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Abstract

In a school choice setting, this paper observes that no group strategy-proof

mechanism satisfies even a fairly weak notion of stability. In response to this result,

we introduce two monotonicity axioms, which we call top-dropping monotonicity and

extension monotonicity, as alternatives to group strategy-proofness. We prove that

these two axioms are equivalent to requirements that no group of students gains from

a simple manipulation of their preferences. Then, replacing group strategy-proofness

with the two axioms, we find that the Kesten’s (2010) efficiency adjusted deferred

acceptance mechanism is the unique mechanism that satisfies the three criteria. We

also provide several applications of the two monotonicity axioms especially for the

deferred acceptance mechanism.

JEL classification numbers: C78, D47

Keywords: Matching; School choice; Strategy-proofness; Group strategy-proofness;

Monotonicity; Deferred acceptance; Efficiency adjusted deferred acceptance

1 Introduction

In a school choice problem introduced in Abdulkadiroğlu and Sönmez (2003), a finite

set of students needs to be assigned to one school each. Each school has a choice rule,

which specifies the students that the school would choose from each set of applicants.

Meanwhile, the students have strict preferences over the schools and an outside option.

Given a profile of choice rules of the schools, a mechanism determines a matching that
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comments. All errors are, of course, my own.
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assigns each student to at most one school, for each reported profile of preferences of the

students.

Incentive compatibility of a mechanism, or strategy-proofness, is essential to implement

intended outcomes. A mechanism is strategy-proof if honest revelation of their preferences

is always a weakly dominant strategy for each student. The deferred acceptance (DA)

mechanism of Gale and Shapley (1962) is one of the leading examples of a strategy-proof

mechanism.

If the students are likely to engage in cooperative behavior, we may need a stronger

incentive compatibility condition for implementation.1 A typical example of such a con-

dition is group strategy-proofness. A mechanism is group strategy-proof if no group of

students can gain by misreporting their preferences. It is known that the DA mechanism

is not group strategy-proof in general. Meanwhile, the celebrated top trading cycles mech-

anism of Shapley and Scarf (1974) is group strategy-proof. The other examples include

the serial dictatorship, shown by Svensson (1999). Pycia and Ünver (2017) provide a

comprehensive result, characterizing the full class of efficient and group strategy-proof

mechanisms.

Another desirable property that mechanisms should meet is stability, which requires

that there be no profitable unilateral or pairwise deviation from an output of the mech-

anism. As Abdulkadiroğlu and Sönmez (2003) point out, stability can be viewed as a

requirement of fairness in the context of school choice. Alcalde and Barberà (1994) show

that the DA mechanism is the unique strategy-proof mechanism that is stable.

Requiring group strategy-proofness and stability at the same time is too demanding,

however. The DA mechanism is not group strategy-proof in general; therefore, existing

studies show that no group strategy-proof mechanism is stable. Practitioners face this

trade-off: According to Kloosterman and Troyan (2016) and Cerrone et al. (2021) for

example, New Orleans Recovery School District once adopted the top trading cycles

mechanism, which is efficient and group strategy-proof, but it was eventually abandoned

in favor of the DA mechanism due to their fairness concerns.

Building upon these observations, to begin with, this paper clarifies to what extent

group strategy-proof mechanisms can have stability properties. If some group strategy-

proof mechanisms have “near stability,” then adopting such mechanisms will not sig-

nificantly damage stability. Unfortunately, however, our first result shows a negative

conclusion: No group strategy-proof mechanism satisfies even a fairly weak stability re-

quirement, which we call respecting top-top pairs.

Respecting top-top pairs requires that a student be matched with his/her most pre-

1For instance, this possibility in school choice is reported in Pathak and Sönmez (2008) via an analysis
of equilibria in preference revelation games induced from the Boston mechanism.
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ferred alternative if, the alternative selects him/her among those who prefer the alternative

to the outside option. Any stable matching respects top-top pairs, because otherwise the

corresponding pair would profitably deviate. This criterion is a slight modification of

the concept called strong top best, which is first introduced in Chen (2017). We discuss

relations between respecting top-top pairs and other stability concepts, in Section 3.

In response to the negative result, that no group strategy-proof mechanism satisfies

the rather weak stability requirement, we consider two monotonicity axioms, top-dropping

monotonicity and extension monotonicity, as alternatives to group strategy-proofness.

Top-dropping monotonicity requires that an output of a mechanism do not change when,

other things being equal, some students who do not match with the most preferred al-

ternative lower the ranking of it. Meanwhile, extension monotonicity requires that an

output of a mechanism do not change if, other things being equal, some students who

match with a school make some unacceptable schools acceptable.

Each of top-dropping monotonicity and extension monotonicity is weaker than group

strategy-proofness. More specifically, we characterize them in terms of robustness to

simple coordinated strategic manipulations: A mechanism satisfies top-dropping mono-

tonicity if and only if no group gains by a misreport that differs from their true preferences

only in their top choices; and a mechanism satisfies extension monotonicity if and only if

no group gains by a misreport that, with some additional conditions, alters the rankings of

the outside option from their true preferences. These results resemble the equivalence the-

orem of Takamiya (2001) between group strategy-proofness and an axiom called Maskin

monotonicity.

Replacing group strategy-proofness with the two new axioms, our main proposition

shows that the efficiency adjusted deferred acceptance (EADA) mechanism, introduced

in Kesten (2010), is the unique mechanism that satisfies the two monotonicity axioms

and respects top-top pairs.2 Not only does this result resolve the observed conflict, but

also it provides a novel axiomatic characterization of the EADA mechanism. It is crucial

to understand characteristics of the EADA mechanism also in practice. In support of

this claim, Cerrone et al. (2021) report: “in 2019, the Flemish Ministry of Education

undertook the first attempt to implement [the EADA mechanism] in the school choice

system in Flanders, which is home to more than 68% of the population of Belgium.”

Some existing studies characterize the EADA outcomes. Ehlers and Morrill (2020)

prove that the EADA outputs the unique efficient element of the unique legal set. Tang

and Zhang (2021) introduce a notion, weakly stable, and characterize the class of EADA

2Rigorously speaking, when we call a mechanism the EADA mechanism in this paper, it refers to the
EADA mechanism of Kesten (2010) in which all students consent to their priorities being violated. See
Kesten (2010) for a more detailed explanation.
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outcomes incorporating consenting constraints. Reny (2021) shows the EADA algorithm

produces the unique priority-efficient matching. Our characterization differs from theirs

especially in that our axioms focus on the functional structures of mechanisms rather than

outcomes, which can be crucial in analyzing students’ incentives of manipulations.

On the other hand, some studies characterize the EADA mechanism rather than its

outcomes. Dur et al. (2019) prove that the EADA is the unique efficient mechanism

that Pareto dominates the DA and provides incentives to consent to their priorities being

violated. Doğan and Yenmez (2020) show that the EADA is the unique mechanism

that satisfies a “consistency” requirement and Pareto dominates the DA. By comparison,

our characterization is by axioms that do not rely on structures of the DA mechanism.

Further, our axioms tell us how robust the EADA is to strategic manipulations.

Some papers explore incentive properties of the EADA mechanism, while they do not

offer a characterization of it. Troyan and Morrill (2020) and Chen and Möller (2021)

respectively show that the EADA mechanism is not obviously manipulable and regret-free

truth-telling, each of which is a weaker criterion than strategy-proofness. Under some

special classes of incomplete information, Kesten (2010) and Reny (2021) prove that

honest reports constitute an equilibrium. Decerf and Van der Linden (2021) show that

the EADA is harder to manipulate than some celebrated mechanisms, such as the Boston

mechanism. Cerrone et al. (2021) offer the first experimental evidence on the truth-telling

rates of the EADA. Our result is unique in that it provides an exact characterization of

the EADA mechanism in terms of strategic manipulability.

As applications of the two monotonicity axioms, we demonstrate that the two new

monotonicity axioms capture several characteristics of the DA mechanism. First of all,

we find that the DA is efficient if and only if it satisfies top-dropping monotonicity. It

resembles a result in Kojima and Manea (2010), which shows the equivalence between

efficiency and Maskin monotonicity under the DA mechanism. By comparison, our result

states that top-dropping monotonicity, a weakening of Maskin monotonicity, is sufficient

to imply efficiency. Secondly, we show that the DA is the unique stable mechanism

that satisfies extension monotonicity. It is closely related to the results of Kojima and

Manea (2010), Morrill (2013) and Chen (2017), each of which pins down the DA among

stable mechanisms by some “monotonicity” axioms. These axioms are much stronger than

extension monotonicity, and thus our result states that extension monotonicity is sufficient

to characterize the DA mechanism. Third, we get a novel axiomatic characterization of

the DA mechanism: The DA is the unique mechanism that satisfies strategy-proofness,

extension monotonicity, and respects top-top pairs.

Finally, the last two results have an interesting implication beyond the DA mechanism:

For any mechanism that satisfies extension monotonicity and respects top-top pairs, it is
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strategy-proof if and only if it is stable. Kumano (2013) proves this conclusion focusing on

the Boston mechanism, but our result applies to any other mechanism satisfying extension

monotonicity and respecting top-top pairs. In Section 6 we present some mechanisms that

meet the two criteria.

The rest of this paper is organized as follows. We introduce the model in Section 2.

Section 3 presents an impossibility thoerem. In Section 4, we introduce several mono-

tonicity axioms including new ones. We also discuss relationships between the two new

axioms and coordinated strategic manipulability. Section 5 presents our main result. In

Section 6, we provide applications of our axioms. Section 7 concludes. The proof for our

main result is relegated to Appendix.

2 Model

There are disjoint finite sets of students I and schools S. Each school s ∈ S has a capacity

qs ∈ N. There is an outside option ∅ for the students. A matching µ : I → S ∪ {∅}
allocates each student to a school or the outside option with constraints |µ−1(s)| ≤ qs for

each school s ∈ S. We assume that q∅ = |I|, that is, the number of available seats of the

outside option is not scarce. Let M be the set of all matchings.

