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Abstract

This study compares standard auctions when bidders are financially con-

strained and valuation is endogenously determined by ex post investment. Bid-

ders have a convex cost function because of financial constraints or borrowing

costs. When the valuation is linear in investment, the revenue and investment

equivalences hold. When the valuation is concave in investment, the first-price

auction yields a higher expected revenue than the second-price auction, which is

similar with the preceding models of financially constrained bidders. Although

the ranking of investment and bidders’ payoff is ambiguous, the second-price

auction leads to larger expected investment and bidders’ payoff under certain

specifications. Scoring auctions can lead to larger investment while decreasing

auction revenue.
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1 Introduction

The value created by a license, company, or business is highly dependent on its ex

post investment. Although licenses and businesses are often sold or allocated through

auctions, standard auction theory rarely deals explicitly with ex post investment.1

This is because in a standard quasilinear model, the auction payment is sunk and

does not affect ex post activities.2 However, some empirical studies have shown that

the introduction of spectrum auctions or higher spectrum prices had a negative

impact on subsequent service diffusion or network coverage (Kuroda and Baquero,

2017; Bahia and Castells, 2022).

This phenomenon is consistent if bidders are financially constrained. If bidders

face budget constraints, they may be forced to reduce their ex post investment when

the amount paid in the auction soars. For high-stake auctions such as spectrum

licenses and corporate takeovers, it is reasonable to suppose that bidders incur addi-

tional costs to finance a large auction payment, despite the absence of hard budget

constraints.

The revenue equivalence theorem does not hold under financial or budget con-

straints. Che and Gale (1998) show that when bidders are financially constrained, a

first-price auction (FPA) yields a higher expected revenue than a second-price auc-

tion (SPA). The intuition underlying the revenue ranking is the difference in bidders’

incentives between auction rules. In the SPA, truthful bidding is a weakly dominant

strategy, whereas bidders shade bids in the FPA in equilibrium. Hence, the budget

constraint is weaker in the FPA than in the SPA, which leads to higher expected

revenue.

However, the comparison of the seller’s expected revenue is nontrivial in the

presence of both financial constraints and ex post investment. In a situation when

the value of the good is endogenously determined by ex post investment, the valuation

is expected to decrease when the investment is suppressed under the high auction

payment. Conversely, if an auction leads to a lower price, then ex post investment

1As exceptions, McAfee and McMillan (1986) and Laffont and Tirole (1987) study auctions of

incentive contracts, in which winners take post-auction activities and moral hazard exists. Tomoeda

(2019) shows that ex post investment is necessary to (fully) implement efficient outcomes in social

choice problems including auctions.
2See Binmore and Klemperer (2002) for early debates on auctions and ex post investment in

spectrum allocations.
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will be stimulated and the valuation will increase. This would eventually increase

auction revenue.

This study characterizes the revenue ranking between standard auctions when

bidders are financially constrained and the value of the good is endogenously deter-

mined by ex post investment. We suppose that bidders face a soft financial constraint

in which they incur a convex cost to finance auction payments and investment costs.3

We show that if the valuation is linear in investment, revenue equivalence holds.

Moreover, the expected investment is equivalent between the standard auction rules.

Given the linear valuation and convex cost, the increase in the auction payment is

completely offset by the decrease in investment. That is, the winner’s total expen-

diture depends only on their type and not on the auction payment. The optimal

investment and the winner’s indirect utility are eventually linear in the auction pay-

ment. Thus, the winner’s ex post payoff is reduced to quasilinear, and the revenue

equivalence theorem holds. In addition, because the optimal investment is linear in

auction payments, the expected investment is also equivalent.

We also show that if the valuation is concave in investment, the FPA provides a

higher expected revenue than the SPA. When the valuation is concave in investment,

the increase in the auction payment is not completely offset by the decrease in the

optimal investment. Then, the winner’s indirect payoff is concave in the auction

payment, which is similar to risk-averse bidders. Therefore, well-known insights from

auctions with risk-averse bidders, such as Maskin and Riley (1984) and Matthews

(1987), are applied. The revenue ranking for the concave valuation is the same as

in Che and Gale’s (1998) financial constraint model and Baisa and Rabinovich’s

(2016) endogenous budget model. Our revenue ranking holds even if bidders face

heterogeneous financial constraints which are their private information.

In contrast to the clear revenue ranking, comparisons regarding the investment

and bidders’ payoffs are ambiguous. When the valuation is concave in investment,

we provide specifications under which the SPA enhances ex post investment. In

addition, we give specifications under which bidders’ expected payoff is greater in

the SPA than in the FPA.

