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Abstract
This paper considers the capacity expansion prob-
lem in two-sided matchings, where the policymaker
is allowed to allocate some extra seats as well as
the standard seats. In medical residency match,
each hospital accepts a limited number of doctors.
Such capacity constraints are typically given in ad-
vance. However, such exogenous constraints can
compromise the welfare of the doctors; some pop-
ular hospitals inevitably dismiss some of their fa-
vorite doctors. Meanwhile, it is often the case that
the hospitals are also benefited to accept a few extra
doctors. To tackle the problem, we propose an any-
time method that the upper confidence tree searches
the space of capacity expansions, each of which
has a resident-optimal stable assignment that the
deferred acceptance method finds. Constructing a
good search tree representation significantly boosts
the performance of the proposed method. Our sim-
ulation shows that the proposed method identifies
an almost optimal capacity expansion with a sig-
nificantly smaller computational budget than exact
methods based on mixed-integer programming.

1 Introduction
This paper considers the capacity expansion problem in two-
sided matchings, where the policymaker is allowed to allocate
some extra seats as well as the standard seats. The two-sided
matchings have a lot of real applications such as medical resi-
dency match [Roth, 1991] and school choice [Abdulkadiroğlu
and Sönmez, 2003]. The theory has been extensively devel-
oped across computer science and economics [Roth and So-
tomayor, 1990; Manlove, 2013]. To establish our model and
concepts, we use medical residency match as a running exam-
ple. In this literature, each hospital (school) accepts a limited
number of residents (students). Such capacity constraints (or
quotas) are assumed to be known and fixed in advance.

However, in practice, even for hospitals, or its stakehold-
ers, it is often uncertain how the capacity constraints are spec-
ified beforehand. Those could be flexible and variable more

∗Atsushi Iwasaki was supported by JSPS KAKENHI Grant
Numbers JP21H04890 and JP20K20752.

than the previous studies preclude. By pooling some extra
funding, hospitals can accept a few more residents. Schools
may be granted some budgets or dispatched teachers from
their district according to the demand.

Such a situation involves a lot of resource allocation prob-
lems where capacities are predefined, e.g., how many jobs
each machine takes in the jobshop scheduling problem. How
we should choose the capacities has been paid less attention
than it deserves, though they influence the performance gen-
erated by allocations.

A classical comparative statistic already analyzes the effect
of such expansion. If the capacity of some hospitals is ex-
panded, the welfare of every resident weakly improves [Roth
and Sotomayor, 1990]. However, it is rarely investigated how
capacities should be expanded to improve the total welfare.
Bobbio et al. [2021] have initiated the question of how lim-
ited extra seats should be allocated, keeping resulting match-
ings stable. The stability is a key concept for the two-sided
matching and if a matching is stable, no groups of residents
and hospitals have profitable deviations. The celebrated de-
ferred acceptance (DA) algorithm is known to find a stable
matching [Gale and Shapley, 1962]. The capacity expansion
with DA, i.e., finding the optimal allocation of extra seats in
the welfare of residents, is formulated as an integer quadratic
programming [Bobbio et al., 2021], which is computationally
challenging to solve exactly. In addition to the exact method,
they also developed some greedy heuristics, which run very
effectively yet are suboptimal.

This paper proposes an alternative method to solve the ca-
pacity expansion problem where the upper confidence tree
(UCT) searches the space of capacity expansions.1 Each pat-
tern of them has a resident-optimal stable assignment that
DA finds. Not only does UCT obtain an optimal solution
given a sufficiently large time, but also a policymaker can
stop UCT anytime to obtain a reasonably good solution,
which is important given the hardness of obtaining an opti-
mal solution. We then characterize a good tree representation
so that the tree search method efficiently exploits the struc-
ture of the capacity expansion problem. There have been
a certain amount of studies on two-sided matchings in the
AI community, although this literature has been established

1An implementation of our method is available at https://github.
com/CyberAgentAILab/uct capacity expansion.
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mainly in fields across algorithms and economics [Kamada
and Kojima, 2015; Biró et al., 2010; Fragiadakis et al., 2016;
Goto et al., 2014; Goto et al., 2016]. In many application
domains, various distributional constraints are imposed on
an outcome, e.g., regional maximum quotas are imposed on
hospitals in urban areas to allocate more doctors to rural ar-
eas [Kamada and Kojima, 2015].

2 Problem Setup
Let D = {d1, d2, . . . , dD} be the set of residents (doctors)
and H = {h1, h2, . . . , hH} be the set of hospitals. We con-
sider a bipartite graph whereD andH are connected by edges
E . Each edge represents that the resident is accepted by the
hospital. Residents and hospitals have their own preferences.
We denote h �d h′ if resident d prefers hospital h to hos-
pital h′. Similarly, we denote d �h d′ if hospital h prefers
resident d over resident d′. A vector q = (q1, q2, . . . , qH)
represents the quota of the hospitals. An instance of the resi-
dency match problem is a tuple Γ = (D,H,�, q), where �
denotes all preferences of the residents and the hospitals.

