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Abstract

This study considers revenue-optimal auction design for two ordered sub-

stitutes, such as positions or priorities. Bidders have a two-dimensional type

about a valuation for the top position and a discount rate of the second position

for the top. An auction mechanism is dominant-strategy incentive compatible

if and only if it satisfies the “Law of One Price,” which requires that bidders’

payments are independent of their own discount rate. The simple “virtually

efficient mechanism,” which maximizes the unconstrained virtual surplus, is not

incentive compatible for any type distribution if the discount-rate-type space

includes at least two interior values. If the discount-rate-type space includes at

most a single interior value, there exist distributions under which the virtually

efficient mechanism is incentive compatible, and therefore optimal.
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1 Introduction

This study considers optimal auctions of priorities, such as service slots for facilities

and positions of Internet ads. Consider a queueing problem in which a seller owns a

single facility and allocates the service provision time to many potential users. The

users want to be served as soon as possible. A late slot is acceptable, however, users

are not patient and discount the value of delayed service. The degree of patience

is heterogeneous between users and their private information. When users have a

two-dimensional type, a valuation of the service and a patience level, how should the

seller design an auction to maximize their expected profits?1

When bidders have a single-dimensional type regarding valuations, the optimal

single-object auction for the seller is fully characterized by Myerson (1981). By

the envelope condition, the expected payment from a bidder is expressed in terms

of their virtual valuation. When the type distribution satisfies certain regularity

conditions, then the allocation rule that maximizes the social surplus in terms of

virtual valuation – the virtually efficient allocation rule – is incentive compatible and

optimal for the seller. Under reasonable assumptions, the optimal allocation rule is

implemented by a standard auction, with an appropriate reserve price. Myerson’s

virtual valuation approach is applicable to multiple objects as long as the bidders’

type is single-dimensional (Monteiro, 2002; Ulku, 2013).

However, it is well known that it is hard to obtain an optimal mechanism when

bidders have multidimensional types. Myerson’s approach of using virtual valuation

is not successful very much because the multidimensional extension of the virtual

valuation is not unique but is endogenously defined by allocation rules. Even for

screening problems, where there is only one buyer, the optimal sales mechanism is

in general stochastic and highly complex (Thanassoulis, 2004; Manelli and Vincent,

2007; Pavlov, 2011; Daskalakis et al. 2017; etc.). The existing studies imply that

optimal auctions for multidimensional types will be extremely complex.2

1We use they for single pronoun.
2Chen et al. (2019) show that every Bayesian incentive compatible allocation rule is implemented

by a deterministic mechanism when there are multiple agents. However, the construction of such a

deterministic mechanism is not easy or intuitive.
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In contrast, there are some multidimensional type models in which Myerson’s

approach can be applied. For example, Iyengar and Kumar (2008), Malakhov and

Vohra (2009), and Devanur et al. (2020) examine auctions or sales mechanisms with

capacity-constrained agents. In these models, each agent has a two-dimensional type

about a marginal valuation of the good and a capacity (maximum demand).3 Myer-

sonian virtual valuation is constructed by the incentive condition on the valuation

type, and there exist type distributions where the virtually efficient allocation rule

is incentive compatible and optimal. Related models include Dizdar et al. (2011)

(multi-unit demands with perfect complements), Pai and Vohra (2013), Mierendorff

(2016), and Sano (2021) (dynamic allocations with private participation time).

In these models, each bidder’s type is classified into two components, a single-

dimensional valuation, and other attributes which specify the conditions for obtaining

the valuation. Sufficient conditions for the incentive compatibility of the virtually

efficient mechanism are different. They include hazard rate ordering (Iyengar and

Kumar, 2008; Malakhov and Vohra, 2009; Dizdar et al., 2011), convex virtual valu-

ations (Mierendorff, 2016), and affine virtual valuations (Sano, 2021).

This study aims to explore an intermediate between these multidimensional type

models. We focus on a simultaneous auction of two ordered substitutes, which are

priorities or positions. Each bidder has a unit-demand and a valuation v for the top

priority or the higher position, which we call the Top. The valuation for the second

priority or the lower position, which we call the Bottom, is determined by δv, where

δ ∈ [0, 1] is the discount rate of the Bottom for the Top. A pair (v, δ) is the private

information of a bidder. In the queueing problem, v is a valuation of the service,

and δ represents a level of patience or waiting cost. In position auctions such as

Google’s sponsored search, v is the expected profit from a click on an ad link, and

δ represents the position-specific attractiveness (or click-through rate) of the ad. If

the set of possible discount rates, denoted by ∆ ⊆ [0, 1], is binary and ∆ = {0, 1},

our model is technically similar to the existing “value and other attributes” models.

The richer the discount rates set ∆, the closer the model will be to a general model

3Precisely, Iyengar and Kumar (2008) study multi-unit procurement auctions with capacity-

constrained suppliers.

3



with various valuations over different outcomes.

We characterize situations in which the virtually efficient mechanism is dominant-

strategy incentive compatible (DSIC) and maximizes the seller’s expected revenue.

Although DSIC is stronger than Bayesian incentive compatibility, which is standard

in the literature on optimal mechanism design, we will have a clear characterization

using DSIC.

We show that when there are two or more interior discount rates in ∆, the virtu-

ally efficient mechanism is not DSIC for any type distribution. This negative result

is shown as follows. The so-called taxation principle implies that DSIC of an auc-

tion mechanism is characterized by the “Law of One Price (LOP)”. The condition

requires that, given the other bidders’ types, each bidder’s payment for a position

is independent of their own valuation or discount rate. The efficient allocation rule,

which is implemented by the Vickrey-Clarke-Groves (VCG) mechanism, should sat-

isfy the LOP condition. Therefore, the virtually efficient allocation rule also should

satisfy the LOP in terms of virtual valuations. However, the LOP as the incentive

condition and the LOP in terms of virtual valuations are not compatible, except for

the cases where the virtual valuation takes special forms.

Possibility results arise when the domain of the possible discount rates is ∆ ⊆

{0, δ, 1} with 0 < δ < 1. This is because LOP is not necessarily required for the corner

discount rates of 0 and 1. Specifically, when the set of discount rates is ∆ = {0, 1},

the virtually efficient mechanism is DSIC and optimal if the type distribution satisfies

the hazard rate order. This implies that the virtual valuation is monotone in discount

rate. This is a replication of the results from Malakhov and Vohra (2009), Dizdar

et al. (2011), and Pai and Vohra (2013). When ∆ includes an interior value δ, the

condition for DSIC of the virtually efficient mechanism is more restrictive. When ∆ =

{0, δ} and valuation and discount rate are independently distributed, the virtually

efficient mechanism is DSIC if the virtual valuation function is affine. A similar result

is given by Sano (2021) in a dynamic auction model. When ∆ = {δ, 1} or {0, δ, 1}, the

virtually efficient mechanism is DSIC only in knife-edge type distributions. All these

results confirm that it is difficult to extend Myerson’s approach to multidimensional

types, even if the cardinality of the discount-rate type is very small.
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The generic impossibility of DSIC of the virtually efficient mechanism is partly

due to the strictness of dominant strategy. We also show that among a class of

symmetric mechanisms, the efficient (VCG) mechanism is a unique mechanism that

satisfies LOP and therefore DSIC. The literature of mechanism design with fair-

ness concerns shows that the efficiency is characterized by DSIC and the symmetry

of an allocation rule under single-dimensional type (Ashlagi and Serizawa, 2012;

Hashimoto and Saito, 2012). Our result can be viewed as an extension to a multidi-

mensional restricted type space.