Each student i ∈ I has a strict preference relation Ri over the set of alternatives

S ∪ {∅}. Let Pi be the asymmetric part of Ri, that is, for each s, s′ ∈ S ∪ {∅}, sRis
′

if and only if either sPis
′ or s = s′. Denote by R = (Ri)i∈I a preference profile of

the students. We use the notation RN = (Ri)i∈N for each subset of students N ⊂ I. An

alternative s ∈ S∪{∅} is acceptable to a student i ∈ I at Ri if sRi∅, and unacceptable

to i at Ri otherwise. For two matchings µ, µ′ ∈ M, we write µ′Rµ when it holds that

µ′(i)Riµ(i) for all students i ∈ I. Let R be the set of all preference profiles.

A choice rule for a school s ∈ S is a correspondence Cs : 2
I → 2I such that Cs(N) ⊂ N

and |Cs(N)| ≤ qs for all subsets of students N ⊂ I. Its interpretation is the following:

For each set of applicants N ⊂ I, the school s ∈ S admits the students in Cs(N) and

rejects the students not in Cs(N). Define C∅(N) ≡ N for each N ⊂ I, which is consistent

with the assumption that q∅ = |I|. Let C = (Cs)s∈S be a profile of choice rules.

We say that a choice rule Cs is acceptant if we have |Cs(N)| = min{qs, |N |} for all

N ⊂ I. A profile of choice rules C is acceptant if Cs is acceptant for all schools s ∈ S. A

choice rule Cs is substitutable if we have Cs(N) ∩M ⊂ Cs(M) for all N ⊂ I and for

all M ⊂ I with M ⊂ N . A profile of choice rules C is substitutable if Cs is substitutable

for all schools s ∈ S. One important class of substitutable choice rules is an acceptant

responsive choice rule Cs for a strict linear order ≻s over the set of students I, which is

defined as follows. For each subset of students N ⊂ I, Cs(N) is the set of min{qs, |N |} top
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ranked students in N according to the ordering ≻s. Throughout the paper, we restrict

attention to acceptant and substitutable choice rules. Let C be the set of all profiles of

choice rules that are acceptant and substitutable.

Now, we are ready to define mechanisms considered in this paper.

Definition 1. A mechanism φ : R× C → M is a mapping that assigns a matching for

each pair of a preference profile and an acceptant substitutable profile of choice rules.

One of desirable properties of matchings and mechanisms is stability. A matching µ

is individually rational at a preference profile R if µ(i)Ri∅ holds for all students i ∈ I.

A matching µ is blocked by a student-school pair (i, s) at a pair of profiles of preferences

and choice rules (R,C), if both sPiµ(i) and i ∈ Cs(µ
−1(s)∪ {i}) hold. Then, we say that

a matching µ is stable at (R,C) if it is individually rational at R and it is not blocked

by any student-school pair at (R,C). A mechanism φ is stable if the matching φ(R,C)

is stable at (R,C) for all R and C.

Roth and Sotomayor (1992) show that the following deferred acceptance (DA)

algorithm produces a stable matching for each R and C.

• Step 1. Every student applies to his most preferable alternative under R. Students

who apply to the outside option ∅ match with it. Let N1
s be the set of students

applying to the school s ∈ S. Each school s ∈ S tentatively accepts the students in

M1
s = Cs(N

1
s ) and rejects the applicants in N1

s \M1
s .

• Step k(≥ 2). Every student who was rejected at the step k − 1 applies to his next

preferable alternative under R. Students who apply to the outside option ∅ match

with it. Let Nk
s be the new set of students applying to the school s ∈ S. Each school

tentatively accepts the students in Mk
s = Cs(M

k−1
s ∪Nk

s ) and rejects the applicants

in (Mk−1
s ∪Nk

s )\Mk
s .

• The algorithm ends at the step when no student is rejected by a school. Each

student tentatively accepted by a school at the last step match with the school.

The deferred acceptance (DA) mechanism φ∗ is a mechanism that maps each (R,C)

to the matching obtained when the DA algorithm is applied for (R,C).

Another important property of matchings is efficiency. A matching µ′ Pareto domi-

nates a matching µ at a preference profile R if we have µ′Rµ and µ′ ̸= µ. We say that a

mechanism ψ Pareto dominates a mechanism φ if we have ψ(R,C)Rφ(R,C) for all R and

C, and ψ ̸= φ. If ψ ̸= φ is not necessarily true, we say that ψ weakly Pareto dominates

φ. A matching µ is efficient at R if there exists no matching that Pareto dominates µ

at R. A mechanism φ is efficient if φ(R,C) is efficient at R for all R and C.
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Kesten (2010) shows that the DA mechanism can be highly inefficient,3 and proposes

the efficiency adjusted deferred acceptance (EADA) algorithm, whose output is

efficient and (weakly) Pareto dominates that of the DA algorithm. Bando (2014) and

Tang and Yu (2014) design outcome-equivalent mechanisms under acceptant responsible

choice rules. Ehlers and Morrill (2020) extend the mechanism of Tang and Yu (2014) to

acceptant and substitutable choice rules.

Instead of the Kesten’s (2010) original EADA algorithm, we describe the “simplified”

algorithm of Ehlers and Morrill (2020), which goes as follows. We say that an alternative

s ∈ S ∪ {∅} is underdemanded at a pair of a preference profile and a matching (R, µ)

if µ(i)Ris holds for all students i ∈ I.

• Step 1. Run the DA algorithm at (R,C). For each underdemanded alternative

s ∈ S ∪ {∅} and each student i ∈ I assigned to s, permanently assign i to s and

then remove both i and s.

• Step k(≥ 2). Run the DA algorithm at (R,C) on the remaining population. For

each underdemanded alternative s ∈ S ∪ {∅} and each student i ∈ I assigned to s,

permanently assign i to s and then remove both i and s.

• The algorithm ends at the step at which all alternatives are removed.

The above algorithm stops within finite steps because, at each step of the algorithm, the

last proposers of the DA algorithm always match with underdemanded alternatives. The

efficiency adjusted deferred acceptance (EADA) mechanism φ∗∗ is a mechanism

that maps each (R,C) to the matching obtained when the EADA algorithm is applied

for (R,C).

3 Impossibility Result

This section describes that no group strategy-proof mechanism satisfies a stability require-

ment, which we call respecting top-top pairs. First of all, we introduce definitions of

strategy-proofness and group strategy-proofness. We define the following notion as a

preparation, which will be useful especially in Section 4.

Definition 2. For a mechanism φ, a group N gains by a misreport R′
N at (R,C) if

• φ(R′, C)Riφ(R,C) for all i ∈ N ; and

3To be more precise, Kesten (2010) proves that, for any set of schools and their capacities, there exists
a set of students, a preference profile, and a profile of choice rules at which all students match with either
the worst or the second-worst alternative under the DA mechanism.
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• φ(R′, C)Piφ(R,C) for some i ∈ N ,

where R′ ≡ (R′
N , RI\N).

Then, a mechanism φ is strategy-proof if no singleton gains by a misreport at some

(R,C). The DA mechanism φ∗ is strategy-proof, but the EADA mechanism φ∗∗ is not

(See Kesten (2010)). A mechanism φ is group strategy-proof if no group of students

gains by a misreport at some (R,C). The DA mechanism and the EADA mechanism are

not group strategy-proof in general.

Next, let us consider a stability requirement, respecting top-top pairs. For each

preference profile R and an alternative s ∈ S ∪ {∅}, let NR
s ≡ {j ∈ I | sRj∅} be the

set of students for whom s is acceptable at R. We may view the set NR
s as the set of all

potential applicants for the alternative s under the profile R. A pair of a student i ∈ I

and an alternative s ∈ S ∪ {∅} is a top-top pair at (R,C), if sRis
′ for all s′ ∈ S ∪ {∅}

and i ∈ Cs(N
R
s ).

Definition 3. A matching µ respects top-top pairs at (R,C) if we have µ(i) = s

for any top-top pair (i, s) at (R,C). A mechanism φ respects top-top pairs at C if

φ(R,C) respects top-top pairs at (R,C) for all R. A mechanism φ respects top-top pairs

if it respects top-top pairs at all C.

In other words, a matching is said to respect top-top pairs when it always matches top-

top pairs. This notion is a slight modification of a requirement called strong top best,

which is first introduced in Chen (2017). Strong top best requires a matching to match

a student i with a school s if (i, s) is a top-top pair. It is weaker than our requirement

in that it limits the requirement to student-school pairs. Moreover, strong top best is a

strengthening of mutual best of Morrill (2013). Therefore, any matching which respects

top-top pairs satisfies both strong top best and mutual best.

Yet, our notion is still a rather weak stability requirement. First of all, any stable

matching respects top-top pairs, because otherwise, the corresponding pair would form

a blocking pair, from substitutability of the choice rules. Secondly, the property of re-

specting top-top pairs is a strictly weaker requirement than that of several existing weak

stability notions. Such examples include reasonably fairness of Kesten (2004), stable-

dominating of Alva and Manjunath (2019), essential stability of Troyan et al. (2020),

weak stability of Tang and Zhang (2021), and priority-neutrality of Reny (2021).4

Now, we are ready to state the first observation of this paper. The following propo-

sition claims that there exists no group strategy-proof mechanism that respects top-top

4We will not explain each concept here. These papers state that the outputs from the EADA mecha-
nism satisfy their stability requirements, instead of being stable.
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pairs. Hence, group strategy-proofness is incompatible with all the stability requirements

mentioned in the above paragraph.

Proposition 1. No group strategy-proof mechanism respects top-top pairs.

Proof. Suppose that there are three students N = {i, j, k} and two schools S = {s, s′}
with capacities qs = qs′ = 1. Consider acceptant responsive choice rules Cs and Cs′ for

the following strict linear orders ≻s and ≻s′ , respectively.

≻s ≻s′

k i

j j

i k

Next, consider the following lists of preferences of the three students.

