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Abstract

In many random assignment problems, the central planner has their own policy

objective, such as matching size and minimum quota fulfillment. A number of practi-

cally important policy objectives are not aligned with agents’ preferences and known

to be incompatible with strategy-proofness. This paper proves that such policy objec-

tives can be achieved by mechanisms that satisfy Bayesian incentive compatibility in

a restricted domain of von Neumann Morgenstern utilities. We prove that if a mech-

anism satisfies the three axioms of swap monotonicity, lower invariance, and interior

upper invariance, then the mechanism satisfies Bayesian incentive compatibility in an

inverse-bounded-indifference (IBI) domain. We apply this axiomatic characterization

to analyze the incentive property of a novel mechanism, the constrained serial dicta-

torship mechanism (CRSD). CRSD is designed to generate an individually rational

assignment that maximizes the central planner’s policy objective function. As CRSD

satisfies these axioms, CRSD is Bayesian incentive compatible in an IBI domain.
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1 Introduction

In an assignment problem (also known as a one-sided matching problem), the central planner

allocates a set of indivisible objects to a set of agents, who can each consume at most one

object. The central planner cannot directly observe agents’ preferences. Furthermore, some

agents may declare that some objects are unacceptable to them, and the central planner is

prohibited from allocating an unacceptable object to the agent (i.e., the assignment must be

individually rational). To respect agents’ preferences and generate a desirable assignment,

the central planner must use an allocation mechanism that incentivizes agents to report their

preferences truthfully. We focus on a situation where monetary transfers are precluded, and

therefore the mechanism must induce truthtelling through the variation in the probability

of assigning each object.

In many applications, the central planner not only must respect agents’ preferences but

also has her own policy objective. In refugee resettlement and daycare assignment problems,

the government wants to maximize the matching size, defined as the total number of agents

who are assigned to some objects, because it is costly to keep many people in the waitlist

(Andersson and Ehlers 2016, Delacrétaz et al. 2016, Kamada and Kojima 2018, Noda 2018a).

Institutions responsible for refugee resettlement are also concerned with refugees’ total job

employment rate, predicted from the characteristics of refugee families, e.g., the language

they speak (Bansak et al. 2018). In doctor-hospital and student-laboratory matching prob-

lems, the institution often wants to set minimum quota constraints to make sure that doctors

are allocated to rural areas and students are allocated to all laboratories (Goto et al. 2014,

Fragiadakis et al. 2016, Fragiadakis and Troyan 2017). Maximum and minimum quotas can

also be used for maintaining a diversity of student types in school choice problems (Ehlers

et al. 2014, Tomoeda 2018).

These objectives are not always aligned with agents’ preferences; thus, agents may want

to deviate from the assignment that the central planner prefers. Accordingly, if no additional

condition is imposed, it is generally impossible (i) to achieve a central-planner-optimal as-
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signment, and (ii) to achieve strategy-proofness, i.e., to make truthful reporting of preference

order a weakly dominant strategy, simultaneously. However, such mechanisms may satisfy

Bayesian incentive compatibility (BIC) (i.e., truthtelling may maximize each agent’s interim

expected utility) in a restricted domain of von Neumann Morgenstern (vNM) utility func-

tions underlying preference orders.

The contribution of this paper is twofold. First, we extend the analysis of Mennle and

Seuken (2018) to obtain a new characterization of mechanisms satisfying BIC in two new

domain classes of vNM utility functions. If an interim mechanism, defined as a mapping

from an agent’s preference report to his interim probability of obtaining each object, satisfies

swap monotonicity and lower invariance, then the interim mechanism satisfies BIC in an

inverse-uniformly-relatively-bounded-indifference (IURBI) domain. If an interim mechanism

additionally satisfies interior upper invariance, then the interim mechanism satisfies BIC in

an inverse-bounded-indifference (IBI) domain.

Second, we propose a novel mechanism, which is designed for generating a planner-

optimal assignment. We establish the constrained random serial dictatorship mechanism

(CRSD), which maximizes the central planner’s objective function. Then, we analyze its in-

centive property by applying the axiomatic characterization. CRSD is parameterized by the

central planner’s objective function, which is used for evaluating assignments. For example,

if the central planner wants to achieve a maximum matching, she should take the match-

ing size as her objective. If she wants to satisfy minimum quota constraints, she should

penalize assignments that do not satisfy minimum quota by setting a low value for such

assignments. CRSD first identifies the set of all individually rational assignments from the

reported preference profile and then computes the set of individually rational assignments

that maximizes the objective function. After that, just like the standard random serial dic-

tatorship mechanism (RSD) (Abdulkadirolu and Sonmez 1998), the mechanism determines

the priority order uniformly at random, and each agent chooses his favorite object from his

choice set sequentially. CRSD imposes an additional requirement on each agent’s choice set:
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to make sure that the returned assignment is one of the maximizers of the objective function,

each agent is prohibited from choosing an object that is not consistent with any maximizer

(fixing earlier movers’ choices).

This paper proves that for all objective functions, CRSD satisfies lower invariance and

interior upper invariance. Furthermore, for certain objective functions, CRSD also satisfies

swap monotonicity. Accordingly, CRSD satisfies BIC in an IBI domain, implying that if

agents do not want to tolerate the risk of becoming unassigned in the hope of obtaining their

favorite objects, then truthful reporting is induced.

2 Related Literature

In matching theory literature, strategy-proofness is known to be incompatible with various

important policy objectives, including ordinal efficiency, matching size, and minimum quota.

Some previous studies have attempted to indirectly achieve such difficult goals by imposing

relatively tractable constraints on assignments. For example, Kamada and Kojima (2015)

set the maximum quota to decrease the number of doctors matched to urban areas so as

to allocate more doctors to rural areas. Some works have designed mechanisms for envi-

ronments in which preferences are partially observable, e.g., the set of objects acceptable

to each agent is public information (Goto et al. 2014, Fragiadakis et al. 2016, Fragiadakis

and Troyan 2017, Ashlagi et al. 2019). Some papers have evaluated the performance of

strategy-proof mechanisms for achieving a given policy objective. For example, Krysta et al.

(2014), Afacan and Dur (2018), and Noda (2018a,b) evaluate the matching size achieved by

strategy-proof mechanisms. Some previous studies have investigated special environments

where non-strategy-proof mechanisms become strategy-proof. For example, the deferred ac-

ceptance mechanism (DA) (Gale and Shapley 1962) and the probabilistic serial mechanism

(PS) (Bogomolnaia and Moulin 2001) are not strategy-proof in general but becomes strategy-

proof in large markets (DA: Kojima and Pathak 2009, PS: Kojima and Manea 2010). Other
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studies consider the domain of preferences with which strategy-proofness is compatible with

difficult goals. Bogomolnaia and Moulin (2004) consider a two-sided matching problems

where agents have dichotomous preferences and study strategy-proof mechanisms in such

an environment. Balbuzanov (2016) considers convex strategy-proofness, which only re-

quires the existence of a vNM utility function with which truthtelling is a weakly dominant

strategy, and proves that PS is convex strategy-proof. Mennle and Seuken (2018) provide

an axiomatic characterization of the set of vNM utility functions with which truthtelling

becomes a dominant strategy.