Due to the financial cost, standard auctions lead to under-investment in the sense

that the winner’s ex post investment is lower than when bidders are not financially

3Soft financial constraints or borrowing costs are studied in Che and Gale (1998), Rhodes-Kropf

and Viswanathan (2005), and Baisa and Rabinovich (2016) among others.
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constrained. Also, in the case of public license auctions, the seller (government) may

want to promote investment from the viewpoint of consumer surplus. We examine

beauty contests and scoring auctions for the promotion of investment. We argue that

beauty contests may suffer from an over-investment. Scoring auctions, which lie be-

tween standard (price-only) auctions and beauty contests, may promote investment

to the extent that it does not lead to over-investment.

2 Model

Suppose that a single good, such as a license or firm, is auctioned among n ≥ 2

potential buyers. We consider standard auctions, mainly, first- and second-price

sealed-bid auctions. After auction, the winner makes an investment that determines

the valuation of the good. Bidder i ’s valuation is denoted by V (θi, x), where x ∈
R+ is the post-auction investment and θi ∈ Θ ≡ [θ, θ̄] ⊂ R+ is i ’s private type.

Each bidder’s type θi is independently and identically distributed with a cumulative

distribution F . We assume that F has a density function f = F ′ > 0 on Θ. We

suppose that the valuation function V : [θ, θ̄]×R+ → R+ is identical for all bidders.

We also assume that V is thrice differentiable and strictly increasing in both θi and

x, and that the single crossing condition Vxθ ≡ ∂2V/∂x∂θ ≥ 0 holds.

Bidders are financially constrained and incur a common convex cost to finance

auction fees and investments.4 The cost function is denoted by C : R → R. It is thrice
differentiable, strictly convex, and satisfies C(0) = 0, c ≡ C ′ ≥ 1, and c′ ≡ C ′′ > 0.

When bidder i wins the auction with a payment p and makes an ex post investment

x, their payoff is given by5

u(θi, p, x) ≡ V (θi, x)− C(p+ x).

We suppose that when a bidder loses the auction, they do not invest and their payoff

is zero.

We assume that the winner’s payoff u is concave in x and that there is a unique

optimal investment.

Assumption 1 Suppose that u(θi, p, x) is concave in x for all θi ∈ Θ and all p (in

equilibrium) and that maxx u(θi, p, x) has a unique interior solution x∗ ∈ (0,∞).

4We introduce bidders’ private information on their cost functions in section 4.
5The singular pronoun “they” is used for gender-neutral language.
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Given that bidder i wins the auction by paying p, the optimal investment is

denoted by

x∗(θi, p) ∈ argmax
x

u(θi, p, x). (1)

Given the optimal investment x∗, the winner’s ex post payoff is reduced to

U(θi, p) ≡ u (θi, p, x
∗(θi, p)) . (2)

Note that U satisfies the single crossing condition. Hence, there exists a pure strategy

Bayesian Nash equilibrium in standard auctions (Athey, 2001).

Note that if bidders are not financially constrained and C(y) = y, the winner’s

optimal investment is independent of their auction payment. The model is reduced

to a standard quasilinear model with the valuation function V ∗(θi), where

V ∗(θi) ≡ max
x

V (θi, x)− x. (3)

Hence, the revenue equivalence theorem holds: the seller’s expected revenue is equiv-

alent between the FPA, SPA, and any other standard auctions in which the bidder

of the highest type always wins and the lowest-type’s payoff is zero. In addition,

post-auction investment is ex post equivalent between such auction rules.

3 Main Result

We first characterize the equilibrium of SPA and FPA. Let w(θi) be the unique

solution of

U(θi, w(θi)) = 0.

That is, w is the auction payment such that the winner’s ex post payoff is zero. It

is straightforward to confirm that w is increasing in θi.

Note that w(θi) is the maximum willingness to pay of bidder i of type θi in

the auction. In the SPA, it is a weakly dominant strategy to bid w(θi) as in the

standard quasilinear model. The following lemma is shown in a similar manner to

the quasilinear case. Similar results are provided by Maskin and Riley (1984), Sakai

(2008), and Saitoh and Serizawa (2008); thus, the proof is omitted.

Lemma 1 In the SPA, it is a weakly dominant strategy for each bidder to submit

w(θi).
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It is difficult to obtain an explicit solution for the FPA. The equilibrium bidding

function in the FPA is characterized by the first-order condition as follows. Let

G = Fn−1 be the distribution of the largest order statistic of n − 1 independent

draws from F .