Ri R′
i R′′

i Rj R′
j Rk R′

k R′′
k

s s s′ s ∅ s′ s′ s

s′ ∅ ∅ s′ s s ∅ ∅
∅ s′ s ∅ s′ ∅ s s′

Now, suppose that a mechanism φ satisfies group strategy-proofness and respects

top-top pairs. Let R = (Ri, Rj, Rk). If φ(R,C)(i) = ∅, then the student i gains by a

misreport R′′
i because φ respects top-top pairs, and therefore, we must have φ(R,C)(i) ̸=

∅. Likewise, we have φ(R,C)(k) ̸= ∅, because otherwise the student k gains by a

misreport R′′
k. Therefore, there are only two possibilities,

φ(R,C) = µ =

(
i j k

s′ ∅ s

)
, or φ(R,C) = µ′ =

(
i j k

s ∅ s′

)
.

If φ(R,C) = µ, then the grand coalition I gains by a misreport R′ = (R′
i, R

′
j, R

′
k), because

respecting top-top pairs implies that

φ(R′, C) = µ′ =

(
i j k

s ∅ s′

)
.

Thus, we must have φ(R,C) = µ′.

Finally, consider a preference profile R∗ = (Ri, Rj, R
′
k). Since (j, s) is a top-top pair

at (R∗, C), we have φ(R∗, C)(j) = s. By the assumption, the group {j, k} does not gain

by the misreport (Rj, R
′
k) at R, and thus φ(R∗, C)(k) = ∅ must hold. Nevertheless, it

means that the student k gains by a misreport Rk at R∗, which is a contradiction.
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Remark 1. The proof of Proposition 1 remains valid even if we replace respecting top-top

pairs with the property of strong top best. It means that no group strategy-proof mech-

anism satisfies strong top best. On the other hand, our stability requirement, respecting

top-top pairs, is crucial to prove our main proposition (Remark 3).

4 Monotonicities of Mechanisms

This section presents several monotonicity axioms. Especially, in response to the conclu-

sion in Proposition 1, we introduce two new monotonicity axioms as alternatives to group

strategy-proofness. We also discuss relations between the two new monotonicity axioms

and coordinated strategic manipulability of mechanisms.

We say that a preference R′
i is a monotonic transformation of a preference Ri at

an alternative s ∈ S∪{∅} if s′R′
is implies s′Ris for any s

′ ∈ S∪{∅}, i.e., any alternative

that is ranked above s in R′
i is also ranked above s in Ri. A preference profile R′ is a

monotonic transformation of a preference profile R at a matching µ, if R′
i is a monotonic

transformation of Ri at µ(i) for each student i ∈ I.

Definition 4. A mechanism φ satisfiesMaskin monotonicity at C if, for any preference

profiles R and R′, we have φ(R′, C) = φ(R,C) whenever R′ is a monotonic transformation

of R at φ(R,C). A mechanism φ satisfies Maskin monotonicity if it satisfies Maskin

monotonicity at all C.

Takamiya (2001) proves that a mechanism satisfies group strategy-proofness if and

only if it satisfies Maskin monotonicity. Therefore, Proposition 1 also states that there

exists no mechanism which satisfies Maskin monotonicity and respects top-top pairs.

The DA mechanism does not satisfy Maskin monotonicity because it is not group

strategy-proof. Instead of Maskin monotonicity, Kojima and Manea (2010) prove that

the DA mechanism satisfies the following weak Maskin monotonicity. We frequently

use this result of Kojima and Manea (2010) in the proofs of subsequent results.

Definition 5. A mechanism φ satisfies weak Maskin monotonicity at C if, for any

preference profiles R and R′, we have φ(R′, C)R′φ(R,C) whenever R′ is a monotonic

transformation of R at φ(R,C). A mechanism φ satisfies weak Maskin monotonicity if it

satisfies weak Maskin monotonicity at all C.

In response to the impossibility result in Section 3, we now introduce two types of new

monotonicity axioms, top-dropping monotonicity and extension monotonicity, as

alternatives to group strategy-proofness. First of all, we say that a preference R′
i is a

top-dropping of a preference Ri if the following condition holds: Let s∗ ∈ S ∪ {∅} be

the most preferred alternative under Ri.

10



• For any other two alternatives s, s′ ̸= s∗, we have sRis
′ if and only if sR′

is
′.

In other words, a top-dropping is a transformation of a preference that, other things being

equal, alters only the ranking of the most preferred alternative. Note that, if R′
i is a top-

dropping of Ri, then R
′
i is a monotonic transformation of Ri at all alternatives except for

the most preferred one under Ri.

We say that a preference profile R′ is a top-dropping of a preference profile R at a

matching µ if, for any student i with R′
i ̸= Ri, R

′
i is a top-dropping of Ri and µ(i) is not

the most preferred alternative at Ri.

The following top-dropping monotonicity requires that mechanisms do not change

their outputs for any top-dropping.

Definition 6. A mechanism φ satisfies top-dropping monotonicity at C if, for any

preference profiles R and R′, we have φ(R′, C) = φ(R,C) whenever R′ is a top-dropping

of R at φ(R,C). A mechanism φ satisfies top-dropping monotonicity if it satisfies top-

dropping monotonicity at all C.

Any Maskin-monotonic mechanism satisfies top-dropping monotonicity, because any

top-dropping is a monotonic transformation. Equivalently from Takamiya (2001), any

group strategy-proof mechanism satisfies top-dropping monotonicity.

Remark 2. Top-dropping monotonicity is slightly stronger than it looks. To see this,

consider a mechanism satisfying top-dropping monotonicity. An iterative use of top-

dropping monotonicity shows invariance of the outputs for the following transition of

preference profiles: A student lowers the rank of an alternative that she strictly prefers

over her original assignment.

Second, we say that a preference R′
i is an extension of a preference Ri if the following

two conditions are satisfied:

• For any alternative s ∈ S ∪ {∅}, sRi∅ implies that sR′
i∅.

• For any two schools s′, s′′ ∈ S, we have s′Ris
′′ if and only if s′R′

is
′′.

In other words, an extension is a transformation of a preference that, other things being

equal, lowers the ranking of the outside option. Notice that, if R′
i is an extension of Ri,

then R′
i is a monotonic transformation of Ri at all schools. When R′

i is an extension of Ri,

existing studies may call Ri a truncation of R′
i (See, e.g., Roth and Rothblum (1999)).

We say that a preference profile R′ is an extension of a preference profile R at a

matching µ if, for any student i with R′
i ̸= Ri, R

′
i is an extension of Ri and µ(i) ̸= ∅.

The following axiom, extension monotonicity, requires that mechanisms do not change

their outputs for any extension.
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Definition 7. A mechanism φ satisfies extension monotonicity at C if, for any pref-

erence profiles R and R′, we have φ(R′, C) = φ(R,C) whenever R′ is an extension of

R at φ(R,C). A mechanism φ satisfies extension monotonicity if it satisfies extension

monotonicity at all C.

Any Maskin-monotonic mechanism satisfies extension monotonicity, because any ex-

tension is a monotonic transformation. Moreover, if a mechanism φ is individually ra-

tional and satisfies weak Maskin monotonicity, it satisfies extension monotonicity. To

see this, take any R and C, and let R′ be an extension of R at φ(R,C). Since R′ is

a monotonic transformation of R at φ(R,C), weak Maskin monotonicity implies that

φ(R′, C)R′φ(R,C), and thus φ(R′, C)Rφ(R,C). This also implies that, from individual

rationality, R is a monotonic transformation of R′ at φ(R′, C). Therefore, weak Maskin

monotonicity shows φ(R,C)Rφ(R′, C). Now we have φ(R′, C) = φ(R,C). Hence, φ

satisfies extension monotonicity.

4.1 The Monotonicity Axioms and Strategic Manipulabilitiy

In this subsection, we characterize the two new monotonicity axioms, top-dropping mono-

tonicity and extension monotonicity, in terms of coordinated strategic manipulability of

mechanisms. These characterizations resemble those of Takamiya (2001) and Bando and

Imamura (2016): Takamiya (2001) proves that Maskin monotonicity and group strategy-

proofness are equivalent requirements over mechanisms. Similarly, Bando and Imamura

(2016) characterize weak Maskin monotonicity in terms of robustness to strategic manip-

ulations by groups of students.

To begin with, the following proposition says that, a mechanism satisfies top-dropping

monotonicity if and only if no group of students gains by a misreport that either drops

the most preferred alternative or makes an alternative the most preferable.

Proposition 2. A mechanism φ satisfies top-dropping monotonicity at C if and only if,

no group N ⊂ I gains by a misreport R′
N at (R,C) for some R such that, for each i ∈ N ,

• R′
i is a top-dropping of Ri; or

• Ri is a top-dropping of R′
i.

Proof. Fix any profile of choice rules C ∈ C. Then, let φ(R) ≡ φ(R,C) for each preference

profile R ∈ R, for notational convenience.

To begin with, we prove the “if” direction. Take any student i ∈ I. Let a profile

R′ ≡ (R′
i, RI\{i}) be a top-dropping of R at φ(R). It is sufficient to show that we have

φ(R′) = φ(R), to prove that φ satisfies top-dropping monotonicity. By assumption, we
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have both φ(R)Riφ(R
′) and φ(R′)R′

iφ(R). Since the latter implies φ(R′)Riφ(R), we have

φ(R′)(i) = φ(R)(i).

If φ(R)(j) ̸= φ(R′)(j) holds for some j ̸= i, then {i, j} gains either at R or R′ by a

misreport (R′
i, Rj) or (Ri, Rj), respectively. They do not happen from the assumption.

Hence, it must hold that φ(R) = φ(R′), which ends the proof of the “if” direction.

Now we prove the “only if” direction. Take any preference profile R. Seeking a

contradiction, suppose that a group of students N ⊂ I gains at R by a misreport R′
N

that satisfies the condition in the statement. Define µ ≡ φ(R) and µ′ ≡ φ(R′
N , RI\N),

respectively. Take any student i ∈ N in the group.