A matching M ∈ M is a subset of E such that the fol-
lowing criteria are met. Each resident d ∈ D has at most
one edge. Each hospital h ∈ H can have at most qh edges.
We say that resident d is unassigned if there is no edge from
d. We denote M(d) and M(h) to represent the hospital as-
signed to resident d and the set of the residents assigned to
hospital h, respectively. Given a matching M , we say a pair
(d, h) ∈ E is a blocking pair if (1) resident d is unassigned
or prefers hospital h to M(d), and (2) hospital h is such that
|M(h)| < qh or prefers resident d over at least one resident
in M(h). Matching M is stable if there is no blocking pair.

Gale and Shapley [1962] showed that a stable matching
always exists and proposed the deferred-acceptance (DA) al-
gorithm that yields a stable matching. The resident-proposing
DA finds the resident-optimal stable matching where no res-
ident is better off among all stable matchings [Roth and So-
tomayor, 1990]. That matching is also obtained by minimiz-
ing the total resident ranking under the stability constraints.
A resident ranking is denoted by rankd(h) the rank of hos-
pital h according to the resident d’s preference. This is also
referred to as the cost of the match (d, h). Given a matching
M , the total resident ranking is defined as∑

(d,h)∈M

rankd(h). (1)

DA gives a matching that minimizes Eq. (1) among all stable
matchings [Bobbio et al., 2021].

This paper improves the resident utilities by allowing ad-
ditional seats. Letting t ∈ NH be a non-negative vector, we
consider an expanded matching problem in which the capac-
ity of each hospital h is the sum of regular capacity qh and the
extended capacity th. A reasonable extension of the capacity
should not be very large and can accommodate the demand
of each hospital. Given this, we consider the following opti-
mization problem: Let

P =

{
(x, t) ∈ {0, 1}E ×Θ

∣∣∣∣ ∑
h∈H

xdh ≤ 1 ∀d ∈ D,

∑
d∈D

xdh ≤ (qh + th) ∀h ∈ H

}
, and

Θ =

{
t ∈ {0, 1, 2, . . . , B}H

∣∣∣∣ th ≤ bh ∀h,∑
h∈H

th ≤ B

}
be the set of matchings. The capacity expansion problem is
the following:

min
x,t

∑
(d,h)∈E

rankd(h)xdh (2)

s.t. (qh + th)

(
1−

∑
h′∈Sdh

xdh′

)
≤

∑
d′∈Tdh

xd′h ∀(d, h) ∈ E ,

(x, t) ∈ P.

where Sdh = {h′ ∈ H : rankd(h′) ≤ rankd(h)} is the set
of indices of hopsitals that resident d prefers at least as hos-
pital h; similarly, Tdh = {d′ ∈ D : rankh(d′) < rankh(d)}
is the set of indices of residents that hospital h prefers more
than resident d. Namely, keeping stability, we maximize the
residents’ welfare subject to the capacity constraints of the
hospitals, where the capacity can be relaxed up to B seats.
Moreover, we assume that each hospital h has its own expan-
sion limit bh.
Remark 1. (Complete preference) The optimization of
Eq. (2) requires a complete preference of all residents and
hospitals, which is often impractical. For example, in the real
data of a residency matching program, an average resident
only applies to four or five hospitals. In this case, we can add
a dummy hospital of infinite capacity and rank all unpreferred
hospitals after the dummy hospital.

Bobbio et al. [2021] proved the computational hardness of
the problem of Eq. (2) without hospital-wise limit bh.
Proposition 1. (Hardness result [Bobbio et al., 2021]) The
decision version of Eq. (2) is NP-complete even in the case
where there is no hospital-wise limit bh.

The key idea of our algorithm for this problem is that, when
we fix an expansion vector t ∈ Θ, the capacity expansion
problem of Eq. (2) boils down to the standard matching in-
stance Γ = (D,H,�, q + t) that we can solve efficiently by
DA.2 Therefore, a tree search on the space of Θ combined
with DA is expected to give an efficient solution.

3 Method
This section proposes our algorithm to solve Eq. (2). We ap-
ply Upper Confidence Tree (UCT) [Kocsis and Szepesvári,
2006], which belongs to a class of Monte Carlo tree search
methods [Browne et al., 2012]. One of the most success-
ful examples of UCT is for abstract games such as the
Game of Go [Wang and Gelly, 2007; Yoshizoe et al., 2011;
Silver et al., 2016] where the goal is to find the best next
move in a game tree. Another aspect of UCT is diverse rec-
ommendation method, which minimizes total regret, searches

2The computational complexity of DA is O((D +H)2).