Lemma 2 The symmetric Bayesian Nash equilibrium bidding function β in the FPA

is given by

β′(θi) = − U (θi, β(θi))

Up (θi, β(θi))
· g(θi)
G(θi)

(4)

with β(θ) = w(θ).

Proof See Appendix.

3.1 Revenue Ranking

The revenue ranking between the FPA and SPA depends on the shape of the winner’s

indirect utility U . The shape of U is critically determined by the concavity or

convexity of the valuation function V . Our main result is stated as follows.

Theorem 1 The following statements hold.

1. If V is concave in x, the expected revenue of the FPA is greater than that of

the SPA.

2. If V is convex in x, the expected revenue of the SPA is greater than that of the

FPA.

3. If V is affine in x, the expected revenue and expected investment are equivalent

between the FPA and SPA.

Proof Suppose that V is concave in x. The first-order condition for the optimal

investment is

Vx(θi, x
∗) = c(p+ x∗).

By differentiation of the implicit function, we have

−x∗p(θi, p) =
c′(p+ x∗)

c′(p+ x∗)− Vxx(θi, x∗)
≤ 1.
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By the envelope theorem, we have

Up(θi, p) = −c (p+ x∗(θi, p)) , (5)

and

Upp(θi, p) = −
(
1 + x∗p(θi, p)

)
c′ (p+ x∗(θi, p)) ≤ 0. (6)

Hence, U(θi, p) is concave in p. Then, we have the first statement by applying

Theorem 4 of Maskin and Riley (1984).

The other statements are analogous to the first statement. When V is affine in

x, the equivalence in the expected investment holds because the revenue equivalence

holds and the optimal investment is linear in the auction payment, x∗p(θi, p) = −1

for all p. ■
The marginal increase in auction payments decreases the ex post investment

because of the convex cost. When the valuation function V is concave, the marginal

decrease in investment does not completely offset the increase in auction payment.

Hence, the winner’s total expenditure is increasing in auction payment. Due to

the convex cost function, this means that the marginal cost of the winner’s payoff

is increasing in auction payment. Therefore, the same revenue ranking with the

models of financially constrained bidders, such as Che and Gale (1998) and Baisa

and Rabinovich (2016), holds.

When valuation function is affine in x, the marginal increase in the auction

payment is completely offset by the decrease in investment. The winner’s total

expenditure is constant and depends only on their own type. With linear valuation,

the winner’s indirect payoff is eventually linear in the auction payment, and the

model is reduced to quasilinear.

Example 1 Suppose V (θi, x) = θix. Under this specification, the first-order condi-

tion for the optimal investment yields

θi − c(p+ x) = 0.

Hence,

x∗(θi, p) = c−1(θi)− p.

The winner’s indirect utility U is given by

U(θi, p) = θi
(
c−1(θi)− p

)
− C

(
c−1(θi)

)
= θi (w(θi)− p) ,
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where

w(θi) = c−1(θi)−
C
(
c−1(θi)

)
θi

.

Note that each bidder’s type θi is a given parameter in the interim stage of the

auction. Hence, the model is indeed equivalent to a standard quasilinear model

with the valuation function w. Therefore, the revenue equivalence theorem holds.

Moreover, because the optimal investment is linear in the auction payment, the

expected post-auction investment is equivalent between standard auction rules.

3.2 Investment and Winner’s Payoff

When valuation function is affine, our model is reduced to a quasilinear model.

Hence, in addition to the expected revenue for the seller, equivalences in terms of

expected investment and bidders’ payoffs holds between standard auctions.

However, in cases of concave or convex valuations, the rankings of the winner’s

investment and payoff levels are ambiguous. In the FPA, the winner’s ex post in-

vestment is deterministic in the bidding stage. However, in the SPA, the ex post

investment is probabilistic because the auction payment is uncertain in the interim.

When the winner’s payoff is concave in the auction payment, the increase in the

expected auction payment may not imply that the FPA is worse for bidders than

the “risky” SPA.

In the rest of this section, we suppose that V is (strictly) concave, which would

be the most realistic. Thus, the expected revenue of the FPA is greater than that

of the SPA. The ranking of the winner’s investment depends on the shape of the

optimal investment x∗. The following result provides a condition under which the

SPA provides a greater expected investment.

Proposition 1 Suppose Vxx < 0, Vxxx ≥ 0 and c′′ ≤ 0. Then, the optimal invest-

ment x∗ is convex in p, and the expected investment after the SPA is greater than

that after the FPA.

Proof See Appendix.

For example, the assumptions in Proposition 1 hold when

V (θi, x) = θix
α
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with α ∈ (0, 1) and

C(y) = y + δyγ

with γ ∈ (1, 2] and δ > 0. The logarithmic valuation V (θi, x) = θi log x also induces

Vxxx ≥ 0.