First, suppose that R′
i is a top-dropping of Ri. If µ(i) is not the most preferred

alternative for the student i ∈ N under Ri, then φ(R′
i, RI\{i}) = µ from top-dropping

monotonicity. Otherwise, we have µ′(i) = µ(i) by the assumption that N gains by a

misreport R′
N . In this case, we can obtain Ri from R′

i by lowering the rankings of the

alternatives that are preferred to µ′(i) under R′
i. It means that an iterative applications

of top-dropping monotonicity yields φ(R′
N\{i}, RI\(N\{i})) = µ′ (See Remark 2).

Second, suppose that Ri is a top-dropping of R′
i. If µ′(i) is not the most preferred

alternative for the student i ∈ N under R′
i, then top-dropping monotonicity implies that

φ(R′
N\{i}, RI\(N\{i})) = µ′. Otherwise, we have µ′(i)Riµ(i) by the assumption that N gains

by a misreport R′
N at R. In this case, we can obtain R′

i from Ri by lowering the rankings

of all the alternatives that are preferred to µ′(i) under Ri. Since µ′(i)Riµ(i), it means

that an iterative applications of top-dropping monotonicity yields φ(R′
i, RI\{i}) = µ.

We have established that either φ(R′
i, RI\{i}) = µ or φ(R′

N\{i}, RI\(N\{i})) = µ′ holds.

By repeating the above arguments for students in N , we finally get µ = µ′. This is a

contradiction, because we assumed that at least one student in the group N has to be

strictly better off.

Secondly, the following proposition implies that a mechanism satisfies extension mono-

tonicity if no group gains by a misreport that alters a ranking of the outside option.

However, as the proposition indicates, we need to restrict a class of misreports further to

prove the converse statement.5

Proposition 3. A mechanism φ satisfies extension monotonicity at C if and only if, no

group N ⊂ I gains by a misreport R′
N at (R,C) for some R such that, for each i ∈ N ,

• R′
i is an extension of Ri and φ(R)(i) ̸= ∅; or

• Ri is an extension of R′
i and φ(R

′
N , RI\N)(i) ̸= ∅; or

5For instance, the DA mechanism satisfies extension monotonicity, but some groups may gain by a
misreport that alters a ranking of the outside option. Example 1 illustrates this point: At the preference
profile R, The grand coalition gains by reporting R′.
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• R′
i = Ri.

Proof. Fix C ∈ C and let φ(R) ≡ φ(R,C) for each R ∈ R for convenience.

First, we prove the “if” direction. Let R′ ≡ (R′
i, RI\{i}) be an extension of R at φ(R).

It is sufficient to show that φ(R′) = φ(R) to prove that φ satisfies extension monotonicity.

It is trivially true if R′
i = Ri. Suppose that R′

i ̸= Ri. Then, we have φ(R)(i) ̸= ∅, by

the definition of extensions. Hence, it holds that φ(R)Riφ(R
′) and φ(R′)R′

iφ(R) by the

assumption. The former relation implies φ(R)R′
iφ(R

′) from φ(R)(i) ̸= ∅. Therefore, we

have φ(R′)(i) = φ(R)(i) ̸= ∅.

If φ(R)(j) ̸= φ(R′)(j) holds for some j ̸= i, then {i, j} gains either at R or R′ by

a misreport (R′
i, Rj) or (Ri, Rj), respectively. They are not possible by the assumption,

because φ(R′)(i) = φ(R)(i) ̸= ∅. Hence, it must hold that φ(R) = φ(R′), which ends the

proof of the “if” direction.

Second, we prove the “only if” direction. Consider any group N ⊂ I and its misreport

R′
N that satisfies the condition in the statement. LetM ⊂ N be the set of students i ∈ N

such that R′
i ̸= Ri. We show that µ′ ≡ φ(R′

M , RI\M) = φ(R) ≡ µ.

Take any student i ∈M . If R′
i is an extension of Ri, we have µ(i) ̸= ∅ by the condition

in the statement. Then, it implies φ(R′
i, RI\{i}) = µ from extension monotonicity. If Ri

is an extension of R′
i, then µ

′(i) ̸= ∅ holds by the condition. Therefore, extension mono-

tonicity shows φ(R′
M\{i}, RI\(M\{i})) = µ′. By repeating this argument for all students in

the set M , we get µ′ = µ. This contradicts with the assumption that at least one student

in the group N is strictly better off by the manipulation R′
N .

5 Main Result

This section presents the main result of this paper, which claims that a unique mechanism

satisfies top-dropping monotonicity, extension monotonicity, and respects top-top pairs.

Furthermore, it coincides with the EADA mechanism of Kesten (2010). We provide the

proof in Appendix.

Proposition 4. A mechanism φ satisfies top-dropping monotonicity, extension mono-

tonicity, and respects top-top pairs if and only if φ = φ∗∗.

Not only does Proposition 4 resolve the conflict observed in Proposition 1, but also

it provides a novel axiomatic characterization for the EADA mechanism under general

choice structures. As discussed in Introduction, our axiomatic characterization is different

from the other characterizations of the EADA, especially in that our axioms have impli-

cations on how robust a mechanism is to some simple strategic manipulations of groups.
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Moreover, all of known characterizations, except for that of Ehlers and Morrill (2020),

assume acceptant responsive choice rules.

It is worth mentioning that we derive an alternative characterization of the EADA

mechanism φ∗∗ in Lemma 8 of the appendix. It says that φ∗∗ is the unique mechanism

that satisfies top-dropping monotonicity and weakly Pareto dominates the DA mechanism.

Abdulkadiroğlu et al. (2009), Kesten (2010) and Alva and Manjunath (2019) show that

the DA mechanism φ∗ is the unique mechanism that weakly Pareto dominates φ∗ and is

strategy-proof. Correspondingly, Lemma 8 and Proposition 2 find that φ∗∗ is the unique

mechanism that weakly Pareto dominates φ∗ and is robust against group manipulations

by top-droppings and “anti”-top-droppings.

Remark 3. The “if” direction of Proposition 4 do not carry over once we weaken re-

specting top-top pairs to the property of strong top best. For each preference profile R,

let R−∅ be a profile such that, other things being equal, sR−∅
i ∅ for all students i and all

schools s ∈ S. Then, consider a mechanism φ, where φ(R,C) = φ∗∗(R−∅, C) for each

R and C. Now, suppose that qs = |I| for all schools s ∈ S. Under such capacities, the

mechanism φ always matches the students with their most preferred schools, hence it is

easy to see that φ satisfies top-dropping monotonicity, extension monotonicity, and strong

top best. Yet, it does not respect top-top pairs, because the students never match with

the outside option.

The rest of this section verifies that the three axioms in Proposition 4 are independent.

That is, the three examples below demonstrate that, for each of these three axioms, there

exists a mechanism that does not satisfy the axiom and satisfies the other two.

Example 1. In this example, we see that extension monotonicity and respecting top-top

pairs do not imply top-dropping monotonicity in general.

Consider the DA mechanism φ∗, which is a stable mechanism and satisfies weak Maskin

monotonicity (Kojima and Manea (2010)). Since φ∗ is stable, it respects top-top pairs.

Moreover, φ∗ satisfies extension monotonicity as discussed in Section 4.

We can see that φ∗ fails to satisfy top-dropping monotonicity, however. Suppose

that there are three sutdents I = {i, j, k} and two schools S = {s, s′} with capacities

qs = qs′ = 1. Consider acceptant responsible choice rules Cs and Cs′ for the following

strict linear orders ≻s and ≻s′ , respectively.

≻s ≻s′

k i

j j

i k
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Next, consider the following lists of preferences of the students.

Ri Rj R′
j Rk

s s ∅ s′

s′ ∅ s s

∅ s′ s′ ∅

Now, if we run the DA algorithm at the preference profile R = (Ri, Rj, Rk), then it

produces the following matching.

φ∗(R,C) =

(
i j k

s′ ∅ s

)
.

Notice that R′
j is a top-dropping of Rj, and that j does not match with his/her most

preferred school s under φ∗(R,C). However, it holds that, for R′ = (Ri, R
′
j, Rk),

φ∗(R′, C) = φ∗∗(R,C) =

(
i j k

s ∅ s′

)
̸= φ∗(R,C),

which indicates that φ∗ does not satisfy top-dropping monotonicity.

Example 2. The following example shows that top-dropping monotonicity and respecting

top-top pairs do not yield extension monotonicity in general.

Consider the school-proposing DA mechanism, whose outputs are given by the

following algorithm for each input (R,C) ∈ R× C.

• Step 1. Every school s ∈ S applies to the set of students Cs(I). Students tentatively

accept the most preferred school among all acceptable applicants, and reject the rest.

• Step k(≥ 2). Every school s ∈ S applies to the set of students Cs(N), where N is

the set of students who have not rejected s in the earlier steps. Students tentatively

accept the most preferred school among all acceptable applicants and the tentatively

accepted school, and reject the rest.

• The algorithm ends at the step when no school is rejected by a student. Each school,

which is tentatively accepted by a student at the last step, permanently matches

with the student. All remaining students match with the outside option.

Let φSDA be the school-proposing DA mechanism. Since φSDA is a stable mechanism (See

Roth and Sotomayor (1992)), it respects top-top pairs.

Now, we show that the school-proposing DA satisfies top-dropping monotonicity. Let

R′
i be a top-dropping of Ri, and suppose that the student i does not match with his/her
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most preferable alternative s at some (R,C). It means that s ̸= ∅ because φSDA is

individually rational. Moreover, the school s has never applied to the student i during

the algorithm. Therefore, under the inputs R′ = (R′
i, RI\{i}) and C, the school-proposing

DA algorithm runs in the completely same manner with the algorithm under R and

C. Thus, we have φSDA(R′, C) = φSDA(R,C). It means that the school-proposing DA

mechanism φSDA satisfies top-dropping monotonicity.

Finally, we see in the following example that φ does not satisfy extension monotonicity.