1.1 Related Literature

General models of multidimensional mechanism design are studied by Manelli and

Vincent (2007) and Daskalakis et al. (2017), among others. For allocation of the

perfect substitutes, Thanassoulis (2004) and Pavlov (2011) show that in the case of

single agent the optimal mechanism is generally stochastic.

There are a number of special multidimensional type models with valuations and

other attributes. Malakhov and Vohra (2009), Devanur et al. (2020), and Iyengar and

Kumar (2008) study capacity-constrained agents. Malakhov and Vohra (2009) and

Devanur et al. (2020) consider allocations of homogeneous goods to an agent with

maximum consumption units. Iyengar and Kumar (2008) examine multi-unit pro-

curement auctions with capacity-constrained suppliers. Malakhov and Vohra (2009)

and Iyengar and Kumar (2008) provide hazard rate ordering as a sufficient condition

for the incentive compatibility of the relaxed solution. Devanur et al. (2020) show

that the optimal allocation rule is deterministic even if the relaxed solution is not

incentive compatible. Dizdar et al. (2011) consider the allocations of homogeneous

goods to agents with multi-unit demands. In their model, agents demand multiple

units as perfect complements, and hazard rate ordering is a sufficient condition for

the incentive compatibility of the relaxed solution. Pai and Vohra (2013) and Mieren-

dorff (2016) consider dynamic sales models with private consumption deadlines. Pai

and Vohra (2013) gives hazard rate ordering as a sufficient condition, whereas convex

virtual valuation is proposed in Mierendorff (2016). Sano (2021) characterizes affine

virtual valuations as the incentive compatiblity of the relaxed solution in a related
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dynamic model.

Mishra and Roy (2013) consider a more general dichotomous preference model,

in which agents have the (same) valuation if a preferable outcome is chosen. The

set of preferable outcomes to each agent is their private information. They show

that if the valuation and other private information are independently distributed,

the virtually efficient mechanism is DSIC and maximizes the expected revenue.

Our study is also related to multi-dimensional mechanism design that seeks mod-

els in which a simple mechanism is optimal. In single-agent multi-product monopoly

models, Manelli and Vincent (2006) and Haghpanah and Hartline (2020) provide

conditions under which pure bundling is optimal. In contrast, Carroll (2017) shows

that no bundling can be optimal if the seller knows the buyer’s marginal distributions

only and has ambiguity-averse preferences.

For the strictness of DSIC, Roberts (1979) shows that DSIC implies that allo-

cation rule must be affine maximizer under the unrestricted type space. For the

restricted domains such as auctions, Ashlagi and Serizawa (2012) shows DSIC and

anonymity in utility induces efficiency in multi-unit auctions with unit-demand bid-

ders. Hashimoto and Saito (2012) show a similar result for a queueing problem.

Mishra and Quadir (2014) show that DSIC and non-bossiness with a technical condi-

tion regarding continuity induces utility maximizer of allocation rules in single-object

auctions. For multidimensional types, Kazumura et al. (2020) show that when there

are at least three goods and bidders have unit-demand, DSIC and anonymity (and

individual rationality and no wastage) do not induce efficiency. They characterize

the VCG (formally, the minimum Walrasian equilibrium mechanism) using ex-post

revenue maximization. Our model is distinct from these results in that the type

space is more restricted and non-convex, but we explicitly assume utility maximiz-

ing allocations.

2 Model

Suppose that the seller allocates two positions T (the Top, a superior good) and B

(the Bottom, a normal good) to many buyers. There are I (≥ 3) potential buyers,

who each have a single-unit demand. The set of potential buyers is denoted by
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I = {1, . . . , |I|}. An allocation for bidder i is denoted by xi ∈ {T,B, 0}, where 0

represents a null good. An allocation is denoted by x = (xi)i∈I . An allocation x is

feasible if for all i ∈ I, it holds that xi ∈ {T,B} ⇒ xj ̸= xi (∀j ̸= i) . The set of all

feasible allocations is denoted by X.

Bidders have quasi-linear utility. Bidder i ’s type is denoted by θi = (vi, δi),

where vi ∈ R+ is the valuation of the top T and δi ∈ [0, 1] is the discount rate of

the bottom B for the top. Given a monetary transfer pi ∈ R to the seller, bidder i ’s

utility function takes the form

ui =


vi − pi if xi = T

δivi − pi if xi = B

−pi if xi = 0

. (1)

The set of all types for a bidder is denoted by Θ ≡ V ×∆. We assume that the set of

valuations is unbounded and V = R+. The set of discount rates ∆ ⊂ [0, 1] satisfies

|∆| ≥ 2. Let δ̄ ≡ maxδ∈∆ δ be the maximum possible discount rate. A type profile

of the bidders is denoted by θ = (θi)i∈I .

We focus on deterministic direct mechanisms. A mechanism is denoted by (x, p),

in which x : ΘI → X is an allocation rule and p : ΘI → RI is a payment rule. We

assume that the bottom B is not allocated to bidders with no value as follows.

Assumption 1 The bottom B is not allocated to bidder i if their reported discount

rate is δi = 0.

Bidder i ’s report in a mechanism is denoted by θ̂i = (v̂i, δ̂i). Given a mechanism

(x, p) and a report profile θ̂ = (θ̂i)i∈I , bidder i ’s payoff function is given by

ui(θ̂, θi) = χi(θ̂; δi)vi − pi(θ̂), (2)

where

χi(θ̂; δi) =


1 if xi(θ̂) = T

δi if xi(θ̂) = B

0 if xi(θ̂) = 0

. (3)
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Truthful payoff is denoted by

Ui(θ) ≡ ui(θ, θi) = χi(θ; δi)vi − pi(θ). (4)

We consider DSIC as the equilibrium concept.

Definition 1 A mechanism (x, p) is dominant-strategy incentive compatible (DSIC)

if for all i ∈ I, all θ ∈ ΘI , and all θ̂i ∈ Θ,

Ui(θ) ≥ ui((θ̂i, θ−i), θi).

Definition 2 A mechanism (x, p) is individually rational (IR) if for all i ∈ I and all

θ ∈ ΘI , Ui(θ) ≥ 0.