Our axiomatic characterization is an extension of Mennle and Seuken (2018). They prove

that strategy-proofness in the unrestricted domain can be decomposed into three axioms:

swap monotonicity, upper invariance, and lower invariance. They also demonstrate that, if a

mechanism satisfies swap monotonicity and upper invariance, a mechanism is strategy-proof

in a domain called the uniformly-relatively-bounded-indifference domain. Although various

mechanisms satisfy swap monotonicity, upper invariance, and certain other desirable prop-

erties (e.g., PS is swap monotonic, upper invariant, and ordinally efficient), no interesting

mechanism satisfying both swap monotonicity and lower invariance has been documented

in the literature.1 However, the new mechanism proposed in this paper (CRSD) satisfies

swap monotonicity and lower invariance, though it does not satisfy upper invariance. Given

this, we establish a new characterization of incentive-compatible mechanisms in a restricted

domain based on swap monotonicity and lower invariance.

Our CRSD bridges the literature on incentive-compatible mechanism design and op-

timization algorithms. In the literature on operations research and computer science, a

variety of algorithms for solving assignment problems have been established. If preferences

were public information, we could run such algorithms to maximize the central planner’s ob-

jective function. Many previous studies indicate the usefulness of such algorithms in social

1Mennle and Seuken (2017) also prove that there is no lower-invariant counterpart of the probabilistic
serial mechanism in the sense that no mechanism can be swap monotonic, lower invariant, ordinally efficient,
anonymous, neutral, and non-bossy.
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science problems, but the extent to which incentives for truthful reporting are compatible

with optimization is not yet known. For example, Delacrétaz et al. (2016) posit that, if

refugee families’ preferences were known, the total number of resettlements could be max-

imized by the algorithm developed by Song et al. (2008). However, how the use of Song

et al.’s algorithm breaks down strategy-proofness is ambiguous. Bansak et al. (2018) show

that refugees’ total job employment rate after resettlement can be improved by using a data-

driven algorithm, though they disregard refugees’ preferences. Afacan et al. (2018) propose

the efficient assignment maximizing mechanism that is not strategy-proof but always returns

a maximum matching with respect to the reported preference profile. However, given any

vNM utility functions, the equilibrium assignment of their mechanism is identical to the

serial dictatorship mechanism. By contrast, CRSD satisfies BIC in a restricted domain of

vNM utility functions. In addition, CRSD can integrate not only the matching size but also

general policy objective functions.

3 Model

There is a finite set of agents N and a finite set of objects M . Each agent consumes at most

one object from M , and each object has a unit capacity. The outside option is denoted by

⊥, and the agent is assigned to ⊥ if he is not assigned to any k ∈ M . We assume that the

outside option has an unlimited capacity.

Each agent i has a strict preference order Pi over objects and outside option M ∪ {⊥},

where Pi : a � b indicates that agent i strictly prefers object a to b. We denote the set of

all possible preference orders by P . A preference profile P = (Pi)i∈N ∈ PN is a profile of

preference orders of all agents, and P−i ∈ PN\{i} is a profile of preference orders of all agents

except i.

The neighborhood of a preference order Pi, denoted by N (Pi), is the set of all preference

orders that differ from Pi by a swap of two consecutively ranked objects. The upper contour
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set of k at Pi is the set of objects that i strictly prefers to k, denoted U(k, Pi). Conversely,

the lower contour set of k at Pi is the set of objects that i strictly disprefers to k, denoted

by L(k, Pi).

Agent i’s (von Neumann Morgenstern, vNM) utility function is denoted by ui : M ∪ {⊥} →

R. To make every agent non-redundant, we assume that every agent has at least one ob-

ject that is strictly preferred to the outside option. Without loss of generality, we always

normalize ui(⊥) = 0 and maxk∈M ui(k) = 1. A utility function ui is consistent with Pi if

ui(a) > ui(b) whenever Pi : a � b. We denote the set of all possible utility functions by U .

We refer to a subset of U as the utility subdomain. We denote the set of all utility functions

that are consistent with preference order Pi by U(Pi). Conversely, we denote the preference

order consistent with the utility function ui by p(ui).

Let Fi be the marginal distribution of agent i’s utility. We assume that agents’ utilities

are independently distributed: the joint probability distribution of the utility profile can be

written as a product of the marginal distributions of agents’ utility functions.

A probabilistic assignment (or matching) is represented by the matrix, x = (xi,k)i∈N,k∈M∪{⊥}

such that (i)
∑

k∈M∪{⊥} xi,k = 1 for every i ∈ N , (ii)
∑

i∈N xi,k ≤ 1 for every k ∈ M , and

xi,k ∈ [0, 1] for every (i, k) ∈ N×M∪{⊥}. The value xi,k represents the probability that agent

i obtains object k. The ith row xi = (xi,k)k∈M∪{⊥} of x is called the probabilistic assignment

of i. When agent i’s assignment is xi, his expected utility is Exi [ui] =
∑

k∈M xi,kui(k). An

assignment x is called deterministic if xi,k ∈ {0, 1} for all i ∈ N , k ∈M ∪{⊥}. Note that by

the Birkhoff-von Neumann theorem (Birkhoff 1946, Von Neumann 1953), every probabilistic

assignment can be decomposed into a convex combination of deterministic assignments. We

denote X and ∆(X) the set of all deterministic and probabilistic assignments, respectively.

We consider ordinal assignment mechanisms, which take preference orders as their inputs.

A mechanism is a mapping φ : PN → ∆(X) that selects a probabilistic assignment based

on a preference profile. If the returned assignment is always deterministic, we refer to it

as a deterministic mechanism. Throughout the paper, we focus on individually rational
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mechanisms that assign an object to an agent only if the agent prefers the object to the

outside option; i.e., Pi :⊥� a implies φi,a(Pi, P−i) = 0 for all P−i ∈ PN\{i}.

4 Interim Reporting Problem

4.1 Setup

We consider each agent’s interim reporting problem. In an interim stage, each agent i knows

his own preference Pi but is not aware of other agents’ preferences P−i. The interim proba-

bility that agent i is assigned to object k when he reports preference P ′i is given by

Φi,k(P
′
i ) :=

∫
u−i

φi,k
(
P ′i , (p(uj))j∈N\{i}

)
dF−i. (1)

Note that the above formula is independent of agent i’s true type (ui) because we assume

independent types. We refer to Φi = (Φi,k)k∈M∪{⊥} as agent i’s interim mechanism.

The (ordinal) Bayesian incentive compatibility requires that a truthful reporting of pref-

erence provides the largest expected payoff to the agent. In a standard definition, the

optimality of truthtelling is required for all possible utility functions U . Here, we explicitly

define the utility subdomain with which an agent has an incentive for truthtelling.

Definition 1 (Bayesian Incentive Compatibility on the Utility Subdomain). Agent i’s in-

terim mechanism Φi satisfies Bayesian incentive compatibility (BIC) on utility subdomain U

if, for all utility functions ui ∈ U for all misreports P ′i ∈ P , we have EΦi(p(ui))[ui] ≥ EΦi(P ′i )[ui].

Note that if we take U = U , our definition of BIC coincides with the standard one.

Remark 1. Alternatively, we can require the mechanism to be strategy-proof (i.e., incentive

compatible in weakly dominant strategies) by assuming that agent i knows other agents’

reporting P ′−i. To obtain a corresponding condition, we should replace Φi with φi(·, P−i) and

impose each condition for all P−i ∈ PN\{i}. Although the property required on mechanism φ
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becomes stronger, the characterizations of strategy-proof mechanisms on a restricted domain

can be obtained in a similar manner.

4.2 Preliminary Results

Here, we review three axioms proposed by Mennle and Seuken (2018).