Matthews (1987) compares the risk-averse bidders’ payoffs in standard auctions.

He shows that bidders’ expected payoff is greater in the SPA than in the FPA if

winner’s indirect utility U satisfies “decreasing absolute risk aversion (DARA)”:

∂(Upp/Up)/∂θ < 0. Although we do not have a concise condition under which U

possesses DARA property, the following specification induces DARA.

Proposition 2 If c′′ ≤ 0 and x∗pθ ≤ 0, then the winner’s indirect utility U possesses

DARA property, and each bidder’s expected payoff is greater in the SPA than in the

FPA. The winner’s indirect utility U possesses DARA property when V is strictly

concave, Vxxx ≥ 0, Vxxθ ≥ 0, and the cost function C(y) = y + δy2 with δ > 0.

Proof See Appendix.

Valuation functions that induce DARA include V (θi, x) = xα + θix with α < 1

and V (θi, x) = (A+ θi)x− x2 with a sufficiently large constant A > 0.

4 Heterogeneity in Financial Costs

Thus far, we have assumed that bidders face the same financial constraint C. In

reality, bidders usually face different financial constraints, which are their private

information. Our main result still holds even if cost functions are different between

bidders and private information. This is confirmed in a similar manner with Che

and Gale (1998).

In this section, we incorporate bidders’ additional private information into finan-

cial constraints. Bidder i faces a cost function C(y | ωi), where ωi ∈ Ω ≡ [ω, ω̄] ⊂ R+

is the bidder’s cost type. Let ω∗ represent an unconstrained bidder: C(y | ω∗) = y

for all y ≥ 0. Suppose that C(· | ωi) is strictly convex for all ωi < ω∗. Suppose that

the largest cost type ω̄ ≤ ω∗ and that an unconstrained type may not exist in Ω. For

simplicity, we assume that C is continuously differentiable in ωi, ∂C(y | ωi)/∂ωi ≤ 0,

and ∂2C/(∂y∂ωi) ≤ 0. That is, a large cost type represents a less constrained bidder,

and the marginal cost c(· | ωi) is non-increasing in ωi.
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Each bidder’s type is a pair of their valuation type θi and cost type ωi and denoted

by ti = (θi, ωi) ∈ T ≡ Θ× Ω. Their winning payoff is denoted by

u(ti, p, x) = V (θi, x)− C(p+ x | ωi).

The winner’s indirect utility is reduced to U(ti, p) ≡ maxx u(ti, p, x), and the optimal

investment is denoted by x∗(ti, p) ∈ argmaxu(ti, p, x). Similar to the previous sec-

tions, we assume that the optimal investment problem has a unique interior solution

for all ti in equilibrium.

Assumption 2 Suppose that u(ti, p, x) is concave in x for all ti ∈ T and all p (in

equilibrium) and that maxx u(ti, p, x) has a unique interior solution x∗ ∈ (0,∞).

The maximum willingness to pay w(ti) of bidder i of type ti is implicitly defined

by

U (ti, w(ti)) = 0.

Because the cost type ω∗ is unconstrained, we have

w(θi, ω
∗) = V ∗(θi) = max

x
V (θi, x)− x

for all θi ∈ Θ.

4.1 When Valuation Is Affine in Investment

Consider the case where valuation is affine in investment. Let λ(θi) ≡ Vx(θi, x) > 0.

Because the optimal investment x∗ needs to exist in the interior, we assume that

bidders are necessarily financially constrained and ω̄ < ω∗. Each bidder’s type ti is

independently and identically distributed over T with a cumulative distribution F .6

By the analysis thus far, a winner’s indirect payoff function is reduced to

U(ti, p) = λ(θi) (w(ti)− p) .

Let T (v) ≡ {ti ∈ T | w(ti) ≤ v}, which is the set of types such that the associated

willingness to pay is equal to or less than v. In addition, let H(v) ≡ Pr{ti ∈ T (v)} be

the cumulative distribution of a bidder’s willingness to pay. Our model is equivalent

to the quasilinear model with valuation vi, which is drawn from the distribution

6We allow that θi and ωi are correlated. However, types are independent across bidders.
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H. Therefore, we have the revenue equivalence theorem for standard auctions. In

equilibrium, the bidder with the largest willingness to pay w(ti) wins. In addition,

the optimal investment x∗ is linear in p, thus that the expected investment is also

equivalent between standard auctions.

Proposition 3 Suppose that bidders are necessarily financially constrained, ω̄ < ω∗,

and that Assumption 2 holds. If V is affine in x, then the expected revenue and

expected investment are equivalent between the FPA and SPA.