Figure 1: Three tree representations. In the iterative tree (left), the node of the grey dot corresponds to a vector t = (2, 0, 1), with its
corresponding path expanding hospitals 1 and 3 once, and expanding hospital 1 once again. An edge in the iterative priority tree (middle)
is the same as the iterative tree, but its path only includes nonincreasing order of edges (e.g., 1 → 3 → 1 is not allowed). An edge in the
batch tree (right) corresponds to how many extended seats we allocate to each hospital (= t1, t2, t3). The node of the grey dot in the batch
tree corresponds to a vector of t = (5, 3, 1). Ordering of the hospitals matters in the iterative priority and the batch trees; the hospitals that
receive large expansion should be numbered earliest. All leaves of the iterative and iterative priority trees are at depth B, whereas the path
length to a leaf of the batch tree varies: It stops branching when

∑
h th = B.

for different solutions of reasonable objective value [Bosc et
al., 2018]. In this paper, we use UCT to find a global opti-
mum node in a tree Tall.

UCT consists of a sequential process of traversing a tree
structure where each tree node i is associated with its value vi.
We use n ∈ {1, 2, . . . , N} to denote the number of rounds.
The entire tree Tall is typically very large, and UCT tries to
develop a subtree of it. We denote the subtree of round n by
T (n). Each node i in the current tree is associated with a
tuple (Vi, Ni) ∈ R2, where Vi is the sum of rewards and Ni

the number of times at which node i is traversed. The value
µ̂i := Vi/Ni is an estimator of vi, and its standard deviation
is proportional to

√
1/Ni. Each round consists of selection,

development, simulation, and backpropagation steps.
Selection: At each iteration, UCT traverses the tree from the
root. At each node i, it chooses a child node c with the maxi-
mum UCB value:

UCB(c) := µ̂c + Cp

√
log(Ni)

Nc
,

where Cp > 0 is the parameter that determines how much
exploration it attempts.
Development: When it reaches a node k that is out of the
current tree, it adds the node to the current tree.
Simulation: Based on the reached node k, it conducts a ran-
dom play to find l, which is a leaf that stems from k.
Backpropagation: Letting vl be the value of the leaf l, it
updates the statistics of all nodes that we have traversed in
this round: Vi ← Vi + vl, Ni ← Ni + 1 for each node i
during the backpropagation.

The four steps above are quite standard in UCT. For a more
algorithmic description, see Algorithm 1 in the appendix.

3.1 Tree representation of expansion space
Unlike abstract games where the game tree is inherent, the re-
lation between a tree and the capacity expansion in our prob-

lem is nontrivial. This section describes the mapping from a
tree node into an expansion t ∈ Θ.

In the capacity expansion problem defined in Eq. (2), DA
yields an optimal solution given a fixed expansion vector t.
Therefore, we consider a tree where each node corresponds to
an expansion vector t, and each leaf is an expansion of limit∑

h∈H th = B. The value vi at each node i is the objective
value of DA for the corresponding expansion.

We consider the following criteria are important in con-
structing a good tree representation of an expansion.

1. Faithfulness: The tree preserves the inclusion relation-
ship of the original expansion vector space: if node j
is a descendant of node i, then t(j) − t(i) ≥ 0, where
t(i), t(j) be corresponding expansions of nodes i, j and
t(j) − t(i) ≥ 0 means all the features of the vector
t(j)− t(i) are non-negative.

2. Nonredundancy: The mapping is one-to-one. Namely,
for any expansion vector t ∈ Θ such that

∑
h th = B,

there exists only one leaf of tree Tall. Redundancy in a
tree representation compromises the search efficiency.

3. Decisiveness: Assuming that a tree representation is
faithful, the tree representation is decisive if branching
in a shallow layer is more informative than the one in a
deep layer. In our case, allocations related to important
hospitals should appear in a shallow layer of the tree.

Table 1: Comparison of the three tree representations with respect
to the criteria.

Faithfulness Nonredundancy Decisiveness

Iterative tree X
Iterative priority tree (IPT) X X
Batch tree (BT) X X X



Considering those criteria, we propose the three tree repre-
sentations in Figure 1. In all of the three representations, the
root node r corresponds to the zero vector t = (0, 0, . . . , 0)
that corresponds to no expansion. Table 1 illustrates which
properties are satisfied in each of the representations. We will
discuss the idea behind them.

The iterative representation, which is the most straightfor-
ward, builds an H-ary tree.3 Each edge corresponds to allo-
cating a seat to one of the hospitals. As a result, each path
from the root to depth B represents an expansion of size B.
Although the iterative representation is faithful, it is redun-
dant. For example, consider the case of three hospitals. Let
1 → 2 → 2 to denote a path on the tree that sequentially
expands hospitals 1, 2, 2. An expansion vector (2, 1, 0) cor-
responds to three different path on the tree (1 → 1 → 2,
1→ 2→ 1, and 2→ 1→ 1). As a result, UCT with iterative
tree representation searches an unnecessary large representa-
tion space, which increases the computational burden.

To deal with this issue, we introduce an improved tree rep-
resentation of the expansion, which we call the iterative pri-
ority tree (IPT). For each node i, it only allocates a node with
its priority higher than the most prioritized hospital that has
been allocated a seat. IPT solves the issue of redunduncy in
the iterative tree:

Proposition 2. (Nonredundancy of IPT) For each expansion
vector t ∈ NH, there exists a unique node in IPT.

