by Kamada and Kojima [16], has been recently paid considerable
attention to across economics, computer science, and AI [1, 5, 8, 9, 18, 15, 13, 19]. For example,
diversity constraints matter in the context of school choice: each school is required to balance
its composition of students, typically in terms of socioeconomic status. Recent developments in
matching theory enable policymakers to search for the matching outcome under several constraints
on the volume of matches.
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This paper develops a framework to design a policy that regulates matching markets with regional
constraints [13] that impose lower and upper bounds on the number of matches in each region. The
policymaker (hereafter, PM) needs to satisfy such constraints required by society. For example, the
government may need to guarantee the minimum number of doctors working in each rural region to
achieve the minimum standard of service. In general, there are multiple possible policies to satisfy
the constraints but only some of them are used in practice: the Japanese government sets the upper
bound on the number of workers working in urban areas so that it guarantees the number of doctors
in rural areas. However, it is often unclear which policy is better than the others and there is a need
for methods to evaluate and compare different policies.

A seminal work by Choo and Siow [7] initiated the estimation method for the two-sided matching
model, i.e., one-to-one marriage markets. Each agent’s utility is assumed to be transferable ([22, 4,
17]), where each agent can freely transfer their utility to their partner via monetary transfer. Galichon
and Salanié [11] shows that the stable matching coincides with the market clearing allocation in
which the agents solve the discrete choice problems, choosing an alternative from the finite set so that
he maximizes its utility. They also propose a method to estimate utility functions that are consistent
with the observed matching patterns under the unobserved heterogeneity, which captures the different
behaviors of the agents that have the same covariates and look the same to the PM.

Given the utility functions estimated via the method of Galichon and Salanié [11], our framework
allows the PM to predict matching patterns under different counterfactual constraints. Moreover, if
the PM can use taxes and subsidies to incentivize agents in the market to satisfy regional constraints,
our approach provides a way of computing the tax scheme that maximizes social surplus under
the constraints. We define efficient aggregate equilibrium (EAE), which is the welfare maximizing
equilibrium under the constraints achievable by taxes and subsidies. We characterize EAE as a
solution to a convex optimization problem and show that the solution always exists and is unique.
This result enables us to design the welfare-maximizing tax scheme for any arbitrary regional
constraints.

Finally, we conduct a numerical experiment to illustrate how our approach works. We imitate the
problem that the Japan Residency Matching Program (JRMP) deals with: its policy goal is to mitigate
the popularity gap among urban and rural hospitals [16]. To this end, JRMP restricts the maximum
number of residents matched within each prefecture and proportionally decreases the capacity of
hospitals in each prefecture to meet the bound (cap-reduced AE in Section 6). The simulation
demonstrates that our method outperforms such a policy used in practice in terms of social welfare.
In addition, we show that even when the PM cannot run deficits and needs to balance the budget, we
can achieve higher social welfare than the cap-reduced policy.

2 Equilibrium in Matching Market

In this section, we set up the model of transferable utility matching market with regional constraints
and define a basic equilibrium concept, called individual equilibrium. As we will see later, this
equilibrium concept itself is not helpful for the policymaker. However, this will be a building block
of a key equilibrium concept we develop in Section 3, which helps the policymaker design the tax
scheme using data.

We consider the two-sided decentralized matching market with regional constraints. There are two
groups of agents: let I be the set of workers, and let J be the set of job slots. We assume I and
J are finite for the moment, but note that we will make a large market approximation in Section
3. Each worker i ∈ I can be matched with at most one job slot j ∈ J . If i is unmatched, we say
i is matched with an outside option j0. Worker i obtains payoff uij ∈ R when i is matched with
j ∈ J0 := J ∪ {j0}. Similarly, job slot j ∈ J can be assigned to worker i ∈ I or an outside option i0.
Slot j obtains payoff vij ∈ R when j is matched with i ∈ I0 := I ∪ {i0}. We normalize the unmatch
payoffs to be zero: uij0 = vi0j = 0 for all i ∈ I and j ∈ J .

Let Z be a set of finite regions, Z := {z0, z1, z2, . . . , zL} for some L ∈ N. Each slot j ∈ J belongs
to a region z(j) ∈ Z. For convenience, we assume an outside option for workers, say j0, is in region
z0. With a slight abuse of notation, we write j ∈ z if z(j) = z ∈ Z.

Each region z ∈ Z has an upper bound quota ōz ∈ R+ and a lower bound quota oz ∈ R+

(ōz ≥ oz ≥ 0 and ōz 6= 0). The number of workers in region z must be at least oz and at most ōz . If
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region z has no upper bound quota, we set ōz = +∞. Similarly, if z does not have lower bound, we
set oz = 0. We assume that there is no restriction on the outside options: ōz0 = +∞ and oz0 = 0.

To satisfy the regional constraints, the policymaker taxes the pairs in excessively popular regions
while it subsidizes the pairs in unpopular regions. The tax on region z is denoted by wz and all pair
in region z pays wz to the policymaker (NB: a negative tax can be interpreted as a subsidy).1

The payoffs are transferable between the matched worker and slot in the following sense. The
matched pair (i, j) generates the joint surplus Φij ∈ R measured by money, say dollars. Let the
utility of i when matched with j be uij ; let the utility of j when matched with i be vij . If i ∈ I and
j ∈ J ∈ z match, they divide the net joint surplus, i.e., Φ̃ij := Φij − wz = uij + vij

2. The values
uij and vij , or how they divide the net joint surplus, are determined possibly for social reasons (e.g.,
bargaining power) and treated as given by the agents. Note that each slot is possessed by some entity
such as a firm, so the slot also has a preference over workers.

A matching represents who is matched with whom and is expressed as 0-1 vector d = (dij)ij such
that dij = 1 iff i and j are matched for (i, j) ∈ I0 × J0 \ {(i0, j0)}. A matching d is feasible if

• (population constraint) each worker i ∈ I satisfies
∑
j∈J0 dij = 1; each slot j ∈ J satisfies∑

i∈I0 dij = 1, and
• (regional constraint) each region z ∈ Z satisfies

∑
i∈I
∑
j∈z dij ∈ [oz, ōz].

In the following (sub)sections, we characterize the equilibrium matching among the feasible
matchings. We assume that all agents know the joint surpluses and how they are divided, i.e.,
(Φij , uij , vij)i,j , and tax scheme (wz)z for all regions.

We now define an individual equilibrium. Below ui and vj are interpreted as i’s and j’s payoffs in
the equilibrium, respectively. For the reason why this equilibrium concept is valid, see Appendix B.
Definition 1 (Individual Equilibrium). A profile (d, (u, v), w) of feasible matching d, equilibrium
payoffs of agents (u, v) ∈ R|I| × R|J|, and taxes w ∈ RL is stable if

• (Individual rationality) For all i ∈ I , ui ≥ Φ̃ij0 = 0, with equality if i is unmatched in d;
for all j ∈ J , vj ≥ Φ̃i0j = 0, with equality if j is unmatched in d.