4.2 When Valuation Is Concave in Investment

Consider the case where valuation is strictly concave in investment. In this case, we

suppose that bidders can be unconstrained and ω̄ = ω∗.

Consider the SPA. Analogous to the previous section, each bidder has a weakly

dominant strategy to submit w(ti). Let T II(v) be the set of all types who submit

a bid equal or less than v. That is, T II(v) = {ti ∈ T | w(ti) ≤ v}. Let HII(v) =

Pr{ti ∈ T II(v)} be the cumulative distribution of a bidder’s willingness to pay. It is

clear that the seller’s revenue is equivalent to the quasilinear model with valuation

vi which is independently drawn from HII .

Consider the FPA. Suppose that there exists a symmetric Bayesian Nash equi-

librium β(ti), which is increasing in both θi and ωi. Suppose that all bidders except

for bidder i take the equilibrium strategy β. Let Q be the cumulative distribution

of the highest bid of all bidders except for i in equilibrium, and let q = Q′ be its

density.

Consider bidder i of type ti = (θi, ω
∗). Because bidder i is unconstrained, their

expected payoff of bidding b is given by

Q(b) (V ∗(θi)− b) .

The first-order condition for the equilibrium bid b∗ = β(θi, ω
∗) is given by

q(b∗)(V ∗(θi)− b∗)−Q(b∗) = 0

∴ V ∗(θi)− b∗ =
Q(b∗)

q(b∗)
. (7)

Consider an arbitrary type t̃i = (θ̃i, ω̃i) such that the associated equilibrium bid is
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β(t̃i) ≤ b∗. Then, the marginal payoff of bidding b∗ is nonpositive and

q(b∗)U(t̃i, b
∗) +Q(b∗)Up(t̃i, b

∗) ≤ 0

∴ − U(t̃i, b
∗)

Up(t̃i, b∗)
≤ Q(b∗)

q(b∗)
= V ∗(θi)− b∗ (8)

by (7). The inequality (8) specifies the set T I(v) ≡ {t̃i ∈ T | β(t̃i) ≤ b∗ = β(θi, ω
∗)}

with v = V ∗(θi). That is, T I(v) is the set of types who lose to an unconstrained

bidder with valuation v = V ∗(θi). Let HI(v) ≡ Pr{ti ∈ T I(v)} be the cumulative

distribution of the valuation v. Bidders behave in equilibrium as if they have a

quasilinear payoff with some valuation vi which is independently distributed by HI .

The seller’s revenue is equivalent to the quasilinear model with valuation vi which is

independently drawn from HI .

It is obvious that w(t̃i) ≤ b∗ implies w(t̃i) ≤ V ∗(θi). Suppose w(t̃i) > b∗. By

strict concavity of U , we have

−Up(t̃i, b
∗) <

U(t̃i, b
∗)

w(t̃i)− b∗
. (9)

(8) and (9) imply w(t̃i) < V ∗(θi). Therefore, we have for all θi ∈ Θ and v = V ∗(θi),

t̃i ∈ T I(v) ⇒ t̃i ∈ T II(v).

That is, HI(v) ≤ HII(v) for all v. Because (9) is strict inequality, the distributionHI

stochastically dominatesHII . The seller’s expected revenues in FPA and SPA are the

expected second-highest order statistic from distributions HI and HII , respectively.

Hence, the FPA provides a greater expected revenue for the seller than the SPA.

Proposition 4 Suppose that bidders’ cost type space satisfies ω̄ = ω∗, and that

Assumption 2 holds. If V is strictly concave in x, the expected revenue of the FPA

is greater than that of the SPA.

5 Investment Promotion Policy

Due to financial costs, standard auctions lead to “under-investment” in the sense

that

x∗(θi, p) < x̂(θi),
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where

x̂(θi) ∈ argmax
x

V (θi, x)− x

is the optimal investment for type θi when there is no financial constraint on the

bidder. In addition, in license auctions conducted by governments, policymakers may

want to implement a higher level of investment to increase consumers’ surplus and

social welfare. A simple solution to the underinvestment is to provide a sufficiently

large subsidy to each bidder and eliminate financial constraints. However, such a

policy would be highly costly and unrealistic.

Beauty contests and scoring auctions are alternatives without the subsidization

of investment promotion. We argue that beauty contests may suffer from over-

investment. Scoring auctions, which can be considered as an intermediate between

standard auctions and beauty contests, can promote investment to the extent that

it does not lead to over-investment.