Axiom 1 (Swap Monotonicity). Agent i’s interim mechanism Φi is swap monotonic if, for all

preferences Pi ∈ P , all misreports P ′i ∈ N (Pi), and objects or outside options a, b ∈M ∪{⊥}

with Pi : a � b but P ′i : b � a, one of the following holds: either (i) Φi(Pi) = Φi(P
′
i ) or (ii)

Φi,a(Pi) > Φi,a(P
′
i ), and Φi,b(Pi) < Φi,b(P

′
i ).

Swap monotonicity requires that if an agent swaps his preference order over two objects

(a and b), either one of the following outcomes must hold: (i) it does not affect the resultant

probabilistic assignment at all, or (ii) it strictly increases the probability to get the object

brought forward and strictly decreases the probability to get the object carried down.

Axiom 2 (Upper Invariance). Agent i’s interim mechanism Φi is upper invariant if for all

preferences Pi ∈ P , all misreports P ′i ∈ N (Pi), and objects or outside options a, b ∈M ∪{⊥}

with Pi : a � b but P ′i : b � a, we have that Φi,k(Pi) = Φi,k(P
′
i ) for all k ∈ U(a, Pi).

Axiom 3 (Lower Invariance). Agent i’s interim mechanism Φi is lower invariant if for all

preferences Pi ∈ P , all misreports P ′i ∈ N (Pi), and objects or outside options a, b ∈M ∪{⊥}

with Pi : a � b but P ′i : b � a, we have that Φi,k(Pi) = Φi,k(P
′
i ) for all k ∈ L(b, Pi).

Upper invariance2 requires that an agent cannot manipulate their probability of obtaining

a more-preferred object by changing the order of less-preferred objects. Conversely, lower

invariance requires that an agent cannot manipulate their probability of obtaining less-

preferred object by changing the order of more-preferred objects.

2Upper invariance is originally introduced by Hashimoto et al. (2014), and it is called weak invariance in
their paper.
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An interim mechanism satisfies BIC in the whole utility space U if and only if it satis-

fies swap monotonicity, upper invariance, and lower invariance. Mennle and Seuken (2018)

also show that when the interim mechanism satisfies swap monotonicity and upper invari-

ance, if an agent’s utility function is in a uniformly-relatively-bounded-indifference (IRBI)

subdomain, then truthful reporting is optimal for the agent.

Definition 2 (URBI). A utility function ui satisfies uniformly relatively bounded indifference

(URBI) with respect to r ∈ [0, 1] if, for all objects a, b ∈ M ∪ {⊥} with ui(a) > ui(b), we

have

r · (ui(a)− ui(⊥)) ≥ ui(b)− ui(⊥). (2)

Since we normalize ui(⊥) = 0, the inequality (2) simplifies to

rui(a) ≥ ui(b). (3)

We denote the set of all utility functions satisfying URBI with respect to r by URBI(r).

Theorem 1 (Theorem 1 and 2 of Mennle and Seuken, 2018).

1. Agent i’s interim mechanism Φi satisfies BIC in U if and only if Φi satisfies swap

monotonicity, upper invariance, and lower invariance.

2. Agent i’s interim mechanism Φi satisfies BIC in URBI(r) for some r > 0 if and only

if Φi satisfies swap monotonicity and upper invariance.

The utility subdomain URBI(r) is increasing in r in the sense that r′ > r implies

URBI(r′) ⊃ URBI(r). When r = 1, the utility subdomain coincides with the whole

domain: URBI(1) = U . Conversely, URBI(0) only contains utility functions that accept

only one object (ui(k) = 1 for some k, and ui(l) < 0 for all l ∈ M \ {k}). An example of a

utility function satisfying ui ∈ URBI(0.5) is depicted in Figure 1a.
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4.3 Inverse URBI Domain

We study a class of mechanisms that satisfy swap monotonicity and lower invariance, rather

than upper invariance. For such mechanisms, we characterize a new utility subdomain in

which an interim mechanism satisfies BIC.

Definition 3 (IURBI). A utility function ui satisfies inverse uniformly relatively bounded

indifference (IURBI) with respect to r ∈ [0, 1] if, for all objects a, b ∈M with ui(a) > ui(b),

we have

r ·
(

max
k∈M

ui(k)− ui(b)
)
≥ max

k∈M
ui(k)− ui(a). (4)

Since we normalize maxk∈M ui(k) = 1, (4) simplifies to

r(1− ui(b)) ≥ 1− ui(a). (5)

We denote the set of all utility functions satisfying IURBI with respect to r by IURBI(r).

Both URBI and IURBI domains require that when Pi : a � b, the underlying utility

function ui must sufficiently differentiate these two objects. However, their “reference points”

are different. URBI(r) requires the following inequality condition: whenever a � b,

r · ui(a) + (1− r) · 0 ≥ ui(b). (6)

The URBI domain measures the intensity of preferences attached to a and b by using the

agent’s preference for the outside option. A utility function is more likely to belong to the

URBI domain if he has a more extreme attachment to a more-preferred object. Indeed, a

utility function that accepts only one (favorite) object belongs to URBI(r) for all r.

By contrast, the IURBI domain compares utility using the favorite object as a reference

point. Formally, (5) can be rearranged to produce the following inequality:

ui(a) ≥ (1− r) · 1 + r · ui(b). (7)
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(a) ui ∈ URBI(0.5) (b) ui ∈ IRUBI(0.5), IBI(0.5) (c) ui ∈ IBI(0.5)

Figure 1: Utility functions in each subdomain. All utility functions satisfy p(ui) : 1 � 2 �
3 � 4 �⊥. All utility functions are normalized to satisfy ui,1 = 1 and ui,⊥ = 0. In the
following formulas, k = 5 denotes ⊥.
Figure 1a: ui,k := 0.5 · ui,k−1 for k = 2, 3, 4. ui ∈ URBI(0.5).
Figure 1b: ui,k := 1− 0.5 · (1− ui,k+1) for k = 2, 3, 4. ui ∈ IURBI(0.5) ⊂ IBI(0.5).
Figure 1c: ui,4 := 1− 0.5 · (1− ui,⊥) = 0.5, ui,k = ui,k+1 + 0.01 for k = 2, 3. ui ∈ IBI(0.5).

This inequality requires that the agent still prefers to take object a even if he would have a

small chance (with probability 1 − r) to get his favorite object. A utility function is more

likely to belong to the IURBI domain if he has less extreme attachment to his favorite

object. If an agent is (nearly) indifferent with regards to all acceptable objects, then the

utility function is in IURBI(r) for (nearly) all r.

Parallel to the URBI domain, the IURBI domain is increasing in r in the sense that

r′ > r implies IURBI(r′) ⊃ IURBI(r). Furthermore, these definitions coincide when

r = 1: IURBI(1) = U . In this sense, the value of r measures the “degree of BIC.” An

example of a utility function satisfying ui ∈ IURBI(0.5) is depicted in Figure 1b.

The following theorem states that an interim mechanism is BIC in IURBI(r) with r > 0

if and only if it satisfies swap monotonicity and lower invariance.

Theorem 2. Agent i’s interim mechanism Φi satisfies BIC in IURBI(r) for some r > 0 if

and only if Φi satisfies swap monotonicity and lower invariance.

Proofs are provided in the appendix.