Our main objective is to find a DSIC mechanism that maximizes the seller’s

expected revenue.

max
(x,p)|x∈X

E

[∑
i∈N

pi(θ)

]
s.t. DSIC, IR

Although most studies on optimal mechanism design consider Bayesian incentive

compatible mechanisms, we focus on DSIC mechanisms in this study. We will have

a clear result by imposing a stronger incentive condition. Ulku (2013), Mishra and

Roy (2013), and Kazumura et al. (2020) also examine revenue maximization among

DSIC mechanisms. Regarding deterministic mechanisms, Chen et al. (2019) show

that for any probabilistic Bayesian incentive compatible mechanism, there exists an

equivalent deterministic Bayesian incentive compatible mechanism.

3 Characterization of DSIC

Because we consider DSIC as the equilibrium concept, we fix an arbitrary θ−i and

omit from description. We consider as if there is only one bidder in the mechanism.

In addition, we abuse notations and denote by χi(vi, δi) the case where the true

discount rate is reported, χi(vi, δi) = χi(vi, δi; δi).
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If the discount rate δi is known to the seller, the incentive compatibility (in val-

uation) is characterized in a standard manner by the monotonicity and the envelope

conditions.

Definition 3 An allocation rule x is monotone if for each δi ∈ ∆,

vi > v′i ⇒ χi(vi, δi) ≥ χi(v
′
i, δi).

A mechanism (x, p) is said to be monotone if x is monotone.

Lemma 1 If a mechanism is DSIC, then it is monotone.

Proof. Standard and omitted.

Because we focus on deterministic mechanisms, a monotone allocation rule is

characterized by cutoff functions. Given a monotone allocation rule x, the cutoff for

allocation xi ∈ {T,B} is defined as follows.4

cTi (δi) ≡ inf{vi | χi(vi, δi) = 1} (5)

cBi (δi) ≡ inf{vi | χi(vi, δi) ≥ δi} (δi > 0) (6)

For the completeness, let cBi (0) ≡ cTi (0). Also, note that c
B
i (1) = cTi (1) by definition.

Let cxi (δi) ≡ ∞ for i ∈ I and x ∈ {T,B} if the infimum does not exist. When

0 < cBi (δi) < cTi (δi) < ∞, the allocation rule is given by

xi(θi) =


T if vi > cTi (δi)

B if cBi (δi) < vi < cTi (δi)

0 if vi < cBi (δi)

,

while allocations at the cutoffs are not specified.

The envelope condition in valuation is stated as follows. Note that type θi =

(0, δi) with any δi represents the same preferences. Thus, the truthful payoff must

satisfy Ui(0, δi) = U i for all δi ∈ ∆.

Lemma 2 If a mechanism is DSIC, then for all θi ∈ Θ, the truthful payoff satisfies

Ui(θi) = U i +

∫ vi

0
χi(s, δi)ds. (7)

4Note that the cutoffs actually depend on θ−i and should be denoted by cxi
i (δi, θ−i).
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Proof. Standard and omitted.

The payment rule is pinned down by the envelope condition up to constant.

When the bidder has a type θi satisfying cBi (δi) < vi < cTi (δi), then they obtain the

bottom B and pay

pi(θi) = pBi (δi) ≡ −U i + δic
B
i (δi). (8)

If vi > cTi (δi), then they obtain the top T and pay

pi(θi) = pTi (δi) ≡ −U i + (1− δi)c
T
i (δi) + δic

B
i (δi). (9)

Note that an allocation rule may not assign a specific position to the bidder.

When the bottom B is not allocated to the bidder of δi for any vi, then cBi (δi) =

cTi (δi). The following lemma shows that all cutoffs are finite if the top T is allocated

to some type θi.

Lemma 3 Suppose that for all θ−i ∈ ΘI−1, there exists θi ∈ Θ and xi(θi, θ−i) = T .

If a mechanism is DSIC, then cBi (δi) ≤ cTi (δi) < ∞ for all δi ∈ ∆ and all θ−i ∈ ΘI−1.

Proof. See Appendix.

The incentive compatibility with respect to discount rates is given by the so-called

taxation principle. Consider two discount rates δi, δ
′
i > 0, and suppose cBi (δi) <

cTi (δi) and cBi (δ
′
i) < cTi (δ

′
i). Both positions are priced according to (8) and (9) for

each discount rate. It is clear that if the prices are different between the discount

rates, no bidder has an incentive to purchase at a higher price, and the mechanism

is not DSIC. Hence, DSIC requires the equivalent payments between discount rates.

The taxation principle implies that if a mechanism is DSIC, then for each θ−i,

there exists a price vector pi = (pBi , p
T
i ), and bidder i purchases the best position

among {T,B, 0} under pi. Given an arbitrary θ−i and a monotone allocation rule

with cutoff functions (cBi , c
T
i )δi∈∆, the taxation principle implies the Law of One

Price (LOP), which requires pxi
i (δi) = pxi

i for each xi ∈ {T,B} and most of δi ∈ ∆.

Lemma 3 indicates that LOP for the top T holds for all δi ∈ ∆ \ {1}, however, it

may not for δi = 1 because the bidder enjoys vi from the bottom B, and the top T

may not be allocated. In addition, LOP for the bottom B is not required for small

δi because the bottom is neither very valuable nor the bidder wants to purchase at

pBi . Hence, DSIC is formally characterized using cutoffs as follows.
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Proposition 1 A monotone mechanism with a profile of cutoffs
(
cBi (δ), c

T
i (δ)

)
δ∈∆

is DSIC for bidder i if and only if there exists a price vector (pBi , p
T
i ) ∈ R2

+ and it

satisfies pBi ≤ pTi and the following properties:

1. for all δ < 1,

(1− δ)cTi (δ) + δcBi (δ) = pTi , (LOP-T)

2. for all δ ≥ pBi /p
T
i ,

δcBi (δ) = pBi , (LOP-B)

3. if δ̄ = 1 and pBi < pTi , then xi(vi, 1) ∈ {0, B} for all vi, and

4. if δ < pBi /p
T
i , then xi(vi, δ) ∈ {0, T} for all vi.

The third and last requirements are complementary conditions to the first and sec-

ond, respectively. We call these conditions the LOP conditions or simply LOP. Note

that LOP does not indicate one price for different bidders. Also, prices for bidder i

depends on the other bidders’ types θ−i.

4 Main Result

Suppose that each bidder’s type θi is independently and identically distributed. De-

note by G the cumulative distribution function of θi. Given a discount rate δi, the

conditional hazard rate is denoted by

λδi(vi) ≡
g(vi | δi)

1−G(vi | δi)
. (10)

We impose increasing hazard rate, which is often assumed in auction literature.

Assumption 2 Conditional hazard rate λδi is strictly increasing in vi for all δi ∈ ∆.