• (No blocking pairs) For all i and j, ui + vj ≥ Φ̃ij , with equality if i and j are matched in d.

The individual equilibrium is a solution to the social welfare maximization problem exactly as in [22].
However, in practice, the agents outside of the economy, such as the policymaker or the researcher,
do not have access to the data on the exact individual preferences. Instead, they rely on coarser
information, such as population characteristics, to determine the taxes. In the subsequent sections,
we introduce a concept of aggregate equilibrium, based on individual equilibrium, to handle such a
situation and enable the policymaker to compute the optimal tax scheme.

3 Aggregate Equilibrium with Unobserved Heterogeneity

3.1 Unobserved Heterogeneity and Separability

Let X := {x1, x2, . . . , xN} be the finite set of observable worker types. Each worker i ∈ I has a
type x(i) ∈ X . Similarly, let Y := {y1, y2, . . . , yM} be the finite set of observable job slot types.
Each slot j ∈ J has a type y(j) ∈ Y . With a slight abuse of notation, x(i) = x (resp. y(j) = y) is
denoted by i ∈ x (resp. j ∈ y). We define x0 and y0 as “null types” that are the types of outside
options i0 and j0. Finally let X0 := X ∪ {x0} and Y0 := Y ∪ {y0} be the sets of all worker and slot
types including the null types, and define T := X0 × Y0 \ {(x0, y0)} as the set of all type pairs.

The policymaker can observe these types only; they cannot distinguish same type agents/slots. There
is unobserved heterogeneity in a sense that even when two agents i and i′ have the same type x and
look the same to the policymaker, their actual preferences can be different.

1The policymaker may design taxes for each pair. Although we restrict the class of tax schemes here, such a
restriction is harmless regarding welfare maximization. See Corollary 2 in Section 4.

2Technically we define the joint surplus Φ̃ij0 = Φ̃i0j = 0 when unmatched.
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Type y ∈ Y and region z ∈ Z can be interpreted in various manners. One may think of a type as a
firm/hospital and region z as a unit of districts. It is also possible that a type is a minor subcategory
of occupation (e.g., registered/licensed practical nurse, physician assistant, medical doctor) and a
region is a larger category of occupation (e.g., medical jobs). Throughout this paper, we interpret a
type as a firm, and a region as a unit of districts for simplicity.

Assumption 1 (Regional Constraint). Each type y ∈ Y can belong to only one region3. Denote the
region that type y belongs to by z(y) ∈ Z.

Let us define nx := #{i : x(i) = x} the number of type-x agents and my := #{j : y(j) = y} the
number of type-y slots. Hereafter we make the large market approximation:

Assumption 2 (Large Market Approximation). Each type x has nx mass of continuum of agents
rather than distinct nx agents. Similarly we assume there are my mass of type y job slots.

In this setting, the matching is defined as the measure of matches for each pair of type (x, y); let
µ = (µxy)x,y ∈ R|T |+ . And its feasibility is defined as follows;

Definition 2 (Feasible matching). µ = (µxy)xy ∈ R|T |+ is a feasible matching if it satisfies

• (population constraint) each worker type x ∈ X satisfies
∑
y∈Y0

µxy = nx; each slot type
y ∈ Y satisfies

∑
x∈X0

µxy = my , and

• (regional constraint) each region z ∈ Z satisfies
∑
x∈X

∑
y∈z µxy ∈ [oz, ōz].

Regarding the joint surplus Φ̃ij , we impose two structures on it. First, for some i.i.d. random variable
ξij , Φ̃ij − ξij does not depend on the pair of individuals (i, j), but only depend on their types x(i)
and y(j). Second, for each i and j such that x(i) = x and y(j) = y, ξij can be represented as a sum
of two i.i.d. random variables εiy and ηxj . We call these properties of the joint surplus as additive
separability. The discussion above can be summarized as follows:

Assumption 3 (Independence). For each x and i ∈ x, error term εiy is drawn from the distribution
Px. Similarly, for each y and j ∈ y, error term ηxj is drawn from the distribution Qy. The error
terms are independent across all i’s and j’s.

Assumption 4 (Additive Separability). For each x and y, Φ̃ij − εiy − ηxj is constant over the
individuals i ∈ x and j ∈ y, and denoted by Φxy .

We also impose the following technical assumption on the error terms εiy’s and ηxj’s:

Assumption 5 (Smooth Distibution with Full-Support). For each x and y, the cdf’s Px and Qy are
continuously differentiable. Moreover, supp(Px) = RN+1 and supp(Qy) = RM+1.

Although these assumptions 2-5 are standard in the discrete choice literature, we will discuss the
necessity of them later in Appendix B.

Example 1. Consider a job matching market between two types of workers and three types of jobs
which are divided into two categories (z1, z2). I.e. |X| = 2, |Y | = 3, L = 2. Let Φxy be

Φ =

[
Φx1y1 Φx1y2 Φx1y3
Φx2y1 Φx2y2 Φx2y3

]
=

[
2 1.5 1

1.5 2 1

]
and generate Φij = Φxy + εiy + ηxj where εiy and ηxj follow Gumbel distribution whose lo-
cation parameter is 0 and the scale parameter is 1. An example for the other variables are;
n = (nx1

, nx2
) = (0.5, 0.5),m = (my1 ,my2 ,my3) = (0.3, 0.3, 0.4), z(y1) = z(y2) =

z1, z(y3) = z2, oz1 = 0.5, oz2 = 0.4, oz1 = 0.1, oz2 = 0.05.

3.2 Discrete Choice Representation and Aggregate Equilibrium

Under Assumption 3, 4, 5, the policymaker can relate the observed matching data to the error
distribution.

3If type y slots belong to region z1 and z2, we redefine the type of slots in z1 as y(1) and z2 as y(2).
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We first introduce the concept of systematic utilities Uxy and Vxy , defined as

Uxy := min
i : x(i)=x

{ui − εiy}, Vxy := min
j : y(j)=y

{vj − ηjx},

and Uxy0 = Vx0y = 0 for each x ∈ X and y ∈ Y .

For each i ∈ x and j ∈ y, Assumption 4 assumes that Φ̃ij − εiy − ηxj ≡ Φij does only depend on x
and y. Here we additionally assume that error distributions satisfy the following: for each i ∈ x and
j ∈ y, we have Φ̃ij − εiy − ηxj = Uxy + Vxy .

The following Lemma 1 tells us that the matching outcome when the agents have unobserved prefer-
ences is observationally equivalent to the result of discrete choice with unobserved heterogeneity.

Lemma 1. For any worker i ∈ I and any slot j ∈ J , we can rewrite ui and vj as{
ui = maxy∈Y0 Ux(i),y + εiy
vj = maxx∈X0

Vx,y(j) + ηxj .