Suppose that I = {i, j} and S = {s, s′} with capacities qs = qs′ = 1. Then, consider

acceptant responsible choice rules Cs and Cs′ for the following strict linear orders ≻s and

≻s′ , respectively.

≻s ≻s′

j i

i j

Consider the following lists of preferences of the students.

Ri R′
i Rj

s s s′

∅ s′ s

s′ ∅ ∅

If we run the school-proposing DA algorithm to the preference profile R = (Ri, Rj), we

obtain the following matching.

φSDA(R,C) =

(
i j

s′ s

)
.

Now, it holds that φSDA(R,C)(i) ̸= ∅, and R′
i is an extension of Ri. However, for the

preference profile R′ = (R′
i, Rj), which is an extension of the profile R at the matching

φSDA(R,C), we have

φSDA(R,C) =

(
i j

s s′

)
̸= φSDA(R,C),

hence this example shows that φSDA does not satisfy extension monotonicity.

Example 3. Consider a “null mechanism” φ∅ that always assigns the matching µ such

that µ(i) = ∅ for each student i ∈ I, for all R and for all C. This mechanism satisfies both

top-dropping monotonicity and extension monotonicity, because the resulting matchings
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are the same under any preference profile and any profile of acceptant substitutable choice

rules. However, it is trivial to see that this mechanism does not respect top-top pairs.

For instance, in a setting I = {i} and S = {s} with qs = 1, if s is acceptable under a

preference R of the student i, then respecting top-top pairs requires that φ∅(R,C)(i) = s

for all acceptant choice rules C.

6 Applications of the Monotonicity Axioms

Section 4 introduced the two new monotonicity axioms, and Section 5 showed that these

monotonicity axioms help characterize the Kesten’s (2010) EADA mechanism. In this

section, we present further applications of the newly defined axioms focusing on the DA

mechanism. We also show that these results have an interesting implication beyond the

DA mechanism.

First of all, the next corollary says that top-dropping monotonicity characterizes effi-

ciency of the DA mechanism. Kojima and Manea (2010) show that, under acceptant and

substitutable profile of choice rules, the DA mechanism is efficient if and only if it satisfies

Maskin monotonicity or group strategy-proofness. Their result is a generalization of The-

orem 1 in Ergin (2002), which shows this claim under acceptant responsive choice rules.

Compared to these results, the following result states that, instead of Maskin monotonic-

ity, top-dropping monotonicity is sufficient to imply efficiency of the DA mechanism.

Corollary 1. The DA mechanism φ∗ is efficient at C ∈ C if and only if φ∗ satisfies

top-dropping monotonicity at C.

Proof. First, if φ∗ is efficient at C ∈ C, it satisfies Maskin monotonicity at C from Kojima

and Manea (2010). Hence, it satisfies top-dropping monotonicity at C.

Second, suppose that φ∗ satisfies top-dropping monotonicity at C. Consider a mech-

anism φ such that, for each R and C ′, φ(R,C ′) = φ∗(R,C ′) if C ′ = C and φ(R,C ′) =

φ∗∗(R,C ′) otherwise. Since φ∗ is a stable mechanism, it respects top-top pairs. Besides,

φ∗ satisfies extension monotonicity. Thus, Proposition 4 implies that φ = φ∗∗ holds, which

is efficient (Kesten (2010)). Especially, φ is efficient at C, completing the proof.

Remark 4. We discussed in Section 4 that top-dropping monotonicity is weaker than

group strategy-proofness. According to Corollary 1 and the result of Kojima and Manea

(2010), however, we have a stronger relationship under the DA mechanism: The equiva-

lence between top-dropping monotonicity and group strategy-proofness.

Secondly, the next proposition states that extension monotonicity characterizes the DA

mechanism along with stability. Kojima and Manea (2010) and Morrill (2013) prove that
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a stable mechanism φ equals the DA mechanism φ∗ if and only if it satisfies weak Maskin

monotonicity. Chen (2017) states that a weaker axiom called rank monotonicity is suffi-

cient to characterize the DA mechanism among all stable mechanisms. Compared to these

statements, one can see that extension monotonicity is weaker than both weak Maskin

monotonicity and rank monotonicity under individually rational mechanisms. Hence,

the next proposition means that extension monotonicity is enough to pin down the DA

mechanism among stable mechanisms.

Proposition 5. A stable mechanism φ satisfies extension monotonicity if and only if it

is the DA mechanism φ∗.

Proof. The “if” direction is obvious. Suppose that a stable mechanism φ satisfies extension

monotonicity. Take any R and C.

For each student i ∈ I, construct a preference R′
i from the original preference Ri as

follows. If φ∗(R,C)(i) = ∅ holds, define R′
i ≡ Ri. If φ

∗(R,C)(i)Pi∅, then R′
i truncates

all schools that are strictly less preferred to φ∗(R,C)(i) from Ri, that is,

• For any school s ∈ S, we have ∅P ′
is if and only if φ∗(R,C)(i)Pis.

• For any two schools s, s′ ∈ S, we have sRis
′ if and only if sR′

is
′.

Here, φ∗(R,C) is the unique stable matching at (R′, C), which is shown in the proof of

Lemma 2 of Kojima and Manea (2010). Thus, we have φ(R′, C) = φ∗(R,C), because φ

is a stable mechanism.

Moreover, it implies that R is an extension of R′ at φ(R′, C), because φ∗(R′, C)(i) ̸= ∅
holds for each student i ∈ I with R′

i ̸= Ri, and because the relative orderings between

all two schools are the same. Therefore, from extension monotonicity of φ, it holds that

φ(R,C) = φ(R′, C) = φ∗(R,C), which completes the proof.

Remark 5. Since the DA is the unique stable mechanism that is strategy-proof from Al-

calde and Barberà (1994), Proposition 5 shows the equivalence between extension mono-

tonicity and strategy-proofness under stable mechanisms. It is worth noting that they

are independent under general mechanisms, although extension monotonicity is implied

by group strategy-proofness. We will present examples that (implicitly) demonstrate the

independence in the rest of this section.6

Third, we find a novel axiomatic characterization for the DA mechanism with our

axioms. The following proposition claims that the DAmechanism is the unique mechanism

6First, the mechanism in Example 4 shows that strategy-proofness does not necessarily imply extension
monotonicity. Second, the Boston mechanism serves as an example under which extension monotonicity
does not imply strategy-proofness.
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that satisfies strategy-proofness, extension monotonicity, and respects top-top pairs. It is

closely related to our main result (Proposition 4): If we replace strategy-proofness with

top-dropping monotonicity, we get the EADA mechanism instead of the DA mechanism.

Proposition 6. A mechanism φ satisfies strategy-proofness, extension monotonicity and

respects top-top pairs if and only if φ = φ∗.

Proof. Again, the “if” direction is trivial. and thus, we only prove the “only if” direction.

Suppose that a mechanism φ satisfies strategy-proofness, extension monotonicity, and

respects top-top pairs. Take any preference profile R and any profile of choice rules C.

For each student i ∈ I, define a preference R′
i from Ri as in the proof of Proposition 5.

Recall that φ∗(R,C) is a stable matching at (R′, C).

Here, we show that, for each student i ∈ I and the alternative s = φ∗(R,C)(i), it

holds that i ∈ Cs(N
R′
s ). If s = ∅, then by the definition of C∅, we have

i ∈ I = NR′

∅ = C∅(N
R′

∅ ).

Suppose that s ̸= ∅. Divide the set of the students who weakly prefer the school s to the

matching φ∗(R,C) into the following two sets.

M ≡ {j ∈ I | sP ′
jφ

∗(R,C)(j)}, and

N ≡ {j ∈ I | s = φ∗(R,C)(j)}.

It is easy to see that NR′
s = N ∪M by the construction of R′. Since φ∗(R,C) is stable at

(R′, C), for any student j ∈ M , we have j /∈ Cs(N ∪ {j}). Moreover, substitutability of

Cs shows that j /∈ Cs(N ∪M) = Cs(N
R′
s ). Thus, i ∈ N = Cs(N

R′
s ) holds, because Cs is

acceptant.

Now, for each student i, let R′′
i be a preference that ranks s = φ∗(R,C)(i) at the top.

Then, the above discussion shows i ∈ Cs(N
R′′
s ) from NR′

s = NR′′
s , where R′′ ≡ (R′′

i , R
′
I\{i}).

Thus, at R′, since φ respects top-top pairs, the student i can match with s by reporting

R′′
i . Therefore, strategy-proofness implies φ(R′, C)(i)R′

is = φ∗(R,C)(i). This relation

holds for each student, which shows φ(R′, C)R′φ∗(R,C).

Here, since φ(R′, C)R′φ∗(R,C), R is an extension of R′ at φ(R′). To see this, take

any student i ∈ I. First, if φ(R′, C)(i) = ∅, then ∅R′
iφ

∗(R,C)(i) shows φ∗(R,C)(i) = ∅,

because φ∗(R,C) is individually rational at (R′, C). In which case, we have R′
i = Ri by

the construction. Second, for any alternative s ∈ S ∪{∅}, s′R′
i∅ implies s′Riφ

∗(R,C)(i),

which implies that s′Ri∅. Third, the orderings between all pairs of two schools are the

same. Hence, R is an extension of R′ at φ(R′, C). From extension monotonicity, we have

φ(R,C) = φ(R′, C).
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Finally, note that φ(R,C)R′φ∗(R,C) implies φ(R,C)Rφ∗(R,C). Since no strategy-

proof mechanism Pareto dominates the DA mechanism as shown in Abdulkadiroğlu et al.

(2009), we must have φ(R,C) = φ∗(R,C), which completes the proof.

The three axioms in Proposition 6 are independent. The EADA mechanism satisfies

extension monotonicity and respects top-top pairs as shown in Proposition 4, but it is not

strategy-proof. The “null mechanism” in Example 3 is a simple example of mechanisms

that satisfy strategy-proofness and extension monotonicity, while it does not respect top-

top pairs. The next example provides a mechanism, which shows that strategy-proofness

and respecting top-top pairs do not imply extension monotonicity in general.