The virtual valuation is defined as

ϕ(θi) ≡ vi −
1

λδi(vi)
. (11)
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When vi and δi are independently distributed, we simply denote λδi(vi) = λ(vi)

and ϕ(θi) = ϕ(vi). By standard calculations, the expected revenue from bidder i is

transformed into the expected virtual surplus:

E[pi(θ)] = E[χi(θ)ϕ(θi)]. (12)

The pointwise relaxed problem is the unconstrained virtual surplus maximization

problem.

max
x(θ)∈X

∑
i∈I

χi(θ)ϕ(θi). (13)

The solution to (13) for θ ∈ ΘI is called the relaxed solution for θ. If the relaxed

solution satisfies the LOP conditions in Proposition 1 for all θ, then it is the optimal

allocation rule that maximizes the seller’s expected revenue. In addition, it is clear

that the optimal allocation rule maximizes the seller’s expected revenue among all

Bayesian incentive compatible mechanisms.

Suppose {δl, δh} ⊂ ∆ with 0 < δl < δh < 1. For a while, suppose that the

valuation vi and the discount rate δi are independently distributed. Because the

efficient allocation rule is implementable, it satisfies the LOP conditions. When

cBi (δl) < cTi (δl), the LOP conditions (LOP-T) and (LOP-B) require

δhc
B
i (δh) = δlc

B
i (δl), (14)

(1− δh)c
T
i (δh) = (1− δl)c

T
i (δl). (15)

Now let us turn to the relaxed problem. The relaxed problem is the same as social

surplus maximization, except that the valuations are replaced with the virtual val-

uations. Hence, the relaxed solution must satisfy the LOP conditions in terms of

virtual valuations, which are

δhϕ
(
cBi (δh)

)
= δlϕ

(
cBi (δl)

)
, (16)

(1− δh)ϕ
(
cTi (δh)

)
= (1− δl)ϕ

(
cTi (δl)

)
. (17)

The relaxed solution is DSIC if the LOP and the “virtual” LOP coincide. However,

it holds only if the virtual valuation is linear: ϕ(v) = αv, which never holds because

ϕ(0) < 0. Hence, the relaxed solution is not DSIC for any value distribution. This

is similar when vi and δi are correlated. The following theorem is our main result.
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Theorem 1 Suppose ∆ ⊇ {δl, δh} with 0 < δl < δh < 1. The relaxed solution is not

DSIC for any type distribution G.

Thus, possibility results arise only when there is at most a single discount rate

in the interior of the unit interval (0, 1); that is, ∆ ⊆ {0, δ, 1}. This is because LOP

conditions are partly slack for δi = 0 and 1. When discount rate is δi = 0, the LOP

for the bottom B is not required. When discount rate is δi = 1, the LOP for the top

T is not required.

4.1 Possibility 1: ∆ = {0, δ}

To have a possibility result, let us suppose ∆ = {0, δ} with δ ∈ (0, 1) first. Then,

Proposition 1 is reduced as follows.

Corollary 1 Suppose ∆ = {0, δ} with δ ∈ (0, 1). A monotone mechanism with

cutoffs (cBi (δ), c
T
i (δ), c

T
i (0)) is DSIC for bidder i if and only if

(1− δ)cTi (δ) + δcBi (δ) = cTi (0). (18)

Equation (18) corresponds to (LOP-T). (LOP-B) is not required because bidders of

δi = 0 are not allocated the bottom. Because the efficient allocation rule satisfies

(18), the relaxed solution satisfies the associated virtual LOP condition

(1− δ)ϕδ(c
T
i (δ)) + δϕδ(c

B
i (δ)) = ϕ0(c

T
i (0)). (19)

It is clear that given that vi and δi are independent, two conditions (18) and (19)

coincide if the virtual valuation ϕ is affine. Hence, we have the following sufficient

condition for DSIC of the relaxed solution in the case ∆ = {0, δ}.

Theorem 2 Suppose ∆ = {0, δ} with δ ∈ (0, 1) and that vi and δi are independently

distributed. The relaxed solution is DSIC and therefore optimal if the virtual val-

uation function ϕ is affine. Conversely, if the virtual valuation is not affine, then

there exists a type profile θ−i such that the relaxed solution does not satisfy the LOP

conditions for bidder i.

Virtual valuation function is affine when the value distribution is uniform or

exponential. However, generically, virtual valuation is not affine, or the relaxed

solution is not DSIC even if vi and δi are independently distributed.
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4.2 Possibility 2: ∆ = {δ, 1}

Suppose ∆ = {δ, 1} with δ ∈ (0, 1). Then, the characterization of DSIC is reduced

as follows.

Corollary 2 Suppose ∆ = {δ, 1} with δ ∈ (0, 1). A monotone mechanism with

cutoffs (cBi (δ), c
T
i (δ), c

B
i (1)) is DSIC for bidder i if and only if for each θ−i, either

one of the following conditions hold:

1. cBi (δ) < cTi (δ) and

δcBi (δ) = cBi (1), (20)

or

2. cBi (δ) = cTi (δ) and

δcBi (δ) ≤ cBi (1) ≤ cBi (δ). (21)

In the current specification of ∆, (LOP-T) is not necessary because bidders of

δi = 1 may not want to purchase the top. The former condition of the corollary

corresponds to (LOP-B). The latter corresponds to the case in which bidders of

δi = δ are not allocated the bottom. The bottom is allocated only to bidders of

δi = 1.

The most restrictive condition in the corollary is (20). The associated condition

in terms of virtual valuations,

δϕδ(c
B
i (δ)) = ϕ1(c

B
i (1)),

satisfies (20) if the virtual valuation satisfies for all vi,

δϕδ(vi) = ϕ1(δvi).

This is possible in very specific type distributions as follows.

Theorem 3 Suppose ∆ = {δ, 1} with 0 < δ < 1. The relaxed solution is DSIC and

therefore optimal if the type distribution satisfies for all vi ≥ rδ ≡ ϕ−1
δ (0),

G(vi | δ) = G(δvi | 1). (22)
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An example of distribution G satisfying (22) is exponential distributions. When

G(·|1) is an exponential distribution with hazard rate λ, G(·|δ) is also an exponential

distribution with hazard rate δλ. Note that (22) implies that the value distribution

conditional on δ stochastically dominates that on 1 in terms of hazard rate.

4.3 Other Possibilities

Suppose ∆ = {0, 1}. Proposition 1 is reduced as follows.

Corollary 3 Suppose ∆ = {0, 1}. A monotone mechanism with cutoffs (cTi (0), c
B
i (1))

is DSIC for bidder i if and only if for all θ−i ∈ ΘI−1, cTi (0) ≥ cBi (1).

The LOP is not required in this case. Because the bottom is allocated only to

those of discount rate δi = 1, the LOP for the bottom is not necessary. Although the

top may be allocated to both discount types, the LOP for the top is dropped by the

following consideration. When a bidder of δi = 1 obtains either slot, they pay cBi (1).

When a bidder of δi = 0 obtains the top, they pay cTi (0). Suppose cTi (0) > cBi (1),

which means that the slots are price discriminated by discount rates. A bidder of

type (vi, 0) with vi > cBi (1) may have an incentive to pretend to be δi = 1, but it is

not profitable. This is because when slots are price discriminated by discount rates,

the bidder of δi = 1 is allocated the bottom regardless of the reported valuation type

v̂i > cBi (1).