The intuition is as follows. Let a and b be two objects (or an object and the outside

12



option), where agent i prefers a to b. Suppose that an interim mechanism satisfies swap

monotonicity and lower invariance. By swap monotonicity, if the agent swaps the preference

order of a and b and his assignment is changed, then he will incur a strict loss by decreasing

the probability of obtaining a and increasing the probability of obtaining b. For a misre-

porting to be profitable, the agent must obtain some gain from a change in the assignment

probability of other objects. By lower invariance, he cannot benefit by decreasing the prob-

ability of obtaining objects less preferred to b. Hence, all the (potential) deviation gains

are from the increment of the probability of obtaining objects more preferred to a. In the

best case, he can increase the probability of obtaining his favorite object; thus, to identify

whether the swap is profitable, we compare the value of maxk∈M ui(k), ui(a), and ui(b). The

swap is profitable only if the latter effect is larger than the former effect, and the IURBI

domain rules out such preferences. Accordingly, when the agent’s utility function belongs to

the IURBI domain, it is optimal to report his preference truthfully.

4.4 Inverse Bounded Indifference Domain

Some mechanisms do not satisfy upper invariance because they treat the outside option

differently from objects. Even in such a case, a swap of two objects (a, b ∈M , i.e., a, b 6=⊥)

may not change the probability of assigning more-preferred objects.

Axiom 4 (Interior Upper Invariance). Agent i’s interim mechanism Φi is interior upper

invariant if for all preferences Pi ∈ P , all misreports P ′i ∈ N (Pi), and objects a, b ∈M with

Pi : a � b but P ′i : b � a, we have that Φi,k(Pi) = Φi,k(P
′
i ) for all k ∈ U(a, Pi).

Likewise, we say that swap monotonicity or lower invariance is satisfied in the interior

if the respective condition is satisfied whenever the two objects a, b are chosen from M .

Conversely, we say that swap monotonicity or lower invariance is satisfied on the boundary

if the respective condition is satisfied if one of a, b is an object (belongs to M) and another

is the outside option (⊥).
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Interior upper invariance is similar to upper invariance but imposes no requirement on

the interim mechanism when the set of acceptable objects is changed; i.e., whenever the

preference order of ⊥ is changed. Clearly, interior upper invariance is implied by upper

invariance.

If an interim mechanism satisfies swap monotonicity, lower invariance, and interior upper

invariance, the agent has no incentive to manipulate the preference order over objects that

are declared to be acceptable.

Theorem 3. Suppose that agent i’s interim mechanism Φi satisfies swap monotonicity,

lower invariance, and interior upper invariance. Consider any preference Pi ∈ P and any

misreport P ′i ∈ P. Construct another report P ′′i by the following rule: (i) P ′′i :⊥� k whenever

P ′i :⊥� k, and (ii) for all a, b ∈ M such that P ′i : a �⊥ and P ′i : b �⊥, we have P ′′i : a � b

if and only if Pi : a � b. Then, for all ui ∈ U(Pi), we have EΦi(P ′′i )[ui] ≥ EΦi(P ′i )[ui].

Hashimoto et al. (2014) show that a mechanism is weakly truncation robust (i.e., the agent

cannot obtain a deviation gain by truncating or extending the set of acceptable objects) if

and only if it satisfies upper invariance. Conversely, we show that other axioms characterizing

BIC are crucial for a truthful reporting of the preference order over objects that are declared

to be acceptable.

If an interim mechanism satisfies interior upper invariance in addition to swap monotonic-

ity and lower invariance, BIC is guaranteed to be satisfied on a larger utility subdomain.

Definition 4 (IBI). A utility function ui satisfies inverse bounded indifference (IBI) with

respect to r ∈ [0, 1] if, for all objects a ∈M such that ui(a) > ui(⊥), we have

r ·
(

max
k∈M

ui(k)− ui(⊥)

)
≥ max

k∈M
ui(k)− ui(a). (8)

Since we normalize maxk∈M ui(k) = 1 and ui(⊥) = 0, (8) simplifies to

ui(a) ≥ r. (9)
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We denote the set of all utility functions satisfying IBI with respect to r by IBI(r).

It is clear that IBI(r) ⊃ IURBI(r) for all r ∈ (0, 1). IBI(r) is increasing in r in the

sense that r′ > r implies IBI(r′) ⊃ IBI(r). Similar to the URBI and IURBI domains, when

r = 1, the IBI domain coincides with the full domain: IBI(1) = U . An example of a utility

function satisfying ui ∈ IBI(0.5) is depicted in Figure 1c.

Suppose that interior upper invariance is satisfied in addition to swap monotonicity and

lower invariance. Then, to increase the probability of obtaining the favorite object, an agent

must declare an object to be unacceptable. Accordingly, to determine whether dropping an

object from the agent’s preference order is profitable, we compare (i) the gain of increasing

the probability of obtaining his favorite object, (ii) the loss of decreasing the probability of

obtaining each object, and (iii) the loss of increasing the probability of being unassigned.

Hence, to determine the utility subdomain in which BIC is satisfied, we do not have to

impose a condition on relative utilities between acceptable objects (as the IURBI domain

does). Instead, we need a condition that guarantees that the agent prefers each acceptable

object significantly more than the outside option, as the IBI domain does.

Theorem 4. Agent i’s interim mechanism Φi satisfies BIC in IBI(r) with some r > 0 if

Φi satisfies swap monotonicity, lower invariance, and interior upper invariance.

5 Constrained Random Serial Dictatorship

5.1 Mechanism

In this section, we introduce the constrained random serial dictatorship mechanism, de-

signed for optimizing the central planner’s policy objective. This mechanism satisfies swap

monotonicity, lower invariance, and interior upper invariance, but does not satisfy upper

invariance.
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Definition 5. A constrained random serial dictatorship mechanism (CRSD), parameterized

by an objective function g : X → R, generates a probabilistic assignment in the following

way.

1. Based on agents’ preference reports P = (Pi)i∈N , identify the set of individually rational

(deterministic) assignments X∗(P ) ⊆ X such that for every x ∈ X∗, we have xi,k = 0

whenever Pi :⊥� k.

2. Compute the set of maximizers of g. Let X∗∗(P ) := arg maxx∈X∗(P ) g(x). We define

X∗∗(P ) as the set of approved (deterministic) assignments.

3. We run the random serial dictatorship mechanism (RSD) to choose some x ∈ X∗∗(P ).

Draw agents’ priority order π uniformly at random. According to this priority or-

der, each agent sequentially chooses his favorite object from his choice set. Let π(n)

be the nth agent who makes a choice, and ψ(n) be the object agent π(n) chooses.

Agent π(n) can choose any object that is consistent with some approved assignment,

given earlier movers’ choices; i.e., any object k such that there exists x ∈ X∗∗(P )

such that xπ(1),ψ(1) = 1, xπ(2),ψ(2) = 1, . . . , xπ(n−1),ψ(n−1) = 1, xπ(n),k = 1. Agent π(n)

chooses his favorite object or outside option among such a choice set (with respect

to reported preference Pπ(n)) and make it ψ(n). Iterate this procedure until the last

agent, π(|N |), makes his choice. Return the generated deterministic assignment x such

that xπ(n),ψ(n) = 1 for n = 1, 2, . . . , |N | and xi,k = 0 otherwise.

Note that the algorithm described above implements CRSD näıvely. Later, we show

that CRSD is implementable in polynomial time whenever the objective function g can be

optimized in polynomial time (see Subsection 5.4).

CRSD prioritizes the central planner’s preference over agents’ preferences on objects.