Example 4. Consider a mechanism φ which outputs the following matching for each R

and each C: Take any student i ∈ I. If we have i /∈ Cs(I) and sRj∅ for all schools s ∈ S

and for all students j ̸= i, then φ(R,C)(i) ≡ ∅. If not, φ(R,C)(i) ≡ φ∗(R,C)(i). Note

that φ(R,C) is a matching by definition, because the number of students assigned to each

school never exceeds that of assigned students under the DA algorithm.

First of all, one can see that the mechanism φ respects top-top pairs, because we

have φ(R,C)(i) = φ∗(R,C)(i) = s if (i, s) is a top-top pair. Second, we show that φ

is strategy-proof. If a student i’s assignment coincides with the assignment under the

DA mechanism, then i does not gain by any misreport, because the DA mechanism is

strategy-proof and individually rational. Otherwise, i matches with the outside option no

matter what preference i submits. Therefore, φ is strategy-proof.

Third, we verify that this mechanism does not satisfy extension monotonicity. Suppose

that I = {i, j} and S = {s, s′} with capacities qs = qs′ = 1. Let the schools have acceptant

responsible choice rules Cs and Cs′ for a common strict linear order i ≻ j. Then, consider

the following preferences of the students.

Ri R′
i Rj

s s s′

∅ s′ ∅
s′ ∅ s

Under the profile R = (Ri, Rj), the output of the mechanism φ coincides with that of the

DA mechanism, which assigns s to i and s′ to j. Accordingly, the profile R′ = (R′
i, Rj)

is an extension of R at φ(R,C). However, the mechanism φ matches j with the outside

option ∅ ̸= s′ at R′ by the definition. Thus, the mechanism φ does not satisfy extension

monotonicity.

Finally, we find that Proposition 5 and Proposition 6 have an implication for mecha-

nisms beyond the DA mechanism. The next corollary states that, for any fixed profile of
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choice rules, for any mechanism that satisfies extension monotonicity and respects top-

top pairs, its outputs are stable if and only if it is strategy-proof. In other words, the

two axioms find a class of mechanisms under which strategy-proofness and stability are

equivalent.

Corollary 2. Fix any C ∈ C. Suppose that a mechanism φ satisfies extension mono-

tonicity at C and respects top-top pairs at C. Then, the following three are equivalent.

(i): The mechanism φ is stable at C; (ii): φ(R,C) = φ∗(R,C) for all R; and (iii): the

mechanism φ is strategy-proof at C.

Proof. Let φ′ be a mechanism such that, for each R and C, φ′(R,C ′) = φ(R,C) if C ′ = C

and φ′(R,C ′) = φ∗(R,C ′) otherwise. Note that φ′ satisfies extension monotonicity and

respects top-top pairs.

If φ is stable at C, then φ′ = φ∗ from Proposition 5. Therefore, from the construction,

we have φ(·, C) = φ′(·, C) = φ∗(·, C), and thus φ is strategy-proof at C. If φ is strategy-

proof at C, we have φ′ = φ∗ from Proposition 6. Therefore, from the construction, we

have φ(·, C) = φ′(·, C) = φ∗(·, C), and thus φ is stable at C.

We complete this section by providing some examples of mechanisms under which the

equivalence of stability and strategy-proofness holds resorting to Corollary 2.

One example is a family of mechanisms called application-rejection mechanisms,

which is introduced in Chen and Kesten (2017). Throughout the rest of this section, we fix

an acceptant responsive choice rules for a strict linear order profile ≻. For each parameter

e ∈ N, which is a strictly positive natural number, the application-rejection mechanism

φe : R → M outputs a matching according to the following application-rejection

algorithm for each profile R.

• Round t = 0, 1, . . . :

– Step 1. Each unassigned student from the previous rounds applies to his/her

(te + 1)th choice at R. Each school tentatively accepts students from the

applicants following their order ≻ up to their remaining capacities. The rest

of the applicants are rejected.

– Step k, 2 ≤ k ≤ e. The rejected students in the previous step apply to their

(te+k)th choice at R. Each school tentatively accepts students among the pool

of the applicants and the tentatively accepted students following their order ≻
up to their remaining capacities. The rest of the applicants are rejected.

– Step e+ 1. The round t ends and each tentatively accepted student is perma-

nently matched with the alternatives. Then, go to the next round t+ 1.
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• The algorithm terminates when all students are assigned to some alternatives.

Intuitively, the application-rejection algorithm resembles the DA algorithm, but the for-

mer algorithm finalizes the assignment at the end of each round. The length of the

steps in each round is parameterized by e ∈ N. This family includes various mecha-

nisms such as the Boston mechanism φ1, the Shanghai mechanism φ2, the Chinese

parallel mechanism φe with 2 ≤ e < ∞, and the DA mechanism φ∞ = φ∗. Chen

and Kesten (2017) state that the DA mechanism is the unique strategy-proof mechanism

among application-rejection mechanisms.

For each parameter e ∈ N, the application-rejection algorithm has the following two

properties. (i): When there is a top-top pair, they will permanently match in the first step

of the first round; and (ii): The outputs are always individually rational, and all relative

rankings below the students’ assignments are never considered during the algorithm.

These two observations respectively show that the application-rejection mechanisms

respect top-top pairs and satisfy extension monotonicity at acceptant responsive choice

rules. Corollary 2 then implies that, for any acceptant responsive choice rule, these

mechanisms output stable matchings if and only if they are strategy-proof. Kumano

(2013) provides a theorem that incorporates this conclusion by focusing on the Boston

mechanism φ1.

Other examples include a generalization of the application-rejection mechanisms, which

incorporate reality. As reported in Abdulkadiroğlu et al. (2005), in real-life applications

of these mechanisms, it is often the case that students are only allowed to submit a rank

order list of a limited number of schools. Under these constraints, even the DA mechanism

can be neither stable nor strategy-proof. This issue is theoretically analyzed by Haeringer

and Klijn (2009), Pathak and Sönmez (2013) and Decerf and Van der Linden (2021), for

instance.

Considering that scenario, for a positive integer k > 0, we define φe
k to be the mech-

anism such that φe
k(R) ≡ φe(R(k)), where R(k) truncates from R all schools that are

ranked strictly lower than the kth alternative. In other words, the mechanism φe
k is

the application-rejection mechanism φe, where students can apply to at most k schools.

The same two observations with the above applies to these mechanisms. Therefore, the

equivalence between stability and strategy-proofness holds as well.

7 Conclusion

This paper introduced two monotonicity axioms, top-dropping monotonicity and exten-

sion monotonicity. We characterized these axioms in terms of robustness to coordinated
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strategic manipulations. Thus, our monotonicity axioms shed light on a new class of

non-strategy-proof mechanisms that are yet robust to some simple coordinated strategic

manipulations of preferences. For instance, we saw in Example 2 that the school-proposing

DA mechanism satisfies top-dropping monotonicity, while it is not strategy-proof. Our

main result provided an axiomatic characterization of the Kesten’s (2010) EADA mech-

anism with these monotonicity axioms.

We explained that the two new monotonicity axioms had several applications for the

DA mechanism. Top-dropping monotonicity characterizes efficiency of the DA mecha-

nism, and extension monotonicity pins down the DA mechanism among the set of stable

mechanisms. As exemplified in Corollary 2 in Section 6, these axioms can also be useful

in examining mechanisms other than the DA and the EADA mechanisms, such as the

school-proposing DA mechanism.

Appendix: Proof of Proposition 4

First of all, we introduce a part of Lemma 1 of Tang and Yu (2014), which will be a

powerful tool to prove some of the subsequent lemmas. Let R be a preference profile and

C be an acceptant substitutable profile of choice rules. Then, we say that a student i ∈ I

is not Pareto improvable if, for every matching µ that Pareto dominates the matching

from the DA mechanism φ∗, it holds that µ(i) = φ∗(R,C)(i).

Tang and Yu (2014) show that all students matched with underdemanded alternatives

are not Pareto improvable. Although they prove this result under acceptant responsive

choice rules, its proof can be copied verbatim from them.

Lemma 1 (Tang and Yu (2014)). For any preference profile R and for any acceptant and

substitutable profile of choice rules C, all students matched with underdemanded schools

at (R,φ∗(R,C)) are not Pareto improvable.

We will not explore structures of the simplified EADA algorithm of Ehlers and Morrill

(2020) itself. Instead, we will examine a sequence of preference profiles from the following

algorithm, which is one of the special classes of algorithms considered in the proof of

Theorem 3 of Ehlers and Morrill (2020). Ehlers and Morrill (2020) find that, for each

profile R, the following algorithm outputs a profile RK at which the DA algorithm yields

the EADA matching of the original profile R:

• Run the DA algorithm at (R,C). Take any student i ∈ I. If i does not match with

an underdemanded alternative at (R,φ∗(R,C)), let R1
i = Ri. Otherwise, let R1

i be

a preference that, other relative orderings being equal, makes all alternatives that

are strictly preferred to φ∗(R,C)(i) under Ri the worst preferred at R1
i .
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• In general, suppose that Rk−1 is defined for some k ≥ 2. Run the DA algorithm

at (R,C). Take any student i ∈ I. If i does not match with an underdemanded

alternative at (Rk−1, φ∗(Rk−1, C)), let Rk
i = Rk−1

i . Otherwise, let Rk
i be a preference

that, other relative orderings being equal, makes all alternatives that are strictly

preferred to φ∗(Rk−1, C)(i) under Rk−1
i the worst preferred at Rk

i .

• The procedure ends at the step K at which all alternatives are underdemanded at

(RK , φ∗(RK , C)), and φ∗∗(R,C) = φ∗(RK , C).

The above algorithm stops within finite steps from Tang and Yu (2014) and Ehlers

and Morrill (2020). We say that the sequence of the preference profiles R1, . . . , RK is

induced by the EADA algorithm.