Because DSIC is characterized by an inequality, the sufficient condition for the

relaxed solution to be DSIC is relatively weak.

Theorem 4 Suppose ∆ = {0, 1}. The relaxed solution is DSIC and therefore opti-

mal if λ1(vi) ≥ λ0(vi) for all vi; that is, the valuation-type distribution conditional

on δi = 0 weakly dominates that conditional on δi = 1 in terms of hazard rate.

The hazard rate ordering implies that the virtual valuation is monotone in dis-

count rate. The case ∆ ≡ {0, 1} is technically similar to Malakhov and Vohra (2009),

Iyengar and Kumar (2008), and Dizdar et al. (2011), all of which give the same suf-

ficient condition for the incentive compatibility.

Finally, the case of the maximal domain of ∆ is stated as follows. If the type

distribution satisfies all the conditions imposed so far, the relaxed solution is DSIC.
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Theorem 5 Suppose ∆ = {0, δ, 1} with δ ∈ (0, 1). The relaxed solution is DSIC

and therefore optimal if for all vi,

G(vi | 0) = G(vi | δ) = G(δvi | 1) (23)

and ϕ(vi, δ) is affine in vi.

4.4 Efficiency

When the relaxed solution is DSIC, the optimal allocation rule is implemented by

the Vickrey-Clarke-Groves mechanism in terms of virtual valuation. This does not

imply that the optimal allocation rule is efficient in terms of actual valuation. The

social welfare is

vi + δjvj ,

where bidders i and j are those who are assigned the Top T and the Bottom B,

respectively. The virtual surplus, which is maximized in the relaxed problem, is

ϕ(vi, δi) + δjϕ(vj , δj).

Clearly, the relaxed solution is not efficient if the valuation and discount-rate types

are correlated and ϕ(·, δi) ̸= ϕ(·, δ′i).

When the valuation and discount-rate types are independently distributed, the

optimal mechanism is efficient (for positive virtual valuations) if ∆ = {0, δ} with

δ ∈ (0, 1] and the virtual valuation is affine. Under the specification, the virtual

surplus is

ϕ(vi) + δjϕ(vj) = α(vi + δjvj) + β(1 + δj),

where ϕ(vi) = αvi + β. Note that the Bottom can be allocated to only bidders with

δj = δ > 0 by assumption. Hence, we have β(1+ δj) = β(1+ δ), which is constant as

long as both slots are allocated. By introducing a reservation type θ0 = (r, δ) with

r = −β/α, the slots are apparently always allocated. Thus, the optimal mechanism

is the Vickrey-Clarke-Groves mechanism with a reserve price r.

Proposition 2 The optimal mechanism is efficient for positive virtual valuations

if ∆ = {0, δ} with δ ≤ 1, valuation and discount-rate types are indepnedently dis-
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tributed, and the virtual valuation ϕ is affine. Under the specification, the Vickery-

Clarke-Groves mechanism with a reserve price r = ϕ−1(0) is optimal.

5 Symmetry and Efficiency

As we have seen in the previous section, the LOP in Proposition 1 is so restrictive

that the relaxed solution hardly satisfies it. Moreover, the following example shows

that even a simple assortative allocation rule is not implementable.

Example 1 (The “assortative allocation” is not implementable.) Consider the

allocation rule in which goods are allocated in an assortative manner as follows. The

seller allocates the top T to the highest bidder and the bottom B to the bidder with

the highest valuation of δivi among the others. This allocation rule is not imple-

mentable. Specifically, suppose I = {1, 2, 3}, ∆ ⊇ {δl, δh} with 0 ≤ δl < δh ≤ 1,

θ2 = (v2, δl), and θ3 = (v3, δl) with v3 < v2. The allocation rule implies that the

cutoff value of bidder 1 for the top is cT1 (δ1) = v2 for every discount rate δ1 ∈ ∆.

When δ1 ̸= 0 and v1 ∈ ( δlδ1 v3, v2), bidder 1 is allocated the bottom and cB1 (δ1) =
δl
δ1
v3

for all δ1 ̸= 0.

Bidder 1’s payoff is δ1v1− δlv3 for δ1 ∈ ∆ \ {0} if the bottom is allocated. Hence,

bidder 1’s net willingness to pay for the top is v1 − δ1v1 + δlv3. Given the cutoff

cT1 (δ1) = v2, the incentive compatibility requires pT1 = (1−δ1)v2+δlv3, which depends

on δ1 and violates LOP. Thus, this allocation rule is not implementable.

Note that the assortative allocation rule above is not efficient because the bidder

of the highest vi should be assigned the bottom if they have a large discount rate.

The efficient allocation is given as follows. Let v1 > v2 > · · · > vn. The efficient

allocation chooses the better allocation between

• The top T is allocated to bidder 1. The bottom B is allocated to bidder j (̸= 1)

satisfying δjvj = maxk ̸=1 δkvk, and

• The top T and the bottom B are allocated to bidders 2 and 1, respectively.

In the rest of this section, we show that the efficient allocation rule is a unique,

implementable rule among a reasonable class of symmetric mechanisms.

17



Suppose that an allocation rule maximizes a “utility function”

F (vT , vB, δB), (24)

where (vT , δT ) and (vB, δB) are types to whom positions T and B are allocated, re-

spectively. The allocation rule is clearly symmetric between bidders. We additionally

impose the following conditions.

Assumption 3 The utility function F satisfies the following properties.

1. F is continuous and strictly increasing in vT , vB, and δB.

2. Suppose δ < 1. Then, F (v, v′, δ) > F (v′, v, δ) if and only if v > v′.

In addition to these assumptions, we are implicitly or explicitly imposing the

following assumptions:

• Both positions are necessarily allocated to bidders (generically).

• The utility maximizer implies non-bossiness of the allocation rule (Mishra and

Quadir, 2014).

• The utility function does not depend on δT , whereas the virtual surplus does

via the virtual valuation function ϕ(·, δi).

The main result of this section is as follows.

Theorem 6 Suppose ∆ ⊆ (0, 1). An allocation rule x is implementable in weakly

dominant strategy and maximizes a utility function F , which satisfies Assumption 3,

if and only if x is efficient.

Theorem 6 implies LOP or DSIC is much restrictive in symmetric mechanism

design. In the literature on mechanism design with fairness concern, Ashlagi and

Serizawa (2012) and Hashimoto and Saito (2012) show that in single-dimensional

type models, the efficient allocation rule is induced by DSIC and symmetry. For

multi-dimensional type model, Kazumura et al. (2020) show that when there are at

least three goods and bidders have unit-demand, DSIC and symmetry (and other

natural axioms) do not induce efficiency. In our model, efficiency is induced by

symmetric utility maximizer under restricted type space. It would be worth noting

that efficiency is induced even if the discount-rate-type is just binary.
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6 Conclusion

We have examined the conditions under which the virtually efficient mechanism is

DSIC and maximizes the seller’s expected revenue in a multi-object auction with

multidimensional types. When bidders have two-dimensional type about the valua-

tion for the superior good and the discount rate of the inferior good, the Myersonian

virtually efficient mechanism cannot be DSIC except for some special specifications

on the domains and distributions of type. Our result confirms that it is hard to

extend Myerson’s (1981) approach to optimal auction design with multidimensional

type.