Agents are only allowed to choose an object that is consistent with some deterministic

assignment that maximizes the objective function g. A deterministic assignment returned
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by CRSD is always a maximizer of g among all individually rational assignments with respect

to the reported preference profile.

The objective function g can capture both (i) the hard constraint on the assignment

(g(x) = −∞ if x is infeasible) and (ii) the central planner’s preference. Various policy

objectives that are known to be incompatible with BIC (and strategy-proofness) can be

represented as the objective function g.

Example 1 (Maximum Matching). In many applications (refugee resettlement, daycare as-

signment, etc.), the matching size, defined as the expected number of agents who are assigned

to some objects, is one of the primary policy objectives of the central planner. A number of

previous studies have analyzed the matching size achieved by existing mechanisms (Krysta

et al. 2014, Bogomolnaia and Moulin 2015, Afacan and Dur 2018) and proposed mecha-

nisms that generate a large matching (Andersson and Ehlers 2016, Delacrétaz et al. 2016,

Afacan et al. 2018, Kamada and Kojima 2018, Noda 2018a, Ashlagi et al. 2019). The previ-

ous studies have shown that strategy-proofness (or BIC), the maximum size, and individual

rationality are incompatible (Krysta et al. 2014, Noda 2018b).

If we set g(x) =
∑

i∈N
∑

k∈M xi,k, the objective function g becomes the matching size.

If we run CRSD with this objective function g, the central planner first computes the set

of maximum matchings, and “breaks a tie” in favor of agents’ preferences. Accordingly, the

returned matching is always a maximum individually rational matching with respect to the

reported preference profile.

Example 2 (Minimum Quota). The minimum quota constraints are also relevant in many

real-world settings. For example, the government may want to assign doctors to rural hos-

pitals, and an academic department at a university may want to assign students to all

laboratory sections. Many previous studies (e.g. Ehlers et al. 2014, Goto et al. 2014, Fra-

giadakis et al. 2016, Tomoeda 2018) have studied the incentive properties of the matching

mechanisms in settings with minimum quota constraints. In general, when the central plan-

ner cannot observe the set of acceptable objects for each agent, minimum quota constraints
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strongly incentivize agents to truncate their preferences. This is because if an agent declares

an object to be acceptable, then he might be forced to take it so as to fulfill the minimum

quota requirement.

Let C be the set of minimum quota constraints. Each c ∈ C specifies (i) a subset of

objects M(c) ⊆ M , and (ii) the minimum quota q(c) ∈ Z++. The constraint c is satisfied

if at least q(c) agents are assigned to a subset of objects M(c). The central planner’s

objective function g is to maximize the number of minimum quota constraints satisfied by the

assignment: g(x) =
∑

c∈C 1
{∑

i∈N
∑

k∈M(c) xi,k ≥ q(c)
}

, where 1{·} is an indicator function.

With this objective function, each deterministic assignment returned probabilistically by

CRSD always satisfies the minimum quota requirement whenever there exists an individually

rational assignment that satisfies the minimum quotas. Note that a more general class

of constraints (e.g., type-specific minimum quota constraints, maximum quota constraints,

proportional constraints) can be represented by an objective function in a similar manner.

Example 3 (Hospital-Optimal Stable Matching). Kojima et al. (2018) consider a doctor-

hospital matching with two-sided preferences and distributional constraints, and propose a

condition on g under which the generalized deferred acceptance mechanism becomes strategy-

proof and generates a doctor-optimal stable matching. To represent the hospitals’ (joint)

preferences and feasibility constraints, they also introduced an objective function. According

to their definition, a deterministic assignment is stable if, for every agent, it is impossible

to improve the agent’s payoff and the hospitals’ objective function, simultaneously. If we

regard g as a hospitals’ payoff function, our CRSD always returns a hospital-optimal stable

matching. For any input, the resultant assignment maximizes the hospitals’ payoff function

subject to the individual rationality constraint; thus, it is unimprovable.

5.2 Efficiency

CRSD can be viewed as a variant of serial dictatorship in which the central planner moves as

the first dictator. Since the central planner has a preference over the assignments, rather than
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objects, she first selects a subset of assignments she prefers. After that, just like a standard

RSD, agents choose their favorite objects sequentially. Hence, the resultant deterministic

assignment is ex post Pareto efficient for agents and the central planner in the sense that it

is impossible to improve all agents and the central planner’s utility simultaneously.

If g represents the matching size, the returned assignment is also ex post Pareto efficient

for agents ; i.e., it is impossible to improve all agents’ utilities simultaneously. When g

is the matching size, the set of approved assignments coincides with the set of maximum

matching. As long as an assignment is individually rational, a maximum matching is never

Pareto dominated by non-maximum matching. A deterministic assignment returned by

CRSD is not Pareto dominated by another maximum matching either, because CRSD selects

a maximum assignment in the manner of serial dictatorship.

Theorem 5.

1. For any g, CRSD is ex post Pareto efficient for the central planner and agents in the

sense that for all reported preference profile P and for all deterministic assignments

x that are possibly returned from CRSD, there is no other deterministic assignment

x′ ∈ X\{x} that satisfies the following two conditions simultaneously: (i) g(x′) ≥ g(x),

and (ii) either Pi : x′i,k � xi,k or x′i,k = xi,k holds for all i ∈ N .

2. If g represents the matching size, i.e., g(x) =
∑

i∈N
∑

k∈M xi,k, then CRSD is ex post

Pareto efficient for agents in the sense that for all deterministic assignments x that are

possibly returned from CRSD, there is no other deterministic assignment x′ ∈ X \ {x}

such that either Pi : x′i,k � xi,k or x′i,k = xi,k holds for all i ∈ N .

Proofs are straightforward; thus, they are omitted.

In this sense, although CRSD prioritizes the central planner’s objective over agents’

preferences, CRSD also respects agents’ preferences.
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5.3 Incentive Property

CRSD does not satisfy BIC (or strategy-proofness) in general. By pretending some objects

to be unacceptable, agents can change the set of maximizers X∗∗(P ) so as to obtain a more-

preferred object. Since each agent may be able to increase the probability of obtaining a

more-preferred object by dropping a less-preferred object from the set of acceptable objects,

CRSD does not satisfy upper invariance.

However, CRSD generally satisfies interior upper invariance and lower invariance. The

set of individually rational assignments given P , X∗(P ) depends only on the set of acceptable

objects with respect to P . Hence, the set of approved assignments X∗∗(P ) also depends only

on the set of acceptable objects. Once the set of approved assignments is fixed, the process

is identical to RSD. Accordingly, CRSD is interior upper invariant. It also easy to see that

CRSD is lower invariant in the interior. Furthermore, any object that belongs to a lower

contour set of the outside option is unacceptable; thus, CRSD never allocates such objects

to the agent because CRSD is an individually rational mechanism. For this reason, lower

invariance on the boundary is trivial. Accordingly, CRSD is lower invariant.

Theorem 6. For any objective function g and preference distribution f , CRSD satisfies

lower invariance and interior upper invariance.

We can also show that CRSD satisfies swap monotonicity in the interior in a similar man-

ner to interior upper invariance. Swap monotonicity on the boundary is less straightforward.

First, we show the following lemma.

Lemma 1. Fix any preference profile P−i ∈ PN\{i} and priority order π. Take any preference

Pi ∈ P and any neighboring preference Pi ∈ N (Pi) such that Pi :⊥� k but P ′i : k �⊥. Let

l ∈ M ∪ {⊥} be the object assigned to agent i if he reports Pi. Then, if agent i reports

preference P ′i , he obtains either k or l.