Lemma 1 also implies that Uxy’s and Vxy’s can be interpreted as the part of utilities that depend
merely on the type pairs. When we write U = (Uxy)x∈X,y∈Y , V = (Vxy)x∈X,y∈Y , w = (wz)z∈Z ,
the welfare of side X and side Y are defined as follows:

G(U) =
∑
x∈X

nx E
εi∼Px

[
max
y∈Y0

Uxy + εiy

]
H(V ) =

∑
y∈Y

my E
ηj∼Qy

[
max
x∈X0

Vxy + ηxj

]
By Daly-Zachary-Williams theorem ([20]), we have

∂

∂Uxy
E

εi∼Px

[
max
y∈Y0

Uxy + εiy

]
= Pr(i with type x chooses type y).

Under the large market approximation, this value coincides with the fraction of type-x agents choosing
type y. Thus, (∂G(U))/(∂Uxy) is the demand of x for y; similarly, (∂H(V ))/(∂Vxy) is the demand
of y for x. In equilibrium, these two should be equal and coincide with the number of matches
between x and y. Since G and H are determined by the error distributions, the fact that the realized
matching pattern coincides with the partial derivatives of G and H relates the observed matching
data to the errors.

We define aggregate equilibrium with regional constraint. Let Φxy be the observed part of the joint
surplus generated by a match i ∈ x and j ∈ y. This term is usually parameterized by the researcher
and estimated from the data: [11] provides a method to estimate Φxy’s given the matching data in the
market without regional constraint. In the following, we suppose such data is available and consider
Φxy’s as given when designing a tax scheme.

Definition 3. Given (Φxy)x,y, profile (µ, (U, V,w)) is an aggregate equilibrium with regional con-
straints, if it satisfies the following four conditions:

1. Population constraint; for any x ∈ X ,
∑
y∈Y0

µxy = nx; for any y ∈ Y ,
∑
x∈X0

µxy = my .

2. No-blocking pairs; for any (x, y) ∈ T , Uxy + Vxy ≥ Φxy − wz(y).

3. Market clearing; for any (x, y) ∈ T , µxy = ∇xyG(U) = ∇xyH(V ).

4. Regional constraint; for any z ∈ Z,
∑
y∈z

∑
x∈X

µxy ∈ [oz, ōz].

Note that the additive separability and Lemma 1 together imply that condition 2 is equivalent to
ui + vj ≥ Φ̃ij , which corresponds to the no-blocking pairs condition in the individual equilibrium.
Thus the aggregate equilibrium with regional constraints does coincide with an individual equilibrium
in the market with unobserved heterogeneity.
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4 Efficient Aggregate Equilibrium

The aggregate equilibria need not be unique because the multiple combinations of taxes can adjust
the number of matches (see Example ?? below). Hence, we define efficient aggregate equilibrium,
hereafter EAE, as a refinement. EAE is an aggregate equilibrium that does not impose any tax or
subsidy on the regions whose constraints are not binding (complementary slackness).

Definition 4 (Efficient Aggregate Equilibrium). (µ, (U, V,w)) is an efficient aggregate equilibrium,
if it is an aggregate equilibrium and satisfies the following additional condition:

5. Complementary slackness; for any z ∈ Z,[
wz > 0 =⇒

∑
y∈z

∑
x∈X

µxy = ōz

]
and
[
wz < 0 =⇒

∑
y∈z

∑
x∈X

µxy = oz

]
.

Our main result is that EAE always uniquely exists and efficient in the sense that it maximizes social
welfare among aggregate equilibria. This result is derived as the corollary of Theorem 1, which
characterizes EAE as a solution to a convex optimization problem. Furthermore, this enables us to
compute EAE by solving the optimization problem. Proofs are deferred to the appendix.

Theorem 1. Fix any Φ ∈ R(N+1)×(M+1). If (µ, (U, V,w)) is an EAE, then (U, V, w̄, w) is a
solution to the optimization problem (D) and µ satisfies the market clearing condition, where w̄z :=
max{0, wz}, wz := −min{0, wz}. Conversely, if (U, V, w̄, w) is a solution to the optimization
problem (D) and µ satisfies the market clearing condition, then (µ, (U, V,w)) is an EAE.

(D)

∣∣∣∣∣∣∣∣∣∣
min

U,V,w̄z,wz

G(U) +H(V ) +
∑
z∈Z

ōzw̄z −
∑
z∈Z

ozwz

s.t. ∀(x, y) ∈ T, Uxy + Vxy ≥ Φxy − w̄z(y) + wz(y),

∀z ∈ Z, w̄z ≥ 0, wz ≥ 0

Corollary 1. EAE always exists and is unique.

We can show that the dual of (D) corresponds to the social welfare maximization problem under
the population constraints and the regional constraints ((P) in Appendix B). The optimal value of
(P) coincides with that of (D) by the strong duality. Since (P) does not restrict how to impose taxes,
the region-specific taxation (wz)z∈Z in the EAE maximizes the social welfare among all possible
taxation policy 4 (See Appendix B for details.)

Corollary 2. EAE maximizes the social welfare under regional constraints, whose tax scheme is not
conditioned on the types of pairs but dependent only on the region.

Here we give one possible scenario in which Theorem 1 and related results are useful to obtain the
optimal tax scheme. Suppose that the data on the existing matching in the market without regional
constraints is available. As mentioned in Section 3, then we can estimate Φxy’s, assuming specific
error term distributions, such as Gumbel distribution as in Example 1. The distributional assumption
also determines the form of G and H . Given Φ, G, and H , we can solve (D) to obtain tax scheme w,
which can be backed up from w̄ and w.

Example 1 (Continued). The yellow area in Figure 1 represents the set of aggregate equilibria: for
each (w′1, w

′
2) in the yellow area, there exists an AE (µ, (U, V,w)) in which w = (w′1, w

′
2). We draw

the contours of social welfare (Panel (a)), and surplus (or deficit if negative and dotted lines) of the
policymaker (Panel (b)). As we see in Corollary 2, the red point in Panel (a), (w1, w2) = (0.5825, 0),
that tangents to the contour is the EAE. In Section 5, we discuss about budget balanced AE located in
the orange region in Panel (b).

4Note that since the policymaker can observe x and y, the taxes for each pair may take the form of wxy .
Corollary 2 states that we can actually restrict our attention to the taxes of form wz when maximizing social
welfare.
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Figure 1: Panel (a) illustrates the social welfare and (b) does the surplus of the PM in the AE given
(w1, w2). The vertical (horizontal) axis indicates the tax (or subsidy if negative) on region z1 (z2).
The yellow + orange regions are the set of AE. The red point is the EAE. In Panel (b), the orange
region indicates the AE in which the surplus of the PM is nonnegative; BBAE defined in Section 6.