Proof. Each expansion uniquely corresponds to a nonincreas-
ing sequence of numbers. For example, expansion t =
(1, 3, 1) corresponds to 3 → 2 → 2 → 2 → 1. It is easy
to confirm that, in the iterative priority tree, this is the unique
path that leads to the desired expansion.

While the IPT is nonredundant, there still remains some
space for improvement. The batch tree (BT) representation
fully exploits the priority information to allocate more than
one seats to popular nodes, which reduces the depth of the
optimal solution in the tree. Namely, each depth of BT cor-
responds to how many seats to allocate to each hospital. The
following proposition states that the properties of BT:

Proposition 3. (Nonredundancy and decisiveness of BT) BT
is nonredundant. It is also decisive, that is, if the optimal
solution aligns with the expansion vector (i.e., t1 ≥ t2 ≥
t3 ≥ · · · ≥ tH ), then BT minimizes the depth of the optimal
node among all trees such that each edge allocates seats to
one hospital.

Proof. The nonredundancy is trivial. In the following, we
derive the decisiveness of the BT. Assume that the optimal
expansion vector is such that t1 ≥ t2 ≥ t3 ≥ · · · ≥ tH , and
let h be the first index such that th = 0. BT includes the path
of depth h− 1 that leads to this allocation.

3.2 Ordering hospitals
We introduce two ideas for ordering hospitals that we use in
IPT and BT. The first idea is to order hospitals in terms of

3Note that H is the number of the hospitals.

their popularity

Popularity(h) :=
∑
d∈D

rankd(h).

We use the term “popularity” because it is the total rank
of hospital h in view of residents. Note that this value is
also referred to as the Borda count in the context of social
choice [Moulin, 1994]. A smaller value represents a more
popular hospital.

The second idea is utilizing potential envies that may not
be justified so that we could construct a better decision tree
of the hospitals. Namely, let

Envy(h) :=
∑
d∈D

1[rankd(h) < rankd(M(d))]

be the potential envy that the residents have toward the ones
matched to hospital h in matchingM . The score indicates the
number of residents who prefer hospital h over their matched
hospital in M . For calculating M , we run DA with no expan-
sion before running UCT to determine the ordering.

Avoiding multiple entries. Since the evaluation of each
node (i.e., DA with a given expansion vector) is determin-
istic, we can restrict the node selection so that a node is never
evaluated twice. In the backpropagation step, we mark the
node k as “evaluated” if it is a leaf of Tall. Moreover, for each
ascendant node, if all children of the node are evaluated, then
we mark that node as evaluated. In the selection and simula-
tion phase, the evaluated nodes are never visited again.

3.3 Consistency of the method
This section analyzes the proposed method. The first result is
a trivial consequence of avoiding multiple entries:

Proposition 4. (Worst-case sample complexity) UCT with
iterative tree finds an optimal solution in N = |Tall| rounds.

Proof. Since the development step adds a node to T (n) at
each round n, it follows that it obtains the optimal solution if
N reaches the number of the nodes |Tall|.

We further propose a nontrivial analysis by follow-
ing the analysis of the original UCT by [Kocsis and
Szepesvári, 2006]. The largest difference is that Kocsis and
Szepesvári [2006] analyzed the average quality of the se-
lected action (i.e., regret), whereas we are interested in the
quality of the best path, which corresponds to the optimal so-
lution of the capacity expansion problem.

Let µ̂i,m = Vi/m be the mean of vi over the first m visits,

and Ui,m,n = µ̂i,m + Cp

√
log n
m be the corresponding UCB

value. Let W be the maximum number of the children of a
node and DT be the depth of the tree.4 Let v∗i be the maxi-
mum value of the leaves that are descendants of node i. Let
v∗ = v∗r be the global optimal value, where r is the root node.
The following assumption is essentially the same as the one
in [Kocsis and Szepesvári, 2006]:

4That is W = H,DT = B for iterative and iterative priority
tree, or W = B,DT = H for the batch tree.



Table 2: Average percentage gaps between the solution found by the Agg-Lin and the solution found by each method for Set 1 experiments.
UCT with iterative priority trees has three different orderings, i.e., random, popularity, and envy-based, each of which is denoted by IPT-R,
IPT-P, and IPT-E. As well, UCT with batch trees has the three variants: BT-R, BT-P, and BT-E. “0.0” indicates the value is equal to Agg-Lin.
Negative values mean the temporal value of Agg-Lin is outperformed.

H B α Baseline UCT (proposed)
LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

5 5 0.0 7.5 5.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 30 0.0 6.3 32.9 1.3 34.5 0.0 0.0 0.4 0.0 0.0

15 5 0.0 8.9 4.6 0.5 0.5 0.05 0.09 1.1 1.1 1.1
15 30 0.0 23.2 25.3 17.8 18.0 15.5 10.4 19.9 15.4 6.9
5 5 0.2 1.8 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 30 0.2 3.6 6.4 1.6 0.9 0.1 0.03 0.4 0.09 0.1

15 5 0.2 2.6 0.8 0.09 0.0 0.0 0.0 0.2 0.06 0.06
15 30 0.2 4.1 4.3 2.7 2.5 1.3 1.4 1.4 0.3 0.3
5 5 0.4 0.6 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
5 30 0.4 1.1 2.1 1.4 0.1 0.0 0.0 0.1 0.0 0.0

15 5 0.4 1.1 0.3 −0.08 −0.09 −0.1 −0.1 0.02 −0.09 −0.09
15 30 0.4 0.8 0.8 0.5 0.05 −0.6 −0.6 0.04 −0.8 −0.8

Table 3: Average run times for Set 1 (seconds).