Before moving on to the proofs, we provide some observations on the above algorithms.

Recall that the DA mechanism φ∗ satisfies weak Maskin monotonicity (Kojima and Manea

(2010)). Therefore, since Rk is a monotonic transformation of Rk−1 at φ∗(Rk−1, C),

φ∗(Rk, C)Rkφ∗(Rk−1, C), and thus φ∗(Rk, C)Rk−1φ∗(Rk−1, C),

at each step k = 1, 2, . . . , K with R0 = R.

Moreover, it holds that φ∗(Rk, C)Rφ∗(Rk−1, C). To see this, it is enough to show that

Rk is also a monotonic transformation of R at φ∗(Rk, C), for each step k. Suppose that

Rk
i ̸= Ri holds for some student i. Then, the student i matches with an underdemanded

alternative at some earlier step. This implies that Rk
i ranks φ∗(Rk, C)(i) at the top, from

Lemma 1 and the construction of the sequence of preferences. Thus, Rk
i is a monotonic

transformation of Ri at φ
∗(Rk, C)(i).

Summarizing, for any profile R and the sequence of profiles R1, R2, . . . , RK induced

by the EADA algorithm, we have the following relations in general.

φ∗∗(R,C) = φ∗(RK , C)Rφ∗(RK−1, C)R · · ·Rφ∗(R1, C)Rφ∗(R,C).

Now we are ready to proceed to the proof of Proposition 4. The proof is divided into

the following sequences of lemmas. First, the next two lemmas verify that the EADA

mechanism respects top-top pairs and satisfies extension monotonicity.

Lemma 2. The EADA mechanism φ∗∗ respects top-top pairs.

Proof. Take any R and C. Suppose (i, s) is a top-top pair at (R,C). The DA mech-

anism φ∗ respects top-top pairs because it is stable, hence φ∗(R,C)(i) = s. Finally,

φ∗∗(R,C)Rφ∗(R,C) implies φ∗∗(R,C)(i) = s.

Lemma 3. φ∗∗ satisfies extension monotonicity.
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Proof. Recall that the DA mechanism φ∗ satisfies extension monotonicity. Take any

preference profile R, and let R̄ be an extension of R at φ∗∗(R,C). Let R1, . . . , RK and

R̄1, . . . , R̄K̄ be the sequences induced by the EADA algorithm under R0 ≡ R and R̄0 ≡ R̄,

respectively.

First of all, R̄0 is an extension of R0 at φ∗(R0, C), and thus extension monotonicity

implies

µ0 ≡ φ∗(R̄0, C) = φ∗(R0, C).

An alternative s ∈ S∪{∅} is underdemanded at (R̄0, µ0) if and only if it is underdemanded

at (R0, µ0). To see this, take any student i ∈ I. If s = ∅, both µ0(i)R̄0s and µ0(i)R0s

hold, because φ∗ is individually rational. If s ̸= ∅, then µ0(i)R̄is or µ0(i)Ris implies

µ0(i) ̸= ∅, because φ∗ is individually rational. Hence, we have µ0(i)Ris if and only if

µ0(i)R̄0s, because R̄0 is an extension of R0.

Now, take any student i such that R̄1
i ̸= R1

i . Then, from the construction of R̄1 and

R1, the above paragraph shows both R̄1
i = R̄i and R1

i = Ri hold. Recall that R̄i is an

extension of Ri. Moreover, individual rationality of φ∗ shows that ∅ is underdemanded

at (R0, µ0), and thus, we have µ0(i) ̸= ∅ and

φ∗(R1, C)(i)Riµ
0(i)Pi∅.

It shows that φ∗(R1, C)(i) ̸= ∅. Therefore, R̄1 is an extension of R1 at φ∗(R1, C). Thus,

extension monotonicity implies that

µ1 ≡ φ∗(R̄1, C) = φ∗(R1, C).

Again, we can see that an alternative s ∈ S ∪ {∅} is underdemanded at (R̄1, µ1) if and

only if it is underdemanded at (R1, µ1).

Repeating this procedure, for each k = 0, 1, . . . ,min{K, K̄}, we can show that

µk ≡ φ∗(R̄k, C) = φ∗(Rk, C),

and that an alternative s ∈ S ∪ {∅} is underdemanded at (R̄k, µk) if and only if it is

underdemanded at (Rk, µk). Therefore, we must have K = K̄, and thus

φ∗∗(R̄, C) = φ∗(R̄K , C) = φ∗(RK , C) = φ∗∗(R,C),

completing the proof.
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The following three lemmas together verify that the EADA mechanism satisfies top-

dropping monotonicity. This result, that the EADA mechanism satisfies top-dropping

monotonicity, is partly a generalization of Lemma 1 of Reny (2021) and Proposition 1

of Chen and Möller (2021), from acceptant responsive choice rules into acceptant substi-

tutable choice rules. The proofs of their results rely heavily on the assumptions of the

acceptant responsive choice rule, and thus cannot be applied as-is in our environment.

Lemma 4. Suppose that R̄ is a monotonic transformation of R at φ∗(R,C). Then, any

student who matches with an underdemanded alternative at (R,φ∗(R,C)) also matches

with an underdemanded alternative at (R̄, φ∗(R̄, C)).

Proof. Take any student i ∈ I, and suppose that s ≡ φ∗(R,C)(i) is underdemanded at

(R,φ∗(R,C)). From weak Maskin monotonicity of φ∗, we have

φ∗(R̄, C)R̄φ∗(R,C),

which implies φ∗(R̄, C)Rφ∗(R,C). Thus, we have φ∗(R̄, C)(i) = s from Lemma 1.

Now, we show that s is underdemanded at (R̄, φ∗(R̄, C)). Take any student j ∈ I.

Then, it holds that φ∗(R,C)(j)Rjs by the assumption. Since R̄ is a monotonic transfor-

mation of R at φ∗(R,C), we have φ∗(R,C)(j)R̄js. Thus, we get

φ∗(R̄, C)(j)R̄jφ
∗(R,C)(j)R̄js.

Therefore, the student i matches with the alternative s at φ∗(R̄, C), and s is under-

demanded at (R̄, φ∗(R̄, C)). This is the end of the proof.

The next lemma shows that the EADA mechanism satisfies the following weaker form

of Maskin monotonicity: If a student matches with an underdemanded alternative, the

EADA mechanism does not alter the output for any monotonic transformation of her

original preference.

Lemma 5. Suppose that R̄ is a monotonic transformation of R at φ∗(R,C) such that

R̄i = Ri for all students i ∈ I who do not match with underdemanded alternatives at

(R,φ∗(R,C)). Then it holds that φ∗∗(R̄, C) = φ∗∗(R,C).

Proof. Let R1, . . . , RK and R̄1, . . . , R̄K̄ be the sequences induced by the EADA algorithm

under R0 ≡ R and R̄0 ≡ R̄, respectively. If K̄ < K, then define R̄k ≡ R̄K̄ for each

k = K̄ + 1, . . . , K. For each k = 0, 1, . . . , K, let Uk and Ūk be the set of students

who match with underdemanded alternatives at (Rk, φ∗(Rk, C)) and at (R̄k, φ∗(R̄k, C)),
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respectively. One can see that Uk and Ūk respectively satisfy

U0 ⊂ U1 ⊂ · · · ⊂ UK and Ū0 ⊂ Ū1 ⊂ · · · ⊂ ŪK .

We show the following two arguments by mathematical induction, which finally prove

that R̄K is a monotonic transformation of RK at φ∗(RK , C):

• Rk is a monotonic transformation of R̄k−1 at φ∗(R̄k−1, C); and

• R̄k is a monotonic transformation of Rk at φ∗(Rk, C),

for each k = 1, . . . , K.

To begin with, we show the above two arguments in the case of k = 1. Take any

student i ∈ I. First, we prove the former statement. If i ∈ U0 holds, weak Maskin

monotonicity of φ∗ and Lemma 1 show that

φ∗(R̄0, C)R0φ∗(R0, C), and thus φ∗(R̄0, C)(i) = φ∗(R0, C)(i) ≡ s.

Since R1
i ranks s at the top by the construction, it is a monotonic transformation of R̄0

i

at s. Meanwhile, if i /∈ U0 holds, then R1
i = R0

i = R̄0
i by assumption. Hence, these two

arguments show that R1 is a monotonic transformation of R̄0 at φ∗(R̄0, C).

Next, we prove the latter argument with k = 1. If i /∈ Ū0 holds, then i /∈ U0 by

Lemma 4, hence we have R̄1
i = R̄0

i = R0
i = R1

i . If i ∈ Ū0, then from the former argument

with k = 1, weak Maskin monotonicity of φ∗ and Lemma 1 show that

φ∗(R1, C)R̄0φ∗(R̄0, C), and thus φ∗(R1, C)(i) = φ∗(R̄0, C)(i) ≡ s.

Since R̄1
i ranks s at the top by the construction, it is a monotonic transformation of R1

i

at s. Therefore, R̄1 is a monotonic transformation of R1 at φ∗(R1, C).

Now, suppose that the two arguments are true at k < K. We show that they are

also true at k + 1. To see the former argument, take any i ∈ I. If we have i /∈ Uk,

then i /∈ Ūk−1 from the inductive hypothesis and from the contrapositive of Lemma 4.

Hence, we get Rk+1
i = Ri = R̄i = R̄k

i . Suppose that i ∈ Uk. Then, Rk+1 and R̄k

are monotonic transformations of Rk at φ∗(Rk, C) by construction and by the inductive

hypothesis, respectively. Therefore, weak Maskin monotonicity of the DA mechanism φ∗

and Lemma 1 together imply that

φ∗(R̄k, C)(i) = φ∗(Rk+1, C)(i) = φ∗(Rk, C)(i) ≡ s.

Since Rk+1
i ranks s at the top by the construction, it is a monotonic transformation of R̄k

i
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at s. Thus, Rk+1 is a monotonic transformation of R̄k at φ∗(R̄k, C).