5.1 Beauty Contests

Despite the global trend of using auctions to allocate spectrum licenses, Japan is

unique among developed countries, as it allocates spectrum licenses through beauty

contests or comparative hearing rather than auctions. A typical dimension of the

contest for Japanese spectrum allocations is the commitments to future investments

and service quality such as coverage. Such a beauty contest may be considered as a

simple fixed-price best proposal auction (Thiel, 1988).

Assume that the licenser (government) collects only the minimum license fee

p. In a beauty contest, each bidder submits a proposal that commits an ex post

investment xi. The bidder who submits the highest proposal wins. Consider the

“first-score beauty contest,” in which the winner needs to invest at least as much

as their own proposal. In the beauty contest, the winner’s ex post payoff when

submitting a proposal xi is given by

UBC(θi, xi) =

U(θi, p) = V (θi, x
∗(θi, p))− C(p+ x∗(θi, p)) if xi < x∗(θi, p)

V (θi, xi)− C(p+ xi) if xi ≥ x∗(θi, p)
.

Note that bidders have no incentive to submit xi smaller than the optimal investment

x∗. They voluntarily invest at least the optimal investment level x∗(θi, p). The

winner’s payoff UBC is non-increasing and concave in xi by assumption. Although
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the competition in terms of price turns to that in terms of investment, the equilibrium

analysis is similar to the previous section and Maskin and Riley (1984).

In the beauty contest, the winner makes a large investment. Any proposal xi <

x∗(θi, p) is dominated by x∗(θi, p). It is clear that the equilibrium proposal βBC(θi)

in the first-score beauty contest satisfies

βBC(θi) ≥ x∗(θi, p).

In contrast to standard auctions, the beauty contests may lead to “over-investment.”

To see this, it would be helpful to consider the “second-score beauty contest,” in

which the winner needs to invest at least as much as the second highest proposal.7

Analogous to the SPA, there exists a weakly dominant strategy in the second-score

beauty contest, wBC(θi), which is implicitly determined by

UBC(θi, w
BC(θi)) = 0.

Bidders propose such a large investment that they earn zero profits. Of course, the

winner’s actual investment is smaller than their proposal generically. However, if the

contest is sufficiently competitive and there are many bidders, the winner’s ex post

investment would be close to the zero-profit level with a high probability. Moreover,

because UBC is concave in xi, the expected investment in equilibrium is larger in

the first-score beauty contest than in the second-score beauty contest. Although we

do not define the socially optimal investment or what is the over-investment, the

equilibrium property here would suggest that the equilibrium investment is often

excessive for policymakers.

5.2 Scoring Auctions

Another alternative is scoring auctions (Che, 1993; Asker and Cantillon, 2008).

Scoring auctions evaluate both quality (investment) and price, and is an intermedi-

ate mechanism between standard (price-only) auctions and beauty contests. Con-

sider a scoring auction in which the scoring function is quasilinear and given by

S(x, p) = q(x) + p, where q is strictly increasing and normalized by q(0) = 0.8 Each

7In the second-score beauty contest, the winner’s investment needs not to be equal to the second

highest proposal, as the winner may have an incentive to invest more when the second highest

proposal is too small.
8See Hanazono et al. (2020) for general scoring rules including non-quasilinear scoring functions.
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bidder submits a proposal (xi, pi) with xi ≥ 0 and pi ≥ 0, and the bidder of the

highest score S(xi, pi) wins. We consider both first- and second-score auctions. In

the first-score auction, the winner’s own proposal is enforced. In the second-score

auction, the winner can implement any investment-price pair (xi, pi) that fulfills the

second-highest score.

The Bayesian Nash equilibrium of the scoring auctions is derived in a similar

manner with Che (1993). When a contract with a score of s = q(x) + p is enforced

for the winner, their ex post payoff is denoted by

û(θi, s, x) ≡ V (θi, x)− C (s− q(x) + x) .

Let

Û(θi, s) = max
x|0≤q(x)≤s

û(θi, s, x)

be the maximum payoff when a contract with score s is enforced. In addition, let

x̂∗(θi, s) ∈ arg max
x|0≤q(x)≤s

û(θi, s, x)

be the optimal investment proposal subject to score s. The Bayesian Nash equilib-

rium is derived by solving the associated auctions in terms of the score bid s, given

that bidders propose the investment bid x̂∗(θi, s).

In the rest of this section, we suppose that V is concave. In addition, we focus

on scoring function such that the virtual cost function C(s − q(x) + x) is strictly

convex.

Assumption 3 The function Ĉ(x, s) = C(s−q(x)+x) is strictly increasing and con-

vex in x for all s. In addition, the optimal investment problem maxx|0≤q(x)≤s û(θi, s, x)

has a unique interior solution in equilibrium.