5 Estimation of the Joint Surplus

So far we see how to compute the welfare-maximizing matching µxy given the known joint surplus
Φxy. In this section, on the contrary, we briefly explain how to estimate the joint surplus Φxy given
the observed matching patterns µ̃xy .

We take the set of agent types X and Y , their population (nx) and (my). and regions z(y) as given.
Now suppose we have the data of

1. observed matching patterns µ̃ = (µ̃xy)x,y ,

2. current tax levels (wz)z , and

3. type-pair specific covariates c = (cxy)x,y (here cxy ∈ RS for some S).

The candidates of cxy are, for example, physical distances between the living area of type-x workers
and the office area of type-y job slots, compatibility between workers’ skills and job description,
or characteristics that depend only on type x or y (such as worker’s age or the average wage level
around its office). It can simply be the vector of indicator functions of type pairs.

We estimate the Φxy by the following procedure. First, we choose some parametric function Fλ that
maps cxy to Φxy (e.g. linear regression Fλ(cxy) = λ>cxy). Then, we initialize λ = λ0 and minimize
the error computed as follows : in step k,

1. Compute Φkxy = Fλk(cxy) for given λk

2. Solve (D’) and obtain the simulated matching µk using ∇xyG = ∇xyH = µkxy

3. Compute the error (distance) between the simulated matching µk and the observed matching
µ̃, d(µk, µ̃)

4. If d(µk, µ̃) is small enough, finish the estimation. The current Φkxy = Fλk(cxy) is the point
estimate. Otherwise update λk → λk+1 so that d becomes smaller5 and go back to step 1.

(D’)
∣∣∣∣ min
U,V

G(U) +H(V ) s.t. ∀x ∈ X, y ∈ Y, Uxy + Vxy ≥ Φxy − wz(y)

(D’) is a convex programming problem and the existence and the uniqueness of the solution are
guaranteed in a manner similar to Corollary 1.

5How to update the parameter λ depends on the optimization algorithm (e.g. Newton method).
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The choice of the parametric function F and the distance function d are arbitrary. See Galichon and
Salanié [11] for more details. Here we introduce the maximum likelihood estimation (MLE). Let us
adopt the Kullback-Leibler divergence of the multinomial distribution over the type pairs as d,

d(µ̃, µ) ≡
∑

(x,y)∈T

(µ̃xy/|µ̃|) log
(µ̃xy/|µ̃|)
(µxy/|µ|)

,

where |µ| ≡
∑

(x,y)∈T µxy. The functional form of Fλ is arbitrary. Given the matching data µ̃,
minimizing the KL-divergence is equivalent to maximizing the log likelihood function

logL(λ) ∝
∑

(x,y)∈T

µ̃xy log
µxy
|µ|

.

Note that λ affects µxy through Φxy = Fλ(cxy) and (D’). By minimizing d with respect to the
parameter λ, we get the estimate of Φxy by the MLE.

6 Illustrative Experiment

In this section, we compare the EAE with other equilibrium concepts in simulation. Hereafter we take
Φxy as given (already estimated). To get intuition, we simulate a small tractable matching market of
residencies with one urban region (z1) and two rural regions (z2, z3) in which all doctors prefer urban
hospitals to rural hospitals on average. The policy challenge is to satisfy the minimum standards in
the rural regions. We simulate EAE with a larger number of types and regions in Appendix B.

We assume there are 10 types of doctors and 6 types of hospital, |X| = 10 and |Y | = 6. The
population of each type is identical, nx = 0.1 for all x ∈ X and my = 0.25 for all y ∈ Y . There
are three regions z1 = z(y1) = z(y2), z2 = z(y3) = z(y4), and z3 = z(y5) = z(y6). Region z1 is
attractive for doctors (an urban area) while z2 and z3 are not (rural areas). All doctors are identical
for each hospital on average. Specifically we set

Φxy :=

{
2.0 + ξxy (x ∈ X, y ∈ z1)

0.5 + ξxy (x ∈ X, y ∈ {z2, z3})
,

where ξxy are independent noise drawn from N(0, 1).

We assume there are lower bounds on rural areas, and no other constraints are imposed. We take the
same lower bound oz for the rural areas z2 and z3 ({oz ∈ R | 0.1 ≤ oz ≤ 0.4}) and set no lower
bound on the urban area oz1 = 0. We take an average of 30 simulations in Figure 2. (See Appendix
B for details of the experiment.)

Here, we compare EAE with three other different aggregate equilibria (plus AE without any regional
constraints as baseline).

First one is EAE upper-bound. Instead of directly putting the lower bounds on the rural areas, it
imposes the "loosest" upper bound on the urban region so that sufficient proportion of doctors move
to the unpopular regions under the EAE (See Appendix B for details). For example, if the PM would
like to satisfy the lower bounds oz = 0.4, the EAE upper-bound instead sets an upper-bound with
the smallest ōz1 satisfying

∑
x

∑
y∈z2 µ

EAE-UB
xy ≥ 0.4 and

∑
x

∑
y∈z3 µ

EAE-UB
xy ≥ 0.4. Replacing

floor constraints with ceil constraints is a common technique in the theoretical literature since it is
often impossible for algorithms to satisfy desirable properties like strategy-proofness under floor
constraints.

Second one is cap-reduced AE. Similar to EAE upper bound, it also limits the maximum number of
doctors matched in the urban area, instead of directly imposing the lower bounds on the rural areas.
The difference is, here the PM artificially reduces the capacities of each hospital type in the urban
area, instead of imposing an upper bound on the urban region. For example, instead of imposing
the regional upper-bound ōz1 = 0.4 in the EAE upper-bound, the PM sets the artificial capacities
my1 = my2 = 0.2 of the urban hospital slots and compute the AE without tax and subsidy. This is
obviously an inefficient policy but is frequently used in practice, including the JRMP.

Third one is budget balanced AE (BBAE), in which the PM should attain the budget balance, i.e.,∑
x,y µxywz(y) ≥ 0. Note that BBAE may not be unique. (See Panel (b) of Figure 1.) Here we focus

on BBAE which maximizes social welfare.
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Figure 2: Panel (a)-(e): the horizontal axis is the lower bound constraints of rural regions (oz2 = oz3 ),
and the vertical axes indicate (a) the levels of the social welfare, (b) the agent welfare (the worker
welfare + the job slot welfare), (c) the policymaker surplus, (d) the number of matched workers in
the urban region z1, and (e) in the rural regions z2, z3 of each algorithm. The gray line in Panel (e)
indicates the sum of the lower bounds of z2, z3. Panel (f): the locus of the equilibrium tax and average
subsidy of each method when oz2 , oz3 changes. Note that the no constraint AE and the cap-reduced
AE use neither tax nor subsidy, the blue and the green lines stick to the origin.