The negative result is due to the strictness of weakly dominant strategy. We

also showed that only the efficient mechanism is implementable in weakly dominant

strategies among symmetric allocation rules maximizing a simple utility function.

A Proofs

Because we consider DSIC, we fix an arbitrary θ−i and we omit it from description

in the proofs.

A.1 Proof of Lemma 3

Suppose that there exists a type (vi, δi) such that xi(vi, δi) = T . Hence, cTi (δi) < ∞

for some δi ∈ ∆.

Consider an arbitrary δ′i ̸= δi. If xi(v
′
i, δ

′
i) = 0 for all v′i, then its truthful payoff

is constantly U i. When the bidder of type θ′i = (v′i, δ
′
i) misreports θi = (vi, δi) with

vi > cTi (δi), then the deviation payoff is v′i − pTi (δi). Hence, the bidder is better off

when v′i > (1 − δi)c
T
i (δi) + δic

B
i (δi), which contradicts DSIC. Hence, there exists v′i

such that xi(v
′
i, δ

′
i) ∈ {T,B}. That is, cBi (δ′i) < ∞. It implies cBi (1) = cTi (1) < ∞.

Suppose δ′i < 1 and that xi(v
′
i, δ

′
i) = B for all v′i > cBi (δ

′
i). When v′i > cBi (δ

′
i), the

truthful payoff of type (v′i, δ
′
i) is δ′i(v

′
i − cBi (δ

′
i)) + U i. When the bidder misreports

θi = (vi, δi) with vi > cTi (δi), then the deviation payoff is vi − pTi (δi). The deviation
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is profitable if

δ′i(v
′
i−cBi (δ

′
i)) < v′i−(1−δi)c

T
i (δi)−δic

B
i (δi) ⇔ v′i >

(1− δi)c
T
i (δi) + δic

B
i (δi)− δ′ic

B
i (δ

′
i)

1− δ′i

Therefore, there exists v′i such that xi(v
′
i, δ

′
i) = T and cTi (δ

′
i) < ∞. ■

A.2 Proof of Proposition 1

Only If part. Suppose that a mechanism (x, p) is DSIC. Lemmata 1 and 3 show

the existence of a cutoff profile {cBi (δ), cTi (δ)}δ∈∆. Because U i is the constant term

added to the payoff of all types, it is without loss of generality to suppose U i = 0

below.

Case 1 When cBi (δ) = cTi (δ) (∀δ ∈ ∆).

Let pTi ≡ cTi (δ̄) and pBi ≡ δ̄pTi . The bidder of type θi = (v, δ) with v > cTi (δ) and

δ < 1 pays cTi (δ) for the top position by the envelope condition. Similarly, the bidder

of type θi = (v, 1) with v > cTi (1) pays c
T
i (1) for the top or bottom. It is clear that

DSIC is violated if cTi (δ) > cTi (δ
′) for some δ and δ′, because the bidder of type (v, δ)

with v > cTi (δ
′) is better off lying and reporting (v, δ′). Hence, we have cTi (δ) = pTi

for all δ ∈ ∆ (condition 1). By construction, we have δ̄cBi (δ̄) = pBi (condition 2).

Suppose that xi(c
B
i (δ), δ) = B for some δ < pBi /p

T
i = δ̄. Then, its truthful payoff

must be δcBi (δ)− pi(c
B
i (δ), δ) = 0 because the bidder of the cutoff type is indifferent

between obtaining the bottom and nothing. Then, the bidder of type (cBi (δ), δ̄) is

better off lying and reporting (cBi (δ), δ) because the deviation payoff

δ̄cBi (δ)− pi(c
B
i (δ), δ) > 0,

whereas its truthful payoff is zero. This is a contradiction; thus, xi(c
B
i (δ), δ) ̸= B for

all δ < δ̄ (condition 4).

Condition 3 obviously holds because pBi < pTi if and only if δ̄ < 1.

Case 2 When cBi (δ̂) < cTi (δ̂) for some δ̂ ∈ ∆.

Let pBi ≡ δ̂cBi (δ̂) and pTi ≡ (1 − δ̂)cTi (δ̂) + δ̂cBi (δ̂). By Lemma 2, the bidder of

discount rate δ̂ pays pBi when obtaining the bottom and pTi when obtaining T . Note

that pBi < pTi .
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By Lemma 3, cTi (δ) < ∞ for all δ ∈ ∆. By Lemma 2, a bidder of discount rate

δ < 1 pays pTi (δ) ≡ (1− δ)cTi (δ) + δcBi (δ) when obtaining the top T . It is clear that

DSIC is violated if pTi (δ) ̸= pTi because either type (v, δ̂) or (v, δ) is better off lying

about their discount rate. Hence, we have

(1− δ)cTi (δ) + δcBi (δ) = pTi (25)

for all δ < 1 (condition 1).

Consider any δ ∈ ∆ \ {0, δ̂} with cBi (δ) < cTi (δ). The bidder of type θi = (v, δ)

with v ∈ (cBi (δ), c
T
i (δ)) obtains the bottom B with paying δcBi (δ). It is clear that

DSIC is violated if δcBi (δ) ̸= pBi by the same reason as the case of the top. Hence,

we have

δcBi (δ) = pBi ⇔ cBi (δ) =
δ̂

δ
cBi (δ̂). (26)

(25) and (26) yield

(1− δ)cTi (δ) = (1− δ̂)cTi (δ̂) ⇔ cTi (δ) =
1− δ̂

1− δ
cTi (δ̂). (27)

Given that cBi (δ) and cTi (δ) satisfy (26) and (27), we need

cBi (δ) < cTi (δ) ⇔
δ̂

δ
cBi (δ̂) <

1− δ̂

1− δ
cTi (δ̂)

⇔ δ >
δ̂cBi (δ̂)

(1− δ̂)cTi (δ̂) + δ̂cBi (δ̂)
=

pBi
pTi

.

(28)

Conversely, suppose that pBi /p
T
i < δ < 1 and cBi (δ) = cTi (δ) = pTi . When the bidder

of type (pTi , δ) misreports (pTi , δ̂), the associated payoff is

δpTi − pBi > 0 = U(pTi , δ). (29)

Hence, the deviation is profitable, and DSIC is violated. Hence, cBi (δ) < cTi (δ) if and

only if pBi /p
T
i < δ < 1.