The proof idea is as follows. Since agent i accepts more objects in P ′i , X
∗(Pi, P−i) ⊂

X∗(P ′i , P−i); thus, the maximized value of g under P ′i is not smaller than that under Pi. If g
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takes a strictly larger value, a maximizer should locate in X∗(P ′i , P−i) \X∗(Pi, P−i). Hence,

object k is the only choice available to agent i, and he is forced to take it. Otherwise, the

value of g is not changed. Hence, all the approved assignments under Pi are also approved

under P ′i : X
∗∗(Pi, P−i) ⊂ X∗∗(P ′i , P−i). If there is an earlier mover who makes a different

choice, we refer to the first mover among such agents as agent j. Since agent j’s preference

is fixed, the change in his choice must be due to the change in his choice set. Since all the

agents before agent j are making the same choice, the change in his choice set is caused by

the change in agent i’s preference report. Since agent j is choosing an object that is not

allowed under Pi but allowed under P ′i , agent i is forced to take object k, which is newly

added to the preference list under P ′i . If we cannot find any earlier movers who change their

choice, agent i’s choice set under P ′i is that under Pi and object k. Hence, agent i will take

either object l, which is the choice under Pi, or object k.

Lemma 1 indicates that CRSD is “weakly” swap monotonic on the boundary in the sense

that if agent i drops object k from the preference list (i.e., declares P ′i such that P ′i :⊥� k

instead of Pi : k �⊥), then (i) whenever agent i’s assignment differs between Pi and P ′i ,

agent i obtains object k, and (ii) whenever agent i obtains some object at Pi, he also obtains

some object at P ′i . From the interim perspective, (i) implies Φi(Pi) 6= Φi(P
′
i ) ⇒ Φi,k(Pi) >

Φi,k(P
′
i ), and (ii) implies Φi,⊥(Pi) ≤ Φi,⊥(P ′i ) (the hypothesis is redundant, as we only have

a weak inequality here).

To have swap monotonicity on the boundary, whenever the probabilistic assignment

is changed (i.e., Φi(Pi) 6= Φi(P
′
i )), the probability of being unmatched must be strictly

decreased (i.e., Φi,⊥(Pi) < Φi,⊥(P ′i ) must be the case). This property is not satisfied with

general objective function g. To see this, consider an objective function such that its value is

solely determined by agent i’s assignment, and its value becomes larger if agent i is allocated

to an object with a larger index. In such a case, agent i is guaranteed to be assigned: agent i

has at least one acceptable object, and by reporting it to the central planner, he can obtain

it. Accordingly, for any Pi and P ′i , we have Φi,⊥(P ′i ) = Φi,⊥(Pi) = 0. However, agent i’s
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assignment changes when he adds an object that has a larger index than any object in the

current preference list. Hence, for any preference distribution F , CRSD with this objective

function does not satisfy swap monotonicity. Indeed, for any (strict) utility ui, it is a weakly

dominant strategy of agent i to report only his favorite object to be acceptable.

To exclude the counterexample described above, we impose an additional condition on

the objective function g with which it is risky to truncate a preference list. For CRSD to be

swap monotonic, under some circumstances, CRSD must make the truncator more likely to

be unassigned. Although we can consider a number of sufficient conditions, we propose only

one simple condition that fits our main applications (maximum matching, minimum quota)

well.

Definition 6. Objective function g is anonymous if for all permutations of agents, µ : N →

N , we have

g(x) = g(xπ), (10)

where xπ is defined by xπi = xπ(i).

Definition 7. Objective function g is non-decreasing if whenever x′i,k ≥ xi,k for all (i, k) ∈

N ×M , we have g(x′) ≥ g(x).

It is clear that g is anonymous and non-decreasing when g represents the matching size

(Example 1) or the number of minimum quota fulfillments (Example 2).

The anonymity condition requires that no agent is special, and therefore that no agent

is guaranteed to be assigned to some object. We assume that g is anonymous and non-

decreasing, F has a full support in the sense that any preference order Pj ∈ P may realize

with a positive probability (this assumption does not require that any utility function uj ∈ U

may realize with a positive probability), and there is a shortage of objects, i.e., |N | ≥ |M |.

With these assumptions, (i) for every object k, there is a preference profile P−i and priority

order π with which agent i can only possibly obtain object k, and (ii) such a situation occurs

with a positive probability. Together with Lemma 1, we obtain swap monotonicity of CRSD.
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Theorem 7. Suppose that g is anonymous and non-decreasing, |N | ≥ |M |, and for every

j ∈ N \{i}, for every Pj, Fj({uj ∈ U : p(uj) = Pj}) > 0. Then, agent i’s interim mechanism

implied by CRSD and F is swap monotonic.

Corollary 1. Suppose that g is anonymous and non-decreasing, |N | ≥ |M |, and for every

j ∈ N \ {i}, for every Pj, Fj({uj ∈ U : p(uj) = Pj}) > 0. Then, there exists r > 0 such that

agent i’s interim mechanism implied by CRSD and F satisfies BIC in IBI(r).

5.4 Computational Complexity

The algorithm presented in Definition 5 is computationally slow. In the second step, the

algorithm identifies the set of all the approved assignments X∗∗(P ). The number of elements

in the set of deterministic assignments grows super-exponentially; thus, when |N | or |M | is

large, it is infeasible to compute and save the set of all approved assignments. However, to

run CRSD, we do not have to identify the set of all the approved assignments: we should

only check whether the assignment agents are going to take is in X∗∗(P ).

We denote the set of acceptable objects of agent i by Ai := {k ∈M : Pi :⊥� k}. First,

we define Unconstrained(A, g) as the unconstrained optimization problem for deriving the

optimized value of g.

max
x∈RN×M

g(x) Unconstrained(A, g)

s.t. xi,k = 0 for all i ∈ N and k ∈M \ Ai (Individual Rationality)∑
k∈M

xi,k ≤ 1 for all i ∈ N (Agent Capacity)

∑
i∈N

xi,k ≤ 1 for all k ∈ K (Object Capacity)

xi,k ∈ {0, 1} for all (i, k) ∈ N ×M. (Integer)

The constraint set of Unconstrained(A, g) is identical to X∗(P ); thus, its value is equal to

maxx∈X∗(P ) g(x).
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Next, we define Constrained(n∗, k∗, (ψ(n))n
∗−1
n=1 , A, g) as the constrained optimization

problem for checking whether n∗th mover with respect to the priority order π is allowed to

take object k∗.

max
x∈RN×M

g(x) Constrained(n∗, k∗, (ψ(n))n
∗−1
n=1 , A, g)

s.t. xπ(n∗),k∗ = 1 (Choice)

xπ(n),ψ(n) = 1 for n = 1, . . . , n∗ − 1 (Consistency)

(Individual Rationality), (Agent Capacity), (Object Capacity), and (Integer).

We regard agent π(i∗)’s choice (to take object k∗) and the sequence of earlier movers’ choices

xπ(n),ψ(n) = 1 as constraints. If the value of Constrained(n∗, k∗, (ψ(n))n
∗−1
n=1 , A, g) is equal

to Unconstrained(A, g), then agent π(n∗)’s choice is consistent with some maximizer of g,

and therefore, agent π(n∗) is allowed to choose it, and the algorithm finalizes the assignment

for agent π(n∗). Otherwise, agent π(n∗) is forced to change his choice to maintain the value

of g. The whole procedure is described as Algorithm 1.