It is worth mentioning that the order of the equilibrium concepts in terms of social welfare remains
unchanged for any problem instance.
Fact 1. For any instances, the levels of social welfare are in the following order:

EAE ≥ BBAE ≥ EAE upper-bound ≥ Cap-reduced AE.

Here the first inequality comes from the fact that the EAE is welfare-maximizing as Corollary 2
states, the second one holds because the EAE upper-bound imposes only taxes on urban areas so
the PM always makes a positive surplus, and the third one again follows from the fact that the EAE
maximizes the social welfare (under the alternative upper-bound constraints).

We summarize the performance comparison results in Figure 2. Panel (a) illustrates how much social
welfare each equilibrium achieves at each lower bound level and confirms Fact 1. Panel (b) and (c)
represent the agents (the workers and the job slots) welfare and the surplus of the PM, which reveals
that in the EAE, the social efficiency is achieved by relocating the surplus from the PM to the agents.
Panel (d) and (e) show the number of doctors matched in the urban and the rural areas. We can see
that the EAE successfully keeps the number of doctors in z1 as much as possible while satisfying the
rural lower bounds tight. Finally Panel (f) depicts the locus of the tax and the average subsidy levels
when oz changes. It show the EAE and the EAE upper-bound are the complete opposites; the EAE
uses subsidies on the rural regions only while the EAE upper-bound uses a tax on the urban are only.
Here the BBAE balances a tax and subsidies so that it maximizes the social welfare in the range that
the surplus of the PM remains nonnegative. When the PM cannot make a deficit, the BBAE is the
second best choice that is more desireble than the EAE upper-bound or the cap-reduced AE.

7 Summary and Discussion

This paper develops a framework to conduct a counterfactual analysis to regulate matching markets
with constraints. Extending the framework of Galichon and Salanié [11], we propose a method to
(1) estimate the utility functions of agents from currently available data about matching patterns, (2)
predict outcomes under counterfactual policies, and (3) design the welfare-maximizing tax scheme.
Our results suggest that there is a better way to implement regional constraints than the policy
currently used in practice.
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Our framework should be useful for PMs who want to figure out how costly it is to implement the
regional constraints. Although constraints are exogenously given in most papers in the literature
on matching with constraints, the PM often needs to set them balancing the tradeoff between their
tightness and the welfare loss. Our method allows her to estimate how much she should pay to meet
the different levels of regional quotas, and helps her decision making.

In the following, we discuss two possible future directions that must be of interest. First, our
framework relies on the large market approximation, assuming that each type has sufficiently many
agents. However, when the PM has access to detailed individual data, she may use it to design
a better policy. It is worth considering how we can utilize such fine-grained data in this setting.
Second, although our framework assumes the transferable utility, there is another thick strand of
research on matching that assumes non-transferable utilities. Galichon et al. [12] describes the general
framework to handle imperfectly transferable utility matching, which includes both transferable and
non-transferable utility matching as special cases. An extension of our framework to such a general
setting is also one promising future direction.
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A Omitted proofs

A.1 Proof of Lemma 1

Proof. For any type x worker i ∈ I , by definition of U , we have

Uxy ≤ ui − εiy, ∀y ∈ Y0

⇐⇒ ui ≥ Uxy + εiy, ∀y ∈ Y0

⇐⇒ ui ≥ max
y∈Y0

Uxy + εiy.

Similarly, for any type y worker j ∈ J , we have vj ≥ maxx∈X0
Vxy + ηxj .

Suppose to the contrary that there exists type x worker i ∈ I that satisfies

ui > max
y∈Y0

Uxy + εiy.

If i is matched with slot j ∈ J , then

ui + vj = Φij − wz(y)

>
(

max
y′∈Y0

Uxy′ + εiy′
)

+
(

max
x′∈X0

Vx′y + ηx′j

)
≥ Uxy(j) + εiy(j) + Vxy(j) + ηxj

≥ Φxy − wz(y) + εiy(j) + ηjx

= Φij − wz(y),

which includes a contradiction. Similarly we see a contradiction when we assume vj >
maxx∈X0

Vxy + ηxj .
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A.2 Theorem 1

First, we show two lemmas used in the proof.
Lemma 2. G and H are strictly increasing and strictly convex.

Proof. G is strictly increasing. Take any U1, U2 ∈ RN×M such that U1 ≥ U2 and U1 6= U2. Then
G(U1) ≥ G(U2) by definition. In addition, note that U1

xy > U2
xy holds for some x ∈ X and y ∈ Y .

Since Px has full support, we have
Prεi(ui = U1

xy + εiy) ≥ Prεi(ui = U2
xy + εiy) > 0.

Because Eεi [ui | ui = Uxy + εiy] is strictly increasing in Uxy , we have

Eεi
[
ui | ui = U1

xy + εiy
]
· Prεi(ui = U1

xy + εiy)

> Eεi
[
ui | ui = U2

xy + εiy
]
· Prηj (ui = U2

xy + εiy),

and thus G(U1) > G(U2) holds.

G is strictly convex. Take any U1, U2 ∈ RN×M and s ∈ [0, 1]. Since

sG(U1) + (1− s)G(U2) =
∑
x

nxE
[(

max
y

s(U1
xy + εiy)

)
+
(

max
y

(1− s)(U2
xy + εiy)

)]
≥
∑
x

nxE
[
max
y

sU1
xy + (1− s)U2

xy + εiy

]
= G

(
sU1 + (1− s)U2

)
holds, G is a convex function.

Now suppose U1 6= U2. Then U1
xy 6= U2

xy holds for some x ∈ X , y ∈ Y . Without loss of generality,
assume U1

xy > U2
xy . Since Px is full support,

Pr

({
εi | U1

xy + εiy > max
y′ 6=y

U1
xy′ + εiy′ ∧ max

y′ 6=y
U2
xy′ + εiy′ > U2

xy + εiy

})
> 0

holds. Therefore for any s ∈ (0, 1), we have

sG(U1) + (1− s)G(U2) > G
(
sU1 + (1− s)U2

)
,

which implies G is strictly convex. Similarly, we can show H is also strictly increasing and strictly
convex.

Lemma 3. For each x and y, if µxy > 0, then Uxy + Vxy = Φxy − wz(y).

Proof. Fix any x and y. Suppose that µxy > 0. Then there exists i and j such that x(i) = x,
y(j) = y, and dij = 1. Suppose toward contradiction that Uxy + Vxy > Φxy − wz(y). By the
definition of Uxy and Vxy , we have

ui − εiy + vj − ηxj > Φxy − wz(y),

which implies that ui + vj > Φ̃ij − wij . A contradiction.

Proof of Theorem 1.