H B α Baseline UCT (proposed)
Agg-Lin LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

5 5 0.0 24.01 0.01 0.06 10.09 0.64 0.64 0.65 0.86 0.86 0.86
5 30 0.0 11.85 0.01 0.19 35.60 45.38 39.84 39.92 36.93 38.83 38.03

15 5 0.0 854.91 0.02 0.94 52.11 56.98 54.88 54.31 54.76 53.50 53.37
15 30 0.0 362.87 0.02 3.34 177.00 167.24 166.36 160.77 149.91 139.90 139.74
5 5 0.2 37.79 0.01 0.09 15.59 0.98 0.99 0.99 1.30 1.31 1.32
5 30 0.2 55.79 0.01 0.44 89.59 94.44 93.57 94.46 91.78 90.11 90.06

15 5 0.2 2740.02 0.03 1.80 129.87 129.35 129.18 130.38 125.60 128.63 128.88
15 30 0.2 3527.88 0.03 7.14 384.11 376.15 370.17 370.66 343.04 362.58 361.80
5 5 0.4 86.30 0.01 0.09 15.04 0.98 0.97 0.97 1.30 1.29 1.30
5 30 0.4 294.07 0.01 0.54 123.79 130.87 129.49 129.18 123.63 123.91 123.89

15 5 0.4 3600.21 0.03 2.38 169.40 166.00 166.96 168.14 168.51 166.51 166.11
15 30 0.4 3600.41 0.04 9.24 578.57 606.01 574.18 584.77 553.69 571.35 572.87

Figure 2: Total resident rankings (costs) of the proposed algorithms. Horizontal axis indicates the number of rounds. The dotted lines
represent the total costs obtained by Grdy, LPH, and Agg-Lin.

Assumption 1. (Confidence bound) We assume
P [Ui,n,m ≥ v∗i ] ≥ 1− 1/n2.

Definition 1. (∆-optimal tree) Let ∆ > 0 be arbitrary. The
∆-optimal subtree is defined recursively as follows. First,
it includes the root of the original tree. For each node i in
the subtree, add each children c such that v∗i − v∗c ≤ ∆. In
other words, ∆-optimal subtree is a subtree where each edge
is suboptimal at most ∆. Let S(∆) be the number of the
nodes in the ∆-optimal subtree.

Theorem 5. If Assumption 1 holds for any node i, then with
probability at least 1− o(N−1), UCT finds at least one node
in the ∆-suboptimal tree if N satisfies

N > WS(∆)
(Cp)2 logN

∆2
.

The proof of Theorem 5 is in Appendix C.

Remark 2. (Implication) The solution of the node i in ∆-



Table 4: Average percentage gaps between the solution found by the Agg-Lin and the solution found by each method for JRMP.

B Baseline UCT (proposed)
LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

10 0.2 0.3 1.3 1.1 0.04 0.06 0.9 0.02 0.02
30 0.4 1.1 4.8 3.7 0.1 0.4 1.7 0.02 0.09

Table 5: Average run times for JRMP (seconds).

B Baseline UCT (proposed)
Agg-Lin LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

10 247.89 0.08 9.35 20.42 22.11 21.49 22.08 20.58 21.13 21.16
30 438.20 0.08 27.12 62.72 74.68 73.18 73.65 77.30 74.98 78.20

suboptimal tree is at least

vi ≥ v∗ −DT ∆.

Therefore, letting ∆ be sufficiently small and N be suffi-
ciently large, UCT finds an almost optimal solution. The re-
quired number of N depends on S(∆), which corresponds to
the number of close-to-optimal children.

Although our analysis gives a complexity bound based on
the structure of the tree, we still think this analysis (as well
as any existing analysis of UCT) is not very satisfying. We
discuss the limitation of this analysis in Appendix D.

4 Evaluation
This section empirically evaluates our algorithm via synthetic
and real datasets. We compare our algorithms with the ones
by [Bobbio et al., 2021]: the greedy algorithm (Grdy), the lin-
ear programming-based heuristic (LPH), and the aggregated
linearization (Agg-Lin).

Let us enumerate existing algorithms: First, Grdy is an al-
gorithm that allocates B expansion seats iteratively such that
each allocation maximizes the marginal cost reduction. Sec-
ond, LPH first computes a minimum cost matching without
stability constraints via minimum-cost flow to fix the expan-
sion seats, and then uses DA to obtain a stable matching. Fi-
nally, Agg-Lin is an exact method that uses McCormick en-
velopes and solves a mixed integer programming, which is
computationally intensive. 5 We warm-up Agg-Lin as sug-
gested by [Bobbio et al., 2021].