Suppose δ̄ = 1. The bidder of type (v, 1) with v > cBi (1) = cTi (1) = c pays c

for either the top or bottom. We must have c = pBi and xi(v, 1) ∈ {0, B} because if

xi(v, 1) = T for some v > c, the deviation to a type (v′, δ̂) with cBi (δ̂) < v′ < cTi (δ̂)

yields a deviation payoff v − pBi > v − pTi . This implies condition 3, and condition 2

is also confirmed.
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Now we have cBi (δ) = cTi (δ) = pTi for all δ < pBi /p
T
i . To have condition 4, suppose

that xi(c
B
i (δ), δ) = B for some δ < pBi /p

T
i . Then, the associated truthful payoff is

δcBi (δ)− pBi = δpTi − pBi < 0,

which violates DSIC because the bidder has a report to earn zero payoff. Hence,

xi(c
B
i (δ), δ) ̸= B for all δ < pBi /p

T
i .

If part. By Lemmata 1–3, we have DSIC in valuation by Myerson (1981). Suppose

that a true discount rate is δ ≥ δ̂ ≡ pBi /p
T
i . It is clear that the deviation of a

type (v, δ) to (v′, δ′), with δ̂ ≤ δ′ < 1, is equivalent to the deviation to (v′, δ) by

LOP. Hence, such a deviation is not profitable. Deviation to δ′ = 1 (if possible) is

equivalent to a deviation to (v′, δ) with v′ ∈ (cBi (δ), c
T
i (δ)), which is not profitable.

Deviation to δ′ < δ̂ is not profitable if v′ > cTi (δ
′). Deviation to (v′, δ′) with δ′ < δ̂

and v′ < cTi (δ
′) induces a zero deviation payoff.

Suppose that a true discount rate is δ < δ̂. Similarly, deviation to (v′, δ′) with

δ′ ≤ pBi /p
T
i or δ′ = 1 is not profitable. Suppose pBi /p

T
i < δ′ < 1. The deviation

payoff to v′ ∈ (cBi (δ
′), cTi (δ

′)) is

δv − δ′cBi (δ
′) ≤ pBi

pTi
(v − pTi )

Hence, the deviation payoff is negative if v < pTi = cTi (δ). When v > pTi , the truthful

payoff is v − pTi , so that the deviation is not profitable. ■

A.3 Proof of Theorem 1

Let ϕh(·) ≡ ϕ(·, δh) and ϕl(·) ≡ ϕ(·, δl). Suppose that for all bidder j ̸= 1, θj = (vj , δl)

and v2 > v3 > · · · > vI . In addition, suppose that v2 > v3 ≥ rl ≡ ϕ−1
l (0).

Consider the efficient allocation rule. If bidder 1 has the discount rate δl, the

efficient allocation rule is assortative in vi. Hence, cB1 (δl) = v3 and cT1 (δl) = v2.

Accordingly, in the efficient allocation rule, we have cB1 (δh) = δlv3/δh and cT1 (δh) =

(1− δl)v2/(1− δh) by LOP.

Consider the relaxed problem. Because the allocation rule is efficient in terms of

virtual valuation, we have

ϕl(c
B
1 (δl)) = ϕl(v3), ϕl(c

T
1 (δl)) = ϕl(v2),
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ϕh(c
B
1 (δh)) =

δl
δh

ϕl(v3), ϕh(c
T
1 (δh)) =

1− δl
1− δh

ϕl(v2).

Hence, by LOP we have
δl
δh

ϕl(v) = ϕh

(
δl
δh

v

)
,

which yields

λl(v) =
δl
δh

λh

(
δl
δh

v

)
. (30)

Similarly, we have

λl(v) =
1− δl
1− δh

λh

(
1− δl
1− δh

v

)
. (31)

When the relaxed solution is DSIC, (30) and (31) hold and

δl
δh

λh

(
δl
δh

v

)
=

1− δl
1− δh

λh

(
1− δl
1− δh

v

)
for all v ≥ rl. However, these two equations never hold simultaneously because λh

is non-decreasing. Therefore, the relaxed solution is not DSIC. ■

A.4 Proof of Theorem 2

Suppose that vi and δi are independently distributed and that the virtual valuation ϕ

is affine. Consider the relaxed solution that maximizes the virtual surplus. Because

the relaxed solution is efficient in terms of virtual valuations, it satisfies for all θ−i,

(1− δ)ϕ(cTi (δ)) + δϕ(cBi (δ)) = ϕ(cTi (0)).

This induces

(1− δ)cTi (δ) + δcBi (δ) = cTi (0).

Hence, the relaxed solution is DSIC.

Conversely, suppose that the virtual valuation ϕ is not affine. Then, there exist

α ∈ (0, 1) and x, y ∈ R+ (x > y ≥ ϕ−1(0)), and

(1− α)ϕ(x) + αϕ(y) ̸= ϕ ((1− α)x+ αy) .

Then, the LOP condition does not hold when θ−i is such that v
(1)
−i = x, v

(2)
−i = y,

δj = δ for all j ̸= i. ■
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A.5 Proof of Theorem 3

Suppose that G(v | δ) = G(δv | 1) for all v ≥ rδ. This implies that

λδ(v) =
g(v | δ)

1−G(v | δ)
=

δg(δv | 1)
1−G(δv | 1)

= δλ1(δv)

for all v ≥ rδ. Consider the relaxed solution that maximizes the virtual surplus.

Because the relaxed solution is efficient in terms of virtual valuations, it satisfies

either

1. ϕδ(c
B
i (δ)) < ϕδ(c

T
i (δ)) and δϕδ(c

B
i (δ)) = ϕ1(c

B
i (1)), or

2. ϕδ(c
B
i (δ)) = ϕδ(c

T
i (δ)) and δϕδ(c

T
i (δ)) ≤ ϕ1(c

B
i (1)) ≤ ϕδ(c

T
i (δ)).

Suppose that the first case holds in the relaxed solution. Then, we have cBi (δ) <

cTi (δ). In addition,

δϕδ(c
B
i (δ)) = ϕ1(c

B
i (1)) ⇔ δ

(
cBi (δ)−

1

δλ1(δcBi (δ))

)
= ϕ1(c

B
i (1))

⇔ δcBi (δ) = cBi (1).

(32)

Suppose that the second case holds in the relaxed solution. Then, we have

cBi (δ) = cTi (δ). In addition,

δϕδ(c
T
i (δ)) = δ

(
cTi (δ)−

1

δλ1(δcTi (δ))

)
= ϕ1(δc

T
i (δ)).

(33)

Hence, we have δcTi (δ) ≤ cBi (1). In addition,

ϕδ(c
T
i (δ)) = cTi (δ)−

1

δλ1(δcTi (δ))
≤ cTi (δ)−

1

λ1(cTi (δ))
= ϕ1(c

T
i (δ)). (34)

Hence, we have ϕ1(c
B
i (1)) ≤ ϕδ(c

T
i (δ)) ≤ ϕ1(c

T
i (δ)), so that cBi (1) ≤ cTi (δ). There-

fore, the relaxed solution is DSIC. ■

A.6 Proof of Theorem 4

Suppose λ1(v) ≥ λ0(v) for all v. Then, the virtual valuations satisfy for all v,

ϕ1(v) ≥ ϕ0(v).
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Consider the relaxed solution that maximizes the virtual surplus. Because the

relaxed solution is efficient in terms of virtual valuations, it satisfies

ϕ0(c
T
i (0)) ≥ ϕ1(c

B
i (1)). (35)

Hence, we have

cTi (0) ≥ ϕ−1
0

(
ϕ1(c

B
i (1))

)
≥ cBi (1),

which implies that the relaxed solution is DSIC. ■

A.7 Proof of Theorem 6

Consider an arbitrary type profile other than bidder i, θ−i. When bidder i is absent,

let (v1, δ1) be the type of the bidder who is assigned the Top, and let (v2, δ2) be that

of bidder who is assigned the Bottom. Let

F−i ≡ F (v1, v2, δ2).