Proof. Let’s consider the necessary and sufficient conditions of the solution to (D). Let
(λxy)x∈X,y∈Y , (λ̄z, λz)z∈Z be lagrange multipliers, then the Lagrangean denoted by L is computed
as follows;

L = G(U) +H(V ) +
∑
z∈Z

ōzw̄z −
∑
z∈Z

ozwz

+
∑

x∈X,y∈Y
λxy

(
Uxy + Vxy − Φxy + w̄z(y) − wz(y)

)
+
∑
z∈Z

λ̄zw̄z +
∑
z∈Z

λzwz.
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The KKT conditions are,
∂L
∂Uxy

= ∇xyG(U) + λxy = 0 ∀x ∈ X, y ∈ Y, (1)

∂L
∂Vxy

= ∇xyH(V ) + λxy = 0 ∀x ∈ X, y ∈ Y, (2)

∂L
∂w̄z

= ōz +
∑
y∈z

∑
x∈X

λxy + λ̄z = 0 ∀z ∈ Z, (3)

∂L
∂wz

= −oz −
∑
y∈z

∑
x∈X

λxy + λz = 0 ∀z ∈ Z, (4)

Uxy + Vxy − Φxy + w̄z(y) − wz(y) ≥ 0 ∀x ∈ X, y ∈ Y (5)

λxy ≤ 0, λxy

(
Uxy + Vxy − Φxy + w̄z(y) − wz(y)

)
= 0 ∀x ∈ X, y ∈ Y (6)

w̄z ≥ 0, λ̄z ≤ 0, λ̄zw̄z = 0 ∀z ∈ Z (7)
wz ≥ 0, λz ≤ 0, λzwz = 0 ∀z ∈ Z. (8)

This satisfies the linearly independent constraint qualification, which implies these are the necessary
conditions for the optimality.

From Lemma 2, the objective function of (D) is convex with respect to (U, V, w̄, w). Because
the constraints are linear in the parameters, KKT conditions are also sufficient conditions for the
optimality.

EAE =⇒ solution of (D) : Take any EAE (µ, (U, V,w)) and define w̄z = max{0, wz} and wz =

−min{0, wz} for all z ∈ Z.

Define λxy = −µxy for all x ∈ X, y ∈ Y . Then from condition 3 of EAE, the following holds;

−λxy = µxy = ∇xyG(U) = ∇xyH(V ), ∀x ∈ X, y ∈ Y.
This implies that (A.2) and (A.2)are satisfied. Now µxy ≥ 0 implies λxy ≤ 0. From condition 2 of
EAE,

Uxy + Vxy − Φxy + w̄z(y) − wz(y) = 0.

This implies that (A.2)) and (A.2) are satisfied.

Next, when we define

λ̄z =
∑
y∈z

∑
x∈X

µxy − ōz

λz =
∑
y∈z

∑
x∈X
−µxy + oz,

(A.2) and (A.2) are directly implied. Furthermore, by definition, w̄z, wz ≥ 0 for every z ∈ Z. And
condition 4 of EAE implies that λ̄z ≤ 0, λz ≤ 0. From condition 5 of EAE gives;

w̄z > 0 =⇒ wz > 0 =⇒
∑
y∈z

∑
x∈X

µxy = ōz

wz > 0 =⇒ wz < 0 =⇒
∑
y∈z

∑
x∈X

µxy = oz,

which implies that (A.2) and (A.2). So we are done with this part.

A solution of (D) =⇒ EAE : Take any (U, V, w̄, w, λ) satisfying KKT conditions and define µxy =

−λxy then (A.2) and (A.2) implies that µxy = ∇xyG(U) = ∇xyH(V ) and so condition 3 is satisfied.

(A.2) and (A.2) implies;

λ̄z = −
∑
y∈z

∑
x∈X

λxy − ōz ≤ 0 ⇐⇒
∑
y∈z

∑
x∈X

µxy ≤ ōz.
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Similarly, (A.2) and (A.2) implies;

λz =
∑
y∈z

∑
x∈X

λxy + oz ≤ 0 ⇐⇒
∑
y∈z

∑
x∈X

µxy ≥ oz.

These says that condition 4 is satisfied.

Define wz = w̄z − wz , then from (A.2) we get

wz > 0 =⇒ w̄z > 0 =⇒ λ̄z =
∑
y∈z

∑
x∈X

µxy − ōz = 0.

Now from (A.2),

wz < 0 =⇒ wz > 0 =⇒ λz = −
∑
y∈z

∑
x∈X

µxy + oz = 0.

Thus, we obtain condition 5 of EAE.

Next, from µxy = ∇xyG(U) = ∇xyH(V ), we get∑
y∈Y0

µxy =
∑
y∈Y0

∇xyG(U) = nx
∑
y∈Y0

Pr
(
{εiy | ui = Uxy + εiy}

)
= nx, ∀x ∈ X

∑
x∈X0

µxy =
∑
x∈X0

∇xyH(V ) = my

∑
x∈X0

Pr
(
{ηxj | vj = Vxy + ηxj}

)
= my, ∀y ∈ Y.

This is equivalent to condition 1 of EAE.

Lastly, Assumption 5 assures us the following; for any x ∈ X , y ∈ Y ,

−λxy = ∇xyG(U) = Pr
(
{εiy | ui = Uxy + εiy}

)
> 0

−λxy = ∇xyH(V ) = Pr
(
{ηxj | vj = Vxy + ηxj}

)
> 0.

(A.2) implies

Uxy + Vxy = Φxy − wz(y), ∀x ∈ X, y ∈ Y.
Hence, condition 2 of EAE is satisfied.

Therefore we are done with this part.

A.3 Proof of Corollary 1

Proof.

Existence : First, observe that the feasible set of (D) is nonempty and convex. Then by the theorem
of convex duality, (D) has a solution.

Uniqueness : Fix any EAEs (µ, (U, V,w)) and (µ′, (U ′, V ′, w′)). We want to show that
(µ, (U, V,w)) = (µ′, (U ′, V ′, w′)).

Let I(w) :=
∑
z∈Z ōz max{0, wz} −

∑
z∈Z oz(−min{0, wz}). Then, the objective function of (D)

can be rewritten as
g(U, V,w) := G(U) +H(V ) + I(w).

Note that I is convex, and hence g is also convex.

Consider
(µ′′, (U ′′, V ′′, w′′)) :=

1

2
(µ, (U, V,w)) +

1

2
(µ′, (U ′, V ′, w′)).

Note that (µ′′, (U ′′, V ′′, w′′)) is feasible in (D). Since G and H are strictly convex and any EAE
should be a solution to (D), we have U = U ′ = U ′′ and V = V ′ = V ′′; otherwise g(U ′′, V ′′, w′′) <
g(U, V,w) and this contradicts the optimality of (U, V,w).

Suppose toward contradiction that w 6= w′, or there exists z0 such that wz0 6= w′z0 . First, note that
since U = U ′ and V = V ′, we have µ = µ′ by the market clearing condition.