For our UCT method, we setN = B×103 in synthetic data
experiments, N = B × 102 in real data experiments. The
value of Cp, which determines the tradeoff between explo-
ration and exploitation, is set to be

√
0.002. We consider this

parameter is robust enough to cover all settings. We imple-
ment our simulation with Python 3 and solve the mathemati-
cal programming using Gurobi, which is in favor of Agg-Lin.
We restrict the runtime for each method to one hour.

Let us describe the procedure of generating the datasets.
First, we build two synthetic datasets. Set 1 involves B but
each hospital does not have its expansion limit bh. Set 2 in-
volves B as well as bh for each hospital. Note that the setting
of Set 1 is similar to the experimental section in [Bobbio et

5See Appendix A for the comparison between general methods
for solving mixed integer programming and our UCT.

al., 2021]. Regarding the preference among the residents, we
follow the setting [Goto et al., 2016], which involves a corre-
lation parameter α ≥ 0. Larger value of α implies a stronger
correlation among the preferences. Note that α = 0 (no cor-
relation) corresponds to the setting of [Bobbio et al., 2021].
We set D := |D| = 1, 000, and conduct experiments varying
the parameters H := |H|, B, bh, and α. For each combina-
tion of parameters, we average the results for 10 instances.
The details of the data generation are in Appendix E.2. The
limitation of this analysis in Appendix D.

Second, we generate the dataset, JRMP, based on Japan
Residency Matching Program 2007 [Kamada and Kojima,
2015], which matches medical hospital students (residents)
with residency training programs. We extracted 1, 287 res-
idents in the Tokyo district who match with 50 + 1 (1 for
a dummy) hospitals with a resident-side preference. We set
B ∈ {10, 30} for the limit of capacity expansion. For eachB,
we average the results for 10 instances. We place the details
of the dataset in Appendix E.3.

Tables 2 and 3 illustrate the quality of solutions and its run-
time for Set 1, respectively. We place the results for Set 2 in
Appendix E.4. Also, we place Tables 4 and 5 for the JRMP
data. Note that Table 2 indicates the average percentage gap
in the total resident ranking (TRR) defined in Eq. (1):

100× (TRR of the method)− (TRR of Agg-Lin)
(TRR of the method)

.

Agg-Lin always outputs an optimal solution upon the com-
pletion. However, as in Table 3, it does not run within one
hour for large instances with positive correlation α. In that
case, we use the temporal value that Gurobi outputs, which
can be suboptimal and the percentage gap can be negative.

Among the algorithms we consider, the two greedy meth-
ods (Grdy and LPH) run very fast (< 10 seconds) and output
a suboptimal solution. Both of them are outperformed by all
variants of ours. In particular, BT outperformed iterative tree
and IPT, and using the popularity and envy-based orderings
outperformed the random one.

Figure 2 describes the objective value as a function of
rounds, which indicates an early termination of BT often has
a satisfying solution. In summary, BT with envy/popularity-
based ordering yields the best results among our algorithms.
Our algorithms run 2–20 times faster than Agg-Lin, and the
quality of the solution is close to optimal.



5 Conclusion
This paper sheds light on the capacity expansion in the two-
sided matching to consider a flexible allocation of extra seats
within a given limit beforehand. To handle this NP-Complete
problem, we develop a UCT-based search method and verify
that it outperforms the previous approaches. Future works in-
clude (1) extending it to matchings with constraints that need
not admit stable matching and (2) utilizing other tree search
algorithms such as Nested Monte-Carlo Search [Cazenave,
2009; Rosin, 2011].
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A Comparison Between Branch-and-bound
and UCT

The aggregated linearization method [Bobbio et al., 2021]
linearlizes the original objective (i.e., Eq. (2)) and uses an off-
the-shelf solver of mixed integer programming. The branch-
and-bound (BB) method is one of the most promising meth-
ods for the mixed integer programming.6 BB for a minimiza-
tion problem involves a lower bound (= solution of the linear
relaxation) and an upper bound (= the current best feasible
solution). BB and UCT both utilize a tree structure and are
an iterative process of refining a solution. Here are the differ-
ences between BB and UCT.

• Branch-and-bound, applied to our problem, searches the
(linearlized version of) joint space of (x, t) ∈ {0, 1}E ×
Θ whereas UCT only searches for the space of t ∈ Θ,
which is significantly smaller than the joint space. UCT
exploits the fact that DA optimizes x given t.

• For obtaining a feasible solution, general solvers adopt
general heuristics that are ignorant of the problem struc-
ture of capacity expansion, whereas UCT exploits the
structure of the problem (i.e., the priority of the hospi-
tals and good tree representation on Θ). Giving a good
feasible solution enables a more aggressive branching,
and we may combine UCT with branch-and-bound in
that sense.

In summary, UCT exploits the structure of the problem un-
like general solvers with BB. In our simulation, we demon-
strate UCT provides a better solution than the intermediate
solution of the exact method for large instances with a shorter
amount of runtime, even though the implementation of UCT
in Python is in favor of the exact method.