We solve Unconstrained only one time, and Constrained at most |N | · |M | times.

Accordingly, if Constrained (and Unconstrained) can be run in polynomial time, then

CRSD can also be run in polynomial time.

Remark 2. In general, optimization of possibly non-linear function g under the presence of in-

teger constraints (xi,k ∈ {0, 1}) might be computationally difficult. However, for some special

cases, Constrained and Unconstrained can be solved efficiently. For example, when the

objective is either the matching size or weighted matching size, we may apply the Hopcroft–

Karp algorithm (Hopcroft and Karp 1973) or the Hungarian algorithm (Kuhn 1955) to obtain

a solution.
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Algorithm 1 Faster Implementation of CRSD

Input N , M , g, P = (Pi)i∈N .

Output A deterministic assignment x ∈ X.

1: Initialize ψ(n)←⊥ for all n← 1, . . . , |N |, xi,k ← 0 for all (i, k) ∈ N ×M , and xi,⊥ ← 1

for all i ∈ N .

2: Compute Ai := {k ∈M : Pi :⊥� k}.

3: Solve Unconstrained(A, g) to obtain its value, ḡ

4: Draw a priority order π uniformly at random.

5: for n∗ = 1, . . . , N do

6: for k ∈M ∪ {⊥} in a descending order of Pπ(n) do

7: if k∗ =⊥ then break

8: else

9: Solve Constrained(n∗, k∗, (ψ(n))n
∗−1
n=1 , A, g). Let g′ be its value.

10: if g′ = ḡ then ψ(n∗)← k∗, xπ(n∗),k∗ ← 1, xπ(n∗),⊥ ← 0, and break

11: end if

12: end if

13: end for

14: end for

6 Conclusion

We study an assignment problem in which the central planner has an objective that is not

directly associated with agents’ welfare. If a mechanism is designed to maximize the central

planner’s objective function, it has been widely observed that strategy-proofness or BIC

cannot be satisfied for an unrestricted domain.

Given this motivation, we extend an axiomatic characterization of Mennle and Seuken

(2018) to obtain a domain of utility functions with which we can construct a mechanism that

(i) generates an assignment the central planner prefers, and (ii) satisfies BIC in a restricted

domain. We show that, if a mechanism satisfies swap monotonicity and lower invariance,

then it satisfies BIC in an IURBI domain. If a mechanism further satisfies interior upper
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invariance, then it satisfies BIC in an IBI domain.

We further construct a new mechanism, CRSD, that (i) returns an assignment that op-

timizes the central planner’s objective among all individually rational assignments (with

respect to the reported preference profile), (ii) returns an ex post Pareto efficient assign-

ment in that there is no assignment that improves agents’ and the central planner’s welfare

simultaneously, and (iii) satisfies swap monotonicity, lower invariance, and interior upper

invariance; thus, it satisfies BIC in an IBI domain.

We cannot immediately conclude that CRSD can be used in practical situations. CRSD

satisfies BIC if agents’ vNM utility functions belong to an IBI domain. However, whether

agents’ utilities are actually in the demanded domain crucially depends on the detail of the

situation. Agents’ utility attached for acceptable objects might be bounded away from that

for the outside option in some applications, but we cannot hope for this property for general

problems. Furthermore, the largeness of the IBI domain (parameterized by r) depends on

the policy objective g, preference distribution F , and the number of agents and objects |N |

and |M |, etc. When and whether it is practically possible to implement CRSD is still an

open question.

We also note that, when the central planner has an objective, she may secretly manipulate

the assignment to make it more preferable or advantageous for his own aims. Akbarpour and

Li 2019 study such secret manipulations in an auction problem. Even if the central planner

does not manipulate the assignment, agents might doubt it and manipulate their preference

reports. Indeed, Rees-Jones (2018) reports that many participants manipulate their pref-

erences in a strategy-proof mechanism. In this sense, mechanism design researchers should

pay attention to a situation where the central planner has her own assignment preferences,

even if such objectives are not explicitly incorporated into the implemented mechanism.
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Appendix

A Proofs

A.1 Proof of Theorem 2

We use the following lemma. The proof is similar to the one for Lemma 1 of Mennle and

Seuken (2018), thus it is omitted.

Lemma 2. The following are equivalent:

A. For all preferences Pi, P
′
i ∈ P with Φi(Pi) 6= Φi(P

′
i ), there exists an object b ∈ M such

that Φi,b(Pi) < Φi,b(P
′
i ) and Φi,k(Pi) = Φi,k(P

′
i ) for all k ∈ L(b, Pi).

B. Φ is swap monotonic and lower invariant.

Theorem 2 claims that Statement B and Statement C, defined as follows, are equivalent.

C. There exists r > 0 such that Φi satisfies BIC in IURBI(r).

We will prove the equivalence of Statements A and C. Fixing Φi, let δ be the smallest

non-zero variation in the assignment resulting from any change of report by agent;

δ = min

|Φi,k(Pi)− Φi,k(P
′
i )|

∣∣∣∣∣∣∣
i ∈ N, k ∈M,Pi, P

′
i ∈ P ,

s.t. |Φi(Pi) 6= Φi(P
′
i )| 6= 0

 (11)

Whenever Φi is non-constant, δ is strictly positive.

(Statement C ⇐ Statement A) Consider any preferences Pi, P
′
i ∈ P . Statement A

implies that whenever Φi(Pi) 6= Φi(P
′
i ), by reporting P ′i , agent i becomes more likely to

obtain b by δ. Let a be the object that i ranks directly above b in Pi. Then, i’s expected

deviation gain from misreporting is greatest if the following two conditions are satisfied: (i)
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when being truthful, agent i obtains object a for sure, and (ii) when misreporting, i obtains

his favorite object with probability 1− δ and object b with probability δ.

The deviation gain is thus bounded from above by

(
(1− δ) max

k∈M
ui(k) + δui(b)

)
− ui(a) (12)

which is non-positive if

δ

(
max
k∈M

ui(k)− ui(b)
)
≥ max

k∈M
ui(k)− ui(a). (13)

Inequality (13) holds for all utility functions in U(Pi) ∩ IURBI(δ).

(Statement C ⇒ Statement A) We will show the contraposition. Suppose that State-

ment A is violated. Then, whenever Φi(Pi) 6= Φi(P
′
i ), there exist Pi, P

′
i ∈ P such that

Φi,b(Pi) > Φi,b(P
′
i ) and Φi,k(Pi) = Φi,k(P

′
i ) for all k ∈ L(b, Pi). Again, let a be the object

that i ranks directly above b in Pi. Since i’s assignment for b decreases, it must decrease by

at least δ. Then, i’s expected deviation gain from misreporting is smallest if the following

two conditions are satisfied: (i) when being truthful, i receives b with probability δ and his

favorite object with probability 1−δ, and (ii) i receives a for sure when misreporting. Hence,

ui(a)−
(

(1− δ) max
k∈M

ui(k) + δui(b)

)
(14)

is the smallest possible deviation gain from misreporting. This bound is strictly positive if

δ

(
max
k∈M

ui(k)− ui(b)
)
> max

k∈M
ui(k)− ui(a), (15)

which holds for all utility functions in U(Pi)∩ IURBI(r) for r < δ. Accordingly, Statement

C is not satisfied. �
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A.2 Proof of Theorem 3

We start from any misreport P ′i ∈ P . P ′′i is obtained by applying the bubble sort algorithm

to P ′i . In each step of the bubble sort, we swap the order of two neighboring objects a and b

such that Pi : a � b, which are both more preferred to the outside option. By interior upper

invariance and lower invariance, the probability of assigning objects other than a and b are

unchanged by this operation. Furthermore, by swap monotonicity, the probability that agent

i obtains a can only increase, and the probability that agent i obtains b can only decrease.