14



Case (i):
∑
y∈z0

∑
x µxy ∈ (ōz0 , oz0). By the complementary slackness condition, we have

wz0 = w′z0 . A contradiction.

Case (ii):
∑
y∈z0

∑
x µxy = ōz0 (> 0). By the complementary slackness condition, we have

wz0 ≥ 0 and w′z0 ≥ 0. Since wz0 6= w′z0 , assume without loss of generality that wz0 > w′z0 ≥ 0. Let
w̃ := (w′′z0 , w−z0). Observe that (U, V, w̃) is feasible in (D).

Then, we have

g(U, V, w̃)− g(U, V,w) = ōz0(w′′z0 − wz0)

< 0 (∵ w′′z0 < wz0),

which contradicts the optimality of (U, V,w).

Case (iii):
∑
y∈z

∑
x µxy = oz0 . If oz0 > 0, we can show wz0 = w′z0 in a similar manner to case

(ii).

Suppose that oz0 = 0. Assume without loss of generality that wz0 > w′z0 ≥ 0. Let w̃ := (0, w−z0),
and Ũ := (Uxy−wz0 , U−(xy)). Observe that (Ũ , V, w̃) is feasible in (D). Since function G is strictly
increasing in Uxy by Lemma 2, we have

g(Ũ , V, w̃) < g(U, V,w),

which contradicts the optimality of (U, V,w).

A.4 Proof of Corollary 2

The dual expression of (D) is

(P)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximizeµxy≥0

∑
(x,y)∈T

µxyΦxy + E(µ)

subject to
∑
y∈Y0

µxy = nx, ∀x ∈ X∑
x∈X0

µxy = my, ∀y ∈ Y

oz ≤
∑
y∈z

∑
x∈X

µxy ≤ ōz, ∀z ∈ Z

where E(µ) := −G∗(µ)−H∗(µ), and G∗, H∗ are the Legendre-Fenchel transform of G, H:

G∗(µ) := sup
U

{∑
x∈X

∑
y∈Y0

µxyUxy −G(U)
}

H∗(µ) := sup
V

{∑
y∈Y

∑
x∈X0

µxyVxy −H(V )
}
.

First, we will show the following lemma:
Lemma 4. For each i and j, let

Y ∗i ∈ arg max
y∈Y0

{Uxy + εiy} , X∗j ∈ arg max
x∈X0

{Vxy + ηxj} .

Then, we have
E(µ) =

∑
x∈X

nx E
εi∼Px

[
εi,Y ∗i

]
+
∑
y∈Y

my E
ηj∼Qy

[
ηX∗j ,j

]
Proof of Lemma 4. The proof can be found in Section 3 and 4 in Galichon and Salanié [11]. For this
paper to be self-contained, we will give the proof here.
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For each x ∈ X , let Ux := (Uxy)y∈Y0 and

Gx(Ux) := E
εi∼Px

[
max
y∈Y0

{Uxy + εiy}
]
.

Then, by definition, we have G(U) =
∑
x∈X nxGx(Ux).

Let µ̄xy := µxy/nx, which is the proportion of type-x agents matched with type-y agents. The
Legendre-Fenchel transform of Gx is

G∗x(µ̄x) :=


sup
Ux

∑
y∈Y0

µ̄xyUxy −Gx(Ux)

 (∑
y∈Y µ̄y ≤ 1

)
+∞ (o.w.)

, (9)

and it follows that G∗(µ) =
∑
x∈X nxG

∗
x(µ̄x). By the theory of convex duality, Gx is also a

Legendre-Fenchel transform of G∗x:

Gx(Ux) = sup
µ̄x

{∑
y

µ̄xyUxy −G∗x(µ̄x)

}
. (10)

Suppose that µ̄x attains the supremum in (A.4). By (A.4) and (A.4), we have

Gx(Ux) +G∗x(µ̄x) =
∑
y

µ̄xyUxy. (11)

Note that, under the large market approximation, we have

Gx(Ux) =
∑
i∈x

µ̄xyUy + E
εi∼Px

[
εi,Y ∗i

]
. (12)

Then, by (A.4) and (A.4), we have

G∗x(µ̄x) = − E
εi∼Px

[
εi,Y ∗i

]
.

Therefore, we have
−G∗(µ) =

∑
x∈X

nx E
εi∼Px

[
εi,Y ∗i

]
.

By a similar argument, we can show that

−H∗(µ) =
∑
y∈Y

my E
ηj∼Qy

[
ηX∗j ,j

]
.

Lemma 4 states that E(µ) captures the social surplus unobserved by the policy maker, which is the
summation of the error terms that contribute to the social surplus. Hence, the objective function of
(P) indeed represents the social welfare in this economy. Because the objective function is concave
and the constraints are linear, the optimal value of (P) coincides with that of (D). Therefore the EAE
maximizes the social welfare under the regional constraints. Furthermore, the optimal tax scheme
is obtained as the lagrange multipliers for the regional constraints, they only depend on the binding
region z.

B Omitted Explanations

B.1 Validity of Individual Equilibrium

First, we recall the definition of the individual equilibrium. Below ui and vj are interpreted as i’s and
j’s payoffs in the equilibrium, respectively.
Definition 5 (Individual Equilibrium). A profile (d, (u, v), w) of feasible matching d, equilibrium
payoffs of agents (u, v) ∈ R|I| × R|J|, and taxes w ∈ RL is stable if
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• (Individual rationality) For all i, ui ≥ Φ̃ij0 := 0, with equality if i is unmatched in d; for all
j, vj ≥ Φ̃i0j := 0, with equality if j is unmatched in d.

• (No blocking pairs) For all i and j, ui + vj ≥ Φ̃ij , with equality if i and j are matched in d.

We can expect that (d, (u, v), w) satisfies the stability condition in the economy by the following
reason. First, if i and j match, their payoff should satisfy ui + vj = Φ̃ij . Here we only assume that
they divide the joint surplus without any waste. Suppose, to the contrary, that ui + vj < Φ̃ij holds
for some i and j in a matching. These i and j are not matched with each other under the equilibrium
matching d. If they deviate from the current match and form a pair (i, j), they will produce the net
joint surplus Φ̃ij . Then they can divide the net joint surplus so that both of them can be strictly better
off. (We implicitly assume that they can reach such an agreement.) Therefore, ui + vj < Φ̃ij cannot
occur in the equilibrium.

B.2 Additional Explanation for Assumptions

To derive Theorem 1, we made five assumptions in total. We restate them below.

Assumption 1 (Regional Constraint). Each type y ∈ Y can belong to only one region. Denote the
region that type y belongs to by z(y) ∈ Z.

Assumption 2 (Large Market Approximation). Each type x has nx mass of continuum of agents
rather than distinct nx agents. Similarly we assume there are my mass of type y job slots.

Assumption 3 (Independence). For each x and i ∈ x, error term εiy is drawn from the distribution
Px. Similarly, for each y and j ∈ y, error term ηxj is drawn from the distribution Qy. The error
terms are independent across all i’s and j’s.