B Algorithmic Description of UCT
Algorithm 1 describes the steps in our UCT method. UCT can
be viewed as a combination of multi-armed bandit algorithm
and monte-carlo search.

C Proof of Theorem 5
Proof. Let N ′ = N − 1. We show that, with a high proba-
bility, any node that is not in the ∆-optimal subtree is visited
as most max

(
N ′

WS(∆) ,
(Cp)2 log N

∆2

)
rounds. This implies that

UCT spends at most max(N−1,WS(∆)
(Cp)2 log N

∆2 ) rounds7

in a path that includes a node outside the ∆-optimal subtree;
from which it visits a path in the ∆-optimal subtree if

N > WS(∆)
(Cp)2 logN

∆2

rounds.

6Note that BB is also adapted by Gurobi, which combines
BB with many efficient heuristics https://www.gurobi.com/resource/
mip-basics/

7The number of the nodes that has an incoming edge from a node
of ∆-optimal subtree is at most WS(∆).

Algorithm 1 Upper Confidence Tree for Searching Capacity
Expansion

Require: # of Rounds N .
Initialize the tree with the root node T (1) = {r}.
for n = 1, 2, . . . , N do

Set the current node i to the root node: r.
while Current node i is in T (n) do

Find the most promising child c and set the current
node to c, where

arg max
c′

UCB(c′).

{Selection}
end while
k ← i.
Add the current node k to the tree T (n+ 1)← T (n) ∪
{k} and initialize the related statistics (Vk, Nk) =
(0, 0). {Development}
Randomly select a leaf l of Tall, which is one of the
descendants of the current node k. Evaluate vl that
is the result of DA with the corresponding expansion.
{Simulation}
Backpropagate value vl from k up to the root node: For
each node i between k and r, it updates Vi ← Vi +
vl, Ni ← Ni + 1.{Backpropagation}

end for

Assumption 1 implies that the event⋃
n≥max

(
N′

WS(∆)
,
(Cp)2 log N

∆2

)
{
Ui,n,Nc(n) ≥ v∗i

}
(3)

occurs with probability at most
N∑

n≥ N′
WS(∆)

1

n2
≤ N

(
WS(∆)

N ′

)2

≤ 2(WS(∆))2

N

and its union bound over S(∆) nodes occurs with probability
at most 2W 2(S(∆))3N−1. In the follows, we assume Eq. (3)
for any node in the ∆-suboptimal tree.

Let i be an arbitrary node in the ∆-suboptimal tree and n
be an arbitrary round. Suppose that UCT visits a node j that
is not in the ∆-suboptimal tree for more than

Nj(n) > max

(
N ′

WS(∆)
,

(Cp)2 logN

∆2

)
(4)

times. We have

Uj,n,Nj(n) ≥ Ui,n,Nc(n)

≥ v∗i (by Ineq. (3))

Moreover, by definition of the UCB value, we have

Uj,n,Nj(n) := µ̂j,Nj(n) + Cp

√
log n

Nj(n)

≤ v∗j + Cp

√
log n

Nj(n)

https://www.gurobi.com/resource/mip-basics/
https://www.gurobi.com/resource/mip-basics/


≤ v∗j + Cp

√
logN

Nj(n)

Combining these two equations yields

Nj(n) ≤ (Cp)2 logN

(µ∗i − µ∗j )2
≤ (Cp)2 logN

∆2

which contradicts with Eq. (4). By contradiction, node j is
never visited again after Eq. (4) is satisfied.

In summary, with probability at least 1 −
2W 2(S(∆))3N−1, Eq. (3) holds for any node in the ∆-
suboptimal tree. Under Eq. (3), any node that is not in the ∆-
optimal subtree is visited as most max

(
N ′

WS(∆) ,
(Cp)2 log N

∆2

)
rounds, from which it visits at least one path in the ∆-optimal
subtree if

N > WS(∆)
(Cp)2 logN

∆2
.

D Comparison of Existing Theoretical Results
Assumption 1, which is essentially the same as the one in the
literature,8 is very strong and is not satisfied unless the tree is
fully developed.9 We are not sure if any analysis of UCT gets
rid of this limitation. Still, given the overwhelming utility of
the UCT method in many practical domains, we consider the
value of UCT cannot be overstated.

Recently, there are more solid analyses that rely on less
restrictive conditions. However, these analyses tend to mod-
ify the original UCT and do not apply to our case. One of
the seminal papers by [Feldman and Domshlak, 2014] ana-
lyzed a variant of UCT called BLUE. To get rid of stringent
assumptions, BLUE considers a two-phase strategy that con-
sists of the development and evaluation phases. Another no-
table work by [Kaufmann and Koolen, 2017] brought a solid
analysis on a fully developed game tree.

Note that the game tree search is inherently different from
our problem. In a two-player zero-sum game, the best move
for the black player is the worst move of the white player,
and thus the value is flipped at each edge, which enables safe
pruning of the tree (i.e., alpha-beta cuts [Schaeffer, 1989],
or its confidence-based pruning in [Kaufmann and Koolen,
2017]).