Assumption 3 implies q′(x) < 1 for all x.

For the winner, the optimal investment x̂∗ after the scoring auction is given by

the first-order condition

Vx(θi, x̂
∗) =

(
1− q′(x̂∗)

)
c (s− q(x̂∗) + x̂∗) . (10)

Note that s− q(x̂∗)+ x̂∗ = p+ x̂∗. Hence, the first-order condition (10) is written as

p+ x̂∗ = c−1

(
Vx

1− q′(x̂∗)

)
. (11)
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In contrast, the first-order condition for the optimal investment x∗ after a standard

(price-only) auction yields

p+ x∗ = c−1 (Vx) .

Therefore, for any given auction payment p, the winner makes a larger investment in

scoring auctions than in standard auctions. As bidders commit to larger investments

in scoring auctions, their ex post payoffs are smaller than those in standard auctions.

Therefore, the equilibrium price bid decreases in scoring auctions, further enhancing

the investment incentive.

Proposition 5 Suppose that V is concave and that Assumption 3 holds. If the scor-

ing auctions have a symmetric increasing equilibrium, then the ex post investments

in the first- and second-score auctions are greater than those in the first- and second-

price standard auctions, respectively. In addition, the seller’s revenues in the first-

and second-score auctions are lower than those in the first- and second-price standard

auctions, respectively.

Proof See Appendix.

Notice that scoring auctions with q′(x) ≥ 1 lead to beauty contests. Suppose

that q′(x) ≥ 1 for all x. The marginal payoff, given a winning score s, is

Vx(θi, x)− (1− q′(x))c(s− q(x) + x) > 0

for all x. Hence, given non-negative payment pi ≥ 0, the optimal price bid in the

scoring auction is zero for all θi: the scoring auction is equivalent to a beauty contest.

This is because if q′ ≥ 1, the marginal increase in investment always has a greater

effect on the score than the price bid. Hence, bidders have no incentive to compete

in terms of the price bid. As such, scoring auctions with high allocation of the

investment component are equivalent to beauty contests.

6 Conclusion

We have compared standard auctions with financially constrained bidders when the

valuation is endogenously determined by the winner’s ex post investment. The rev-

enue ranking between the FPA and SPA depends on the shape of the valuation

function. If the valuation is concave in investment, the FPA provides a higher ex-

pected revenue for the seller than the SPA, which is similar to the standard model of
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financially constrained bidders. Interestingly, if the valuation is linear in investment,

the equivalence theorem holds for both expected revenue and investment. This result

holds even if bidders have different financial constraints which are private information

of bidders.

We have also considered beauty contests and scoring auctions for promoting

investment. Scoring auctions with quasilinear scoring rules induce higher ex post

investments with decreasing auction revenue. When policymakers want to increase

ex post investment rather than auction revenue in license auctions, scoring auctions

can be an alternative.

A Proofs

A.1 Proof of Lemma 2

Suppose that there exists a symmetric Bayesian Nash equilibrium β, and that every

bidder other than i follows the equilibrium strategy. The interim expected payoff

when bidder i makes an equilibrium bid of type z is

πi(z, θi) = G(z)U (θi, β(z)) ,

where G = Fn−1 is the distribution of the largest order statistic of n−1 independent

draws from F . The first-order condition for the payoff maximization is

g(z)U (θi, β(z)) + β′(z)G(z)Up (θi, β(z)) = 0,

where g = G′. Because the first-order condition should hold with z = θi, we have

g(θi)U (θi, β(θi)) + β′(θi)G(θ)Up (θi, β(θi)) = 0.

The terminal condition for the differential equation is U(θ, β(θ)) = 0. Thus, β(θ) =

w(θ). ■

A.2 Proof of Proposition 1

Let p∗(x, θi) be the inverse function of x∗ with respect to p. By the first-order

condition for the optimal investment, we have

p∗(x, θi) = c−1 (Vx(θi, x))− x.

17



Note that p∗ is decreasing in x and

∂2p∗

∂x2
(x, θi) = Vxxx(x)

(
c−1

)′
(Vx(θi, x)) + (Vxx(θi, x))

2 (c−1
)′′

(Vx(θi, x)) .

Hence, p∗ is convex in x if Vxxx ≥ 0 and (c−1)′′ ≥ 0. If p∗ is convex in x, x∗ is convex

in p.

Let P I and P II be the equilibrium prices in the FPA and SPA, respectively.