We focus on generic cases in which there is a unique allocation that gives F−i for

θ−i. Hence, we suppose F−i > F (v2, v1, δ1).

The “if” part is obvious because F (vT , vB, δB) = vT + δBvB. What we need to

show is the “only if” direction. We will show that for every (v1, v2, δ2), the cutoff

functions cTi (δi, θ−i) and cBi (δi, θ−i) are uniquely determined by DSIC. Then, F must

be a monotone transformation of the social surplus because the efficient allocation

is implementable in weakly dominant strategy.

In what follows, the cutoff functions are denoted by cTi (δi) and cBi (δi), omitting

θ−i.

Case 1. δ1 ≥ δ2. Then, we have v1 > v2 because F−i > F (v2, v1, δ1) ≥ F (v2, v1, δ2).

Suppose θi = (vi, δ2) and vi < v2. Then, F (v1, vi, δ2) < F−i and F (vi, v2, δ2) <

F (vi, v1, δ1) < F (v2, v1, δ1) < F−i, so that we have xi(θ) = 0.5

Suppose vi > v2. Then, F (v1, vi, δ2) > F−i. In addition, the continuity of F

implies that there exists ϵ > 0 and

F (v1, v2 + ϵ, δ2) > F−i > F (v2 + ϵ, v1, δ1),

5Because F (vj , v2, δ2) < F (vj , v1, δ1) < F−i and F (v1, vj , δj) < F−i for all j ̸= i, 1, 2, we have

F (vi, vj , δj), F (vj , vi, δ2) < F−i. Similar arguments apply to all the cases in the proof.
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which implies cTi (δ2) > cBi (δ2) = v2.

Suppose θi = (vi, δ1) and vi < v1. Because F (vi, v2, δ2) < F (vi, v1, δ1) <

F (v1, vi, δ1), we have c
T
i (δ1) ≥ v1. If vi > v1, we have F (vi, v1, δ1) > F (v1, vi, δ1) and

cTi (δ1) = v1.

Hence, by LOP, we have pBi = δ2v2 and pTi = (1− δ1)v1 + δ2v2. Given the price

vector (pBi , p
T
i ), all the other cutoffs cTi (δi) and cBi (δi) are uniquely determined.

Case 2. δ1 < δ2 and v1 ≤ v2.

Suppose θi = (vi, δ1). If vi < v1, we have F (vi, v1, δ1) < F (vi, v2, δ2) < F−i and

F (v2, vi, δ1) < F (v2, v1, δ1) < F−i, so that xi(θ) = 0. If vi > v1, F (vi, v2, δ2) > F−i

and cTi (δ1) ≥ v1. By continuity of F , for a sufficiently small ϵ > 0, we have F (v2, v1+

ϵ, δ1) < F (v1, v2, δ2), which implies xi ̸= B for vi = v1 + ϵ and cBi (δ1) = cTi (δ1) = v1.

Hence, we have pTi = v1.

Suppose θi = (vi, δ2). If vi < v2, F (v2, vi, δ2) > F (vi, v2, δ2) > F (vi, vj , δj) for

all j ≠ i, 2, which implies xi(θ) ̸= T . If vi > v2, F (vi, v2, δ2) > F (v2, vi, δ2) > F−i,

which implies xi(θ) = T . Hence, we have cTi (δ1) = v2 > cBi (δ1). By LOP, we have

pTi = (1− δ2)v2 + pBi = v1, which yields pBi = v1 − (1− δ2)v2. Given the price vector

(pBi , p
T
i ), all the other cutoffs are uniquely determined.

Case 3. δ1 < δ2 and v1 > v2.

Suppose θi = (vi, δ1). If vi < v1, F (vi, v2, δ2) < F−i and F (vi, v1, δ1) < F (v1, vi, δ1),

which imply xi(θ) ̸= T . Suppose vi = v1+ ϵ and ϵ > 0 is small. Then, F (vi, v2, δ2) >

F−i, F (vi, v1, δ1) > F (v1, vi, δ1), and F (vi, v2, δ2) > F (v2, v1 + ϵ, δ1) > F (v2, v1, δ1)

by continuity of F . This implies xi(θ) = T and cTi (δ1) = v1. Either cBi (δ1) = v1 or

cBi (δ1) < v1 holds.

Suppose θi = (vi, δ2). If vi < v2 (< v1)), we have F (v1, vi, δ2) < F−i, F (vi, v2, δ2) <

F−i, and F (vi, v1, δ1) < F (v2, v1, δ1) < F−i, so that xi(θ) = 0. Suppose vi =

v2 + ϵ < v1 and ϵ > 0 is small. Then, we have F (v1, vi, δ2) > F−i > F (vi, v2, δ2)

and F (vi, v1, δ1) < F−i by continuity of F . Hence, we have cBi (δ2) = v2 < cTi (δ2).

Therefore, we have pBi = δ2v2.

Case 3.1. δ1v1 ≤ δ2v2.

Suppose cBi (δ1) < cTi (δ1). Then, if bidder i has a type (vi, δ1) and vi ∈ (v2, v1),
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their payoff is

δ1vi − pBi < δ1v1 − δ2v2 ≤ 0,

which contradicts IC.

Therefore, cBi (δ1) = cTi (δ1) = v1 and pTi = v1. Given the price vector (pBi , p
T
i ),

all the other cutoffs are uniquely determined.

Case 3.2. δ1v1 > δ2v2.

Suppose cBi (δ1) = cTi (δ1) = v1 = pTi . Then, the truthful payoff of type θi =

(v1 − ϵ, δ1) is zero. However, when the bidder deviates and reports θ̃i = (vi, δ2) with

vi ∈ (v2, v1), the associated deviation payoff is

δ1vi − pBi = δ1v1 − δ2v2 − δ1ϵ > 0

for a sufficiently small ϵ > 0. Hence, it violates IC, so that we must have cBi (δ1) <

cTi (δ1). By LOP, we have

pBi = δ2v2 = δ1c
B
i (δ1) ⇔ cBi (δ1) =

δ2v2
δ1

< v1

and

pTi = (1− δ1)c
T
i (δ1) + δ1c

B
i (δ1) = (1− δ1)v1 + δ2v2.

Given the price vector (pBi , p
T
i ), all the other cutoffs are uniquely determined. ■
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