E Details of simulations
E.1 Computational environments:
Our program is implemented in Python 3. Linear program-
ming problems and mixed integer programming problems
are solved by the Gurobi optimizer. We consider this set-
ting is in favor of the aggregated linearization method, which
fully utilizes the power of the state-of-the-art optimizer,

8Eq. (3)–(4) in [Kocsis and Szepesvári, 2006]
9Here, we use the word “development” to denote the expansion

of the upper confidence tree so that it is not confused with the ca-
pacity expansion.

whereas Python implementation has some space for improve-
ment (e.g., reimplementation via low-level programming lan-
guages). All simulations are conducted on the Google cloud
platform (e2-standard-8 instance, eight-core, 32GB memory).
All programs are single-threaded.

E.2 Details of synthetic data
We build two sets of experiments. Set 1 involves B but each
hospital does not have its expansion quota bh. Set 2 involves
B as well as bh for each hospital h. Note that the setting of
Set 1 is similar to the experimental section in [Bobbio et al.,
2021].

We generate preference lists for hospitals and capacities
uniformly at random satisfying the following provisions: (1)
no hospital has capacity zero; (2)

∑
h∈H qh = D. Preference

lists of residents are generated by the following procedure:
(1) generate a common preference vector pcommon ∈ [0, 1]H

uniformly at random; (2) generate an vector pd ∈ [0, 1]H

for each resident d ∈ D uniformly at random; (3) calcu-
late each resident’s preference by (1 − α)pd + αpcommon

where α ∈ [0, 1] is the parameter that controls the corre-
lation level of resident preferences; (4) calculate the value
rankd(h) as the order of the features in pd. For Set 2 experi-
ments, we generate bh ∈ [0, B) uniformly at random satisfy-
ing
∑

h∈H bh ∈ [B,B ×H).
We set D = 1, 000, and conduct experiments varying the

parameters D, B, and α. For each combination of parame-
ters, we average the results for 10 instances.

E.3 Details of real data
We tested the performance of the proposed method in the
dataset of Japan Residency Matching Program (JRMP) 2007
[Kamada and Kojima, 2015], which matches medical hospi-
tal doctors with residency training programs. For ease of dis-
cussion, we call each training program “hospital”. Unlike its
U.S. counterpart (i.e., the National Resident Matching Pro-
gram), JRMP does not have “match variation” (e.g., consid-
eration of married couples) and adopts the resident-proposing
DA algorithm. There are approximately 10,000 doctors in
JRMP 2007. Due to computational limitations, we only used
a subset of the data; each region has a regional cap, and we
focus on the Tokyo region that admits 1, 287 doctors. The
original data contains 123 hospitals, and we clustered them
into C = 50 (batched) hospitals. Each hospital h has a maxi-
mum number of admissions ah, which we set as qh+bh = ah.
We set qh to be proportional to ah such that

∑
h ah = 1, 287.

The dataset also contains the number of applications for each
hospital. There are total 6, 233 applications (4.84 per hospi-
tal). Unfortunately, we do not have the information of which
doctor applied to which hospital: We randomly allocate ap-
plications such that (1) each doctor applies to at most 8 hos-
pitals10 and (2) the number of applications for each hospital
is the same as the original data. Since the preference is partial
(i.e., each doctor only ranks a very limited number of hospi-
tals), we introduce a dummy hospital that has infinite capacity
and its rank for each doctor is immediately after the least pre-
ferred hospital that the doctor applies. By the definition of

10Which aligns the original data [Kamada and Kojima, 2015].



stable matching, doctors who do not match the hospitals they
applied match the dummy hospital.

In summary, we have 1, 287 residents (doctors) who match
50 + 1 (1 for a dummy) hospitals with a doctor-side prefer-
ence. We set B ∈ {10, 30} for the limit of capacity expan-
sion. For each B, we average the results for 10 instances.

E.4 Simulation results for Set 2
Tables 6 and 7 show the results for Set 2. The high-level con-
clusion of these results is not very different from the results
for Set 1.



H B α Baseline UCT (proposed)
LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

15 30 0.0 20.3 28.0 18.5 25.9 13.6 5.0 18.2 13.5 4.4
15 30 0.2 4.1 3.5 2.6 3.4 1.2 1.5 2.0 1.1 1.0
15 30 0.4 1.5 1.0 0.5 0.02 −0.4 −0.4 0.00 −0.8 −0.9

Table 6: Average percentage gaps between the solution found by the Agg-Lin and the solution found by each method for Set 2 experiments.

H B α Baseline UCT (proposed)
Agg-Lin LPH Grdy Iterative IPT-R IPT-P IPT-E BT-R BT-P BT-E

15 30 0.0 247.95 0.02 2.56 143.65 137.46 136.33 127.89 111.65 114.10 109.93
15 30 0.2 2752.07 0.03 6.02 426.97 413.66 412.17 416.50 356.22 389.07 389.58
15 30 0.4 3600.08 0.04 9.38 657.50 624.13 625.07 632.34 592.58 618.25 619.15

Table 7: Average run times for Set 2 experiments (seconds).
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