Next, we verify that the latter argument holds at k+1. Take any i ∈ I. If i /∈ Ūk, then

i /∈ Uk from the inductive hypothesis and from the contrapositive of Lemma 4. Therefore,

we have Rk+1
i = Ri = R̄i = R̄k+1

i . Suppose that i ∈ Uk, then i ∈ Ūk from Lemma 4.

Hence, Lemma 1 shows that

φ∗(Rk+1, C)(i) = φ∗(Rk, C)(i) ≡ s, and φ∗(R̄k+1, C)(i) = φ∗(R̄k, C)(i) ≡ s̄.

Meanwhile, R̄k is a monotonic transformation of Rk at φ∗(Rk, C) by the inductive hy-

pothesis. Thus, weak Maskin monotonicity of φ∗ and Lemma 1 imply that s = s̄. Since

R̄k+1 ranks s at the top by the construction, it is a monotonic transformation of R̄k+1 at

s. Finally, suppose that i ∈ Ūk \ Uk holds. Then, Rk+1 and R̄k+1 are monotonic trans-

formations of R̄k at φ∗(R̄k, C) by the former statement at k+ 1 and by the construction,

respectively. Therefore, weak Maskin monotonicity of φ∗ and Lemma 1 imply

φ∗(Rk+1, C)(i) = φ∗(R̄k+1, C)(i) = φ∗(R̄k, C)(i) ≡ s.

Since R̄k+1 ranks s at the top by the construction, it is a monotonic transformation of

Rk+1 at s. Thus, R̄k+1 is a monotonic transformation of Rk+1 at φ∗(Rk+1, C).

Here, we have established the two arguments for each k = 1, . . . , K. Especially,

the profile R̄K is a monotonic transformation of RK at φ∗(RK , C). Moreover, RK ranks

φ∗(RK , C) at the top, because otherwise some schools are not underdemanded. Therefore,

weak Maskin monotonicity implies that

φ∗∗(R̄, C)R̄φ∗(R̄K , C) = φ∗(RK , C) = φ∗∗(R,C).

Finally, we get φ∗∗(R̄, C)Rφ∗∗(R,C) because R̄ is a monotonic transformation of R at

φ∗∗(R,C). The EADA mechanism is efficient, hence we must have φ∗∗(R̄, C) = φ∗∗(R,C).

This is the end of the proof.

Lemma 6. φ∗∗ satisfies top-dropping monotonicity.

Proof. Take any profile R, and suppose that R̄ is a top-dropping of R at φ∗∗(R,C). Let

R1, . . . , RK be the sequences induced by the EADA algorithm under R0 ≡ R. As in the

proof of Lemma 5, we define Uk to be the set of students who match with underdemanded

alternatives at (Rk, φ∗(Rk, C)) for each k = 0, 1, . . . , K. Finally, define R̄k ≡ (R̄I\Uk , Rk
Uk)

for each k = 0, 1, . . . , K.

First, we show that R̄k is a monotonic transformation of Rk at φ∗(Rk, C). Take

any student i ∈ I. If i ∈ Uk, then R̄k
i = Rk

i by the definition of R̄k. Next, suppose
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i /∈ Uk holds, then we have both R̄k
i = R̄i and Rk

i = Ri. Since R̄ is a top-dropping of

R at φ∗∗(R,C) and φ∗∗(R,C)Rφ∗(Rk, C) holds, R̄i = R̄k
i is a monotonic transformation

of Ri = Rk
i at φ∗(Rk, C)(i). Therefore, the above two arguments imply that R̄k is a

monotonic transformation of Rk at φ∗(Rk, C).

From weak Maskin monotonicity of φ∗, the above paragraph shows that

φ∗∗(R̄k, C)R̄kφ∗(R̄k, C)R̄kφ∗(Rk, C), and thus φ∗∗(R̄k, C)Rkφ∗(Rk, C),

for each k = 0, 1, . . . , K. Especially, from the fact that RK rank φ∗(RK , C) at their top,

the above relation at k = K implies that

φ∗∗(R̄K , C) = φ∗(RK , C) = φ∗∗(R,C).

Therefore, it remains to show that

φ∗∗(R̄, C) = φ∗∗(R̄1, C) = · · · = φ∗∗(R̄K , C).

To show these equivalences, we claim that R̄k+1 is a monotonic transformation of R̄k

at φ∗(R̄k, C), for each k = 0, . . . , K − 1. Take any i ∈ I. If i /∈ Uk, then we have

R̄k+1
i = R̄i = R̄k

i from the definition of R̄k. If i ∈ Uk, then R̄k+1
i = Rk+1

i . Recall that R̄k

is a monotonic transformation of Rk at φ∗(Rk, C) from the second paragraph. Therefore,

weak Maskin monotonicity of the DA mechanism, i ∈ Uk, and Lemma 1 show that

φ∗(R̄k, C)(i) = φ∗(Rk, C)(i) ≡ s.

By construction, the preference R̄k+1
i = Rk+1

i ranks s at the top. Hence, it is a monotonic

transformation of R̄k
i at s.

From the above paragraph, R̄k+1 is a monotonic transformation of R̄k at φ∗(R̄k, C).

The above paragraph also shows that R̄k+1
i ̸= R̄k

i implies i ∈ Uk, for each i ∈ I. Then,

Lemma 4 states that, if R̄k+1
i ̸= R̄k

i holds, the student i matches with an underdemanded

alternative at (R̄k, φ∗(R̄k, C)). Therefore, we can apply Lemma 5, which shows

φ∗∗(R̄k+1, C) = φ∗∗(R̄k, C).

Summarizing, we have established that

φ∗∗(R̄, C) = φ∗∗(R̄1, C) = · · · = φ∗∗(R̄K , C) = φ∗(RK , C) = φ∗∗(R,C),

which shows that the EADA mechanism satisfies top-dropping monotonicity. This com-
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pletes the proof.

The following lemma is a key to prove the “only if” direction of Proposition 4. If

a mechanism satisfies the three axioms, it is a weak Pareto improvement over the DA

mechanism. This property is one of the leading characteristics of the EADA mechanism.

Lemma 7. Suppose that a mechanism φ satisfies top-dropping monotonicity, extension

monotonicity, and respects top-top pairs. Then, the mechanism φ weakly Pareto domi-

nates the DA mechanism φ∗.

Proof. Take any R and any C. For each student i ∈ I, construct a preference R′
i as

in the proof of Proposition 5: If φ∗(R,C)(i) = ∅, define R′
i ≡ Ri. If φ∗(R,C)(i)Pi∅,

then R′
i truncates all schools which are less preferred to φ∗(R,C)(i). Recall that we have

i ∈ Cs(N
R′
s ) for all students i ∈ I and the alternative s = φ∗(R,C)(i), which is shown in

the proof of Proposition 6.

Here, we establish that φ(R′, C)R′φ∗(R,C) holds. Suppose on the contrary that there

exists a student i ∈ I such that φ∗(R,C)(i)P ′
iφ(R

′, C)(i). Define s ≡ φ∗(R,C)(i), and let

R′′
i be a preference that, other relative orderings being equal, makes all schools that are

strictly preferred to s under R′
i unacceptable at R′′

i . Formally, we have the following two

conditions:

• For any alternative s′ ∈ S ∪ {∅} with s′P ′
is, we have ∅R′′

i s
′.

• For any two schools s′, s′′ ∈ S with sR′
is

′, s′′, we have s′R′
is

′′ if and only if s′R′′
i s

′′.

Note that s is the most preferred alternative under R′′
i . Let R

′′ = (R′′
i , R

′
I\{i}).

Since φ respects top-top pairs, φ(R′′, C)(i) = s from NR′
s = NR′′

s . On the other hand,

we assume that sP ′
iφ(R

′, C)(i). Hence, an iterative use of top-dropping monotonicity

implies that φ(R′′, C) = φ(R′, C) holds. This is a contradiction.

Here, φ(R′, C)R′φ∗(R,C) implies that R is an extension of R′ at φ(R′, C) as shown

in the proof of Proposition 6. Therefore, extension monotonicity implies that φ(R,C) =

φ(R′, C). Hence, it holds that φ(R,C)R′φ∗(R,C), and thus φ(R,C)Rφ∗(R,C) by the

construction of R′. It shows that φ weakly Pareto dominates the DA mechanism.

The next lemma is itself interesting in that it provides another axiomatic character-

ization for the EADA mechanism. It states that the EADA mechanism is the unique

mechanism that satisfies top-dropping monotonicity and weakly Pareto dominates the

DA mechanism. As discussed in Section 5, together with Proposition 2, we have a result

that resembles that of Abdulkadiroğlu et al. (2009), Kesten (2010) and Alva and Manju-

nath (2019). Each of these papers show that the DA mechanism is the unique mechanism

that is strategy-proof and weakly Pareto dominates the DA.
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Lemma 8. A mechanism φ satisfies top-dropping monotonicity and weakly Pareto dom-

inates the DA mechanism if and only if φ = φ∗∗ holds.

Proof. The “if” direction follows from Lemma 6. We prove the “only if” direction. Take

any R and any C. Let R1, R2, . . . , RK be the sequence induced by the EADA algorithm.

It is sufficient to show that φ(R,C) = φ∗(RK , C) holds. By the assumption, we have

φ(RK , C)RKφ∗(RK , C). Now, all alternatives are underdemended at (RK , φ∗(RK , C))

by the construction. Thus, at the matching φ∗(RK , C), all students match with their

most preferred alternatives according to the preference profile RK . Hence, we must have

φ(RK , C) = φ∗(RK , C).

Finally, we show that φ(R,C) = φ(RK , C). Let R0 ≡ R and take any k = 1, 2, . . . , K.

Then, φ(Rk−1, C)Rk−1φ∗(Rk−1, C) from the assumption. Hence, Lemma 1 implies that

φ(Rk−1, C)(i) = φ∗(Rk−1, C)(i) for all students i ∈ I who match with underdemanded

alternatives at (Rk−1, φ∗(Rk