Assumption 4 (Additive Separability). For each x and y, Φ̃ij − εiy − ηxj is constant over the
individuals i ∈ x and j ∈ y, and denoted by Φxy .

Assumption 5 (Smooth Distibution with Full-Support). For each x and y, the cdf’s Px and Qy are
continuously differentiable. Moreover, supp(Px) = RN+1 and supp(Qy) = RM+1.

Assumption 1 is without loss of generality: if type y slots belong to region z1 and z2, we redefine the
type of slots in z1 as y(1) and z2 as y(2).

Assumption 2 implies that this is not a finite agent model as in [10, 22] but a large economy model
as in [3, 12, 21]. As mentioned in [14], large economy model usually disposes of the existence of
individuals and considers the matching outcomes defined as the pair of observable types as in the
current paper. This is originally to diminish the influence of the individual to compute the stable
matching under some externality. [11, 12] recently takes advantage of this model to identify (i.e.,
express the parameter of interest as a function of the distribution of the observed data) the matching
model. We follow this strategy to get the identification result from the econometric viewpoint.

Assumption 3 can be relaxed in some sense, but as mentioned in Aguirregabiria and Mira (2010), it is
rare to drop the independence assumption in the discrete choice literature because the model becomes
highly non-tractable.

Assumption 4 allows us to characterize the stable matching as the market equilibrium of discrete
choice problems from both the worker side and the job slot side over the observable types of the other
side. Additivity and separability are common assumptions in the econometrics literature [2, 6].

Assumption 5 ensures that we observe at least one match between any two observable types. This is
an essential assumption for our identification result. Imagine we do not observe any match between a
pair of (x, y). There are two possible cases for this to happen: (1) Φxy = −∞, or (2) just a realization
error. Full support assumption eliminates the second case, and thus we can assume that a type pair
suffers from infinite loss when we do not observe any matching between the pair. In this paper, we
focus finite surplus setting so we exclude the above situation by setting Assumption 5.
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B.3 Simulate EAE in a Larger Market

Although the EAE is relatively easy to compute by the convex programming (D), we measured how
long it takes to compute. We use CVXPY solver6 on our M1 Max Macbook Pro. We simulate the
markets with |X| = 10, 20 doctor types and |Z| = 5, 10, . . . , 100 regions. We assume each region
has 10 types of hospitals.

The actual JRMP problem has 47 regions (all prefectures in Japan) and approximately 10000 residents
in total each year. Here the market with 10 doctor types and 50 regions (500 hospital types) has 5000
doctor-hospital type pairs (two residents for each pair on average), which is enough large to imitate
the actual market.

For each |X|, |Y |, and |Z|, we define the populations as nx = 1.0/|X| for x ∈ X and my = 1.5/|Y |
for y ∈ Y . We set the lower bounds for all regions; oz = 0.3/|Z|. We do not impose upper bounds
on the regions. We set

Φxy := 2.0 + ξxy

for all x ∈ X, y ∈ Y , where ξxy are independent noise drawn from N(0, 1). We measure the time
to compute the EAE 10 times for each |X| and |Z|, and take the average of them. The result is
illustrated in Figure 3. It is clear that EAE is fast enough to be used for estimation and counterfactual
simulation.

Figure 3: Average computation time (seconds) to compute the EAE (an average of 10 trials). The
number of doctor types are |X| = 10, 20 and the number of regions are |Z| = 5, 10, 15, . . . , 100.
Each region has 10 hospital types.

B.4 How to Compute Alternative Equilibria

B.4.1 EAE upper-bound

Given a lower bound for oz = oz2 = oz3 , we compute EAE upper-bound as follows; we set the 41
candidates of the upper bound for z1 as B = {0.10, 0.11, 0.12, . . . , 0.50}, and

1. We take an upper bound for z1, ōz1 , from B from the smallest.
2. Compute the EAE under the regional constraint ōz1 (we do not impose other constraints; we

set ōz2 = ōz3 =∞ and oz = 0 for all z). Let the EAE matching be µ.
3. Check if the lower bounds for z2 and z3 are satisfied in the EAE; check whether both∑

x∈X
∑
y∈z2 µxy ≥ oz and

∑
x∈X

∑
y∈z3 µxy ≥ oz are satisfied.

• If they are satisfied, then the current EAE is the EAE upper-bound.
• Otherwise, we take another candidate of the upper bound for z1 from B which is one

step larger.
6https://www.cvxpy.org/
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4. Repeat the above process until we find an EAE upper-bound.

In the current setting, we successfully find an EAE upper-bound for every lower bound.

B.4.2 Cap-reduced AE

Given a lower bound for oz = oz2 = oz3 , we compute the AE without regional constraints as follows;
we set the 41 candidates of the artificial capacities of the urban hospitals y1, y2 as m̂ = m̂y1 =
m̂y2 ∈ B = {0.050, 0.055, 0.060, . . . , 0.25}, and

1. We take an artificial capacity m̂ from B from the smallest.
2. Compute the AE without constraints under the artificial capacities m̂y1 = m̂y2 = m̂ by (D’)

setting wz = 0 for all z ∈ Z (note that we do not impose any regional constraints). Let the
AE matching be µ.

3. Check if the lower bounds for z2 and z3 are satisfied in the AE; check whether both∑
x∈X

∑
y∈z2 µxy ≥ oz and

∑
x∈X

∑
y∈z3 µxy ≥ oz are satisfied.

• If they are satisfied, then the current AE is the cap-reduced AE.
• Otherwise, we take another candidate of m̂ from B which is one step larger.

4. Repeat the above process until we find a cap-reduced AE.

In the current setting, we successfully find a cap-reduced AE for every lower bound.

B.4.3 Budget-balanced AE

To compute the BBAE, we run the grid search; we set the candidates (grids) of taxes as

W =
{

(w1, w2, w3) ∈ R3 |

w1 ∈ {0, 0.5, 1.0, . . . , 10.0} and w2, w3 ∈ {−0.2,−0.19,−0.18, . . . , 0.00}
}
.

For each (wz1 , wz2 , wz3) ∈ W , we compute the AE without regional constraints by (D’) setting
(wz1 , wz2 , wz3). Then for each lower bound for oz = oz2 = oz3 , we select the equilibrium that
maximizes the social welfare among all budget-balanced equilibria that meet the given lower bounds
as BBAE; the BBAE is the solution to

max
µ∈M̂

∑
x∈X

∑
y∈Y

µxy
(
Φxy − wz(y)

)
where M̂ is the set of all µ (the AE without constraints for some w ∈W ) that satisfies∑

x∈X

∑
y∈Y

µxywz(y) ≥ 0 and
∑
x∈X

∑
y∈z

µxy ≥ oz for each z = z2, z3.
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