Accordingly, in each step, agent i’s expected utility can only be improved. �

A.3 Proof of Theorem 4

By Theorem 3, agent i cannot improve his expected payoff only by swapping the preference

order of objects that are declared to be acceptable. Accordingly, for a misreporting to be a

profitable, it must drop at least one object that is acceptable with respect to the truthful

preference. By swap monotonicity, when misreporting, agent i must become unassigned with

probability at least δ, where δ is defined in (11). Hence, Agent i’s expected deviation gain

from misreporting is greatest if the following two conditions are satisfied: (i) when being

truthful, agent i obtains his least favorite acceptable object for sure, and (ii) when misre-

porting, agent i obtains his favorite object with probability 1 − δ and becomes unassigned

with probability δ.

The deviation gain is thus bounded above by

(
(1− δ) max

k∈M
ui(k) + δui(⊥)

)
− min

l∈M :ui(l)>0
ui(l) (16)

which is non-positive if

δ

(
max
k∈M

ui(k)− ui(⊥)

)
≥ max

k∈M
ui(k)− min

l∈M :ui(l)>0
ui(l). (17)
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Inequality (17) holds for all utility functions in U(Pi) ∩ IBI(δ). �

A.4 Proof of Theorem 6

First, we simultaneously show that CRSD satisfy swap monotonicity, upper invariance, lower

invariance in the interior.

Fix an other agents’ preferences P−i and the priority order π arbitrarily. Take any Pi ∈ P ,

P ′i ∈ N (Pi), and objects a, b ∈M with Pi : a � b but P ′i : b � a.

Since Pi and P ′i have an identical set of acceptable objects, X∗(Pi, P−i) = X∗(P ′i , P−i).

Accordingly, X∗∗(Pi, P−i) = X∗∗(P ′i , P−i). Hence, the choice set of the first mover with

respect to π, π(1) is also identical: he can choose any k ∈ M such that there exists x ∈

X∗∗(Pi, P−i) = X∗∗(P ′i , P−i) such that xπ(1),k = 1. Hence, agent π(1) will make an identical

choice. Similarly, we can verify that, for any agent π(j) who moves earlier than agent i,

given that all the agents who move earlier than π(j) make an identical choice, agent π(j)

also makes an identical choice. Accordingly, agent i’s choice set is also identical.

Swap Monotonicity in the Interior If agent i obtains object a when he reports Pi,

then he obtains b by reporting P ′i . Accordingly, the probability of obtaining a is decreased

strictly, and probability of obtaining b is increased strictly. Otherwise, agent i obtains an

identical object or outside option. Hence, the assignment is unchanged.

Interior Upper Invariance, Lower Invariance in the Interior By the above argu-

ment, whenever agent i’s assignment is changed, he obtains object a at Pi and object b at

P−i. Accordingly, his probability of (i) obtaining an object more preferred to a and b, and

(ii) obtaining an object less preferred to a and b, are unchanged.

Since the above argument holds for every P−i and π, we have interior upper invariance,

swap monotonicity in the interior, and lower invariance in the interior.

Finally, we show that lower invariance is also satisfied on the boundary. Again, fix
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an other agents’ preferences P−i and the priority order π arbitrarily. Take any Pi ∈ P ,

P ′i ∈ N (Pi), and objects a ∈ M with Pi : k �⊥ but P ′i :⊥� k. Since CRSD always selects

an individually rational assignment, for all l ∈ L(⊥, Pi), we have Φi,l(Pi) = 0. Similarly, for

all l ∈ L(⊥, P ′i ), we have Φi,l(P
′
i ) = 0. Since L(⊥, P ′i ) = L(⊥, Pi) ∪ {k} ⊂ L(⊥, Pi), we have

Φi,l(Pi) = Φi,l(P
′
i ) (= 0) for all l ∈ L(⊥, Pi), as desired. �

A.5 Proof of Lemma 1

Since P ′i accepts a larger set of objects than Pi does, we have X∗(P ′i , P−i) ⊃ X∗(Pi, P−i).

Hence, we have

max
x∈X∗(P ′i ,P−i)

g(x) ≥ max
x∈X∗(Pi,P−i)

g(x). (18)

When (18) holds with strict inequality, we have X∗∗(P ′i , P−i) ⊆ X∗(P ′i , P−i)\X∗(Pi, P−i).

By construction, for all x ∈ X∗(P ′i , P−i) \X∗(Pi, P−i), agent i is assigned to object k.

When (18) holds with equality, we have X∗∗(Pi, P−i) ⊆ X∗∗(P ′i , P−i). Hence, whenever

the first mover, agent π(1), can take object k given Pi, he can also take it given P ′i . If the

choice of agent π(1) given P ′i is different from that given Pi, agent π(1) is choosing an object

that is (i) not available under Pi, but (ii) available under P ′i . Such an assignment must

belong to X∗∗(P ′i , P−i) \X∗∗(Pi, P−i); thus, in such a case, agent i is forced to take object k.

We look at each of earlier movers’ choices sequentially. If one of earlier movers changes

his choice, by the above argument, we can conclude that agent i is forced to take object k.

Otherwise, all agents who move earlier than agent i make an identical choice between Pi and

P ′i . Then, agent i’s choice set given P ′i is the union of the choice set given Pi and a singleton

of object k. Accordingly, agent i will take either (i) object l, which is the choice under Pi,

or (ii) object k.

In all the cases above, agent i ends up with taking either object k or l. �
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A.6 Proof of Theorem 7

In the proof of Theorem 6, we showed that CRSD is swap monotonic in the interior. Fur-

thermore, by Lemma 1, for any Pi ∈ P , P ′i ∈ N (Pi) such that P ′i : k �⊥ but Pi :⊥� k,

we have (i) Φi(P
′
i ) 6= Φi(Pi) implies Φi,k(P

′
i ) > Φi,k(Pi), and (ii) Φi,⊥(P ′i ) ≤ Φi,⊥(Pi). Given

that we assume that any P−i is realized with a positive probability, it suffices to show that,

for every Pi ∈ Pi, there exists P−i ∈ PN\{i} such that φi,⊥(P ′i , P−i) < φi,⊥(Pi, P−i).

Take any Pi ∈ P , P ′i ∈ N (Pi) such that P ′i : k �⊥ but Pi :⊥� k. Define Pj by Pj = Pi

for all j ∈ N \ {i}. Take a priority order such that agent i moves at the very end. Since

Pi declares at least one object (k) to be unacceptable, Pi accepts at most |M | − 1 objects.

Since g is anonymous and |N | ≥ |M |, if agent i reports Pi, all the objects accepted by Pi

are taken by earlier movers; thus, he is assigned to ⊥. However, since g is non-decreasing

and no j ∈ N \ {i} declares that object k is acceptable, if agent i reports P ′i , agent i is

assigned to object k. Since such a priority order π occurs with a positive probability, we

have φi,⊥(P ′i , P−i) < φi,⊥(Pi, P−i), as desired. �
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