When x∗ is convex in p, we have

E[x∗(θi, P
II) | θ(1) = θi] > x∗

(
θi, E[P II | θ(1) = θi]

)
> x∗

(
θi, E[P I | θ(1) = θi]

)
= x∗

(
θi, P

I)
)
,

where θ(1) indicates the highest order statistic of bidders types. Thus, the expected

investment is larger in the SPA than in the FPA. ■

A.3 Proof of Proposition 2

From (5) and (6) and by differentiation, we have

∂(Upp/Up)

∂θ
=

1

c2
[(
x∗pθc

′ + (1 + x∗p)x
∗
θc

′′) c− (1 + x∗p)x
∗
θ(c

′)2
]
.

We have x∗θ ≥ 0 and 1+x∗p > 0 by the single-crossing condition Vxθ ≥ 0 and concavity

of V , respectively. Because C is strictly convex, we have c, c′ > 0. Hence, U possesses

the DARA property if c′′ ≤ 0 and x∗pθ ≤ 0.

In addition, remember that

x∗p(θi, p) =
c′(p+ x∗)

Vxx(θi, x∗)− c′(p+ x∗)
.

By differentiation, we have

x∗pθ =
1

(Vxx − c′)2
[
x∗θc

′′ · (Vxx − c′)− c′ ·
(
x∗θVxxx + Vxxθ − x∗θc

′′)]
=

1

(Vxx − c′)2
[
x∗θVxxc

′′ − c′ · (x∗θVxxx + Vxxθ)
]

When the cost function is quadratic and C(y) = y + δy2, we have C ′′′ = c′′ = 0.

Hence, we have x∗pθ ≤ 0 if Vxxx ≥ 0 and Vxxθ ≥ 0. ■
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A.4 Proof of Proposition 5

Suppose that there exists a symmetric increasing equilibrium in scoring auctions.

Let x̂∗(θi, s) be the optimal investment bid in the first- or second-score auctions,

given the bidder’s type θi and a score s. The winner’s optimal investment x̂∗ is given

by the first-order condition

Vx(θi, x̂
∗) = Ĉx(x̂

∗, s) =
(
1− q′(x̂∗)

)
c (s− q(x̂∗) + x̂∗) . (12)

By differentiation of the implicit function, we have

∂x̂∗

∂s
(θi, s) = − Ĉxs(x̂

∗, s)

Ĉxx(x̂∗, s)− Vxx(θi, x̂∗)
= −(1− q′(x̂∗))c′(s− q(x̂∗) + x̂∗)

Ĉxx(x̂∗, s)− Vxx(θi, x̂∗)
< 0,

where the inequality holds by the convexity of C and Ĉ and the concavity of V .

Thus, x̂∗ is decreasing in s.

Let p̂∗(θi, s) = s − q (x̂∗(θi, s)) be the price associated with score s and the

optimal investment x̂∗. Because x̂∗ is decreasing in s, p̂∗ is increasing in s. Then, let

p̂∗−1(θi, p) be the inverse function of p̂∗ with respect to s. In addition, let xS∗(θi, p) ≡
x̂∗

(
θi, p̂

∗−1(θi, p)
)
, which is the optimal investment bid in the first- or second-score

auctions, given that the winning price is p. The winner’s ex post payoff in terms of

their type and a price bid is denoted by

US(θi, p) ≡ V (θi, x
S∗(θi, p))− C(p+ xS∗(θi, p)).

Note that s − q(x̂∗) + x̂∗ = p + x̂∗. On the one hand, the first-order condition

(12) for the optimal investment is written as

p+ x̂∗ = c−1

(
Vx(θi, x̂

∗)

1− q′(x̂∗)

)
. (13)

On the other hand, the first-order condition for the optimal investment in standard

price-only auctions is given by

p+ x∗ = c−1 (Vx(θi, x
∗)) < c−1

(
Vx(θi, x

∗)

1− q′(x∗)

)
, (14)

where the inequality holds by q′ < 1 by Assumption 3. Equation (14) implies that

for any (θi, p),

xS∗(θi, p) = x̂∗
(
θi, p̂

∗−1(θi, p)
)
> x∗(θi, p). (15)
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That is, given an auction payment p, the winner invests more in a scoring auction

than in a standard auction. Moreover, because

US(θi, p) ≤ max
x

V (θi, x)− C(p+ x) = U(θi, p),

the equilibrium price bid in the first- and second-score auctions must be lower than

the equilibrium bid in the FPA and SPA, respectively. It is clear that the equilibrium

revenue is lower in scoring auctions than standard auctions. Because the investment

function is decreasing in p, the equilibrium ex post investment is greater in scoring

auctions than standard auctions by (15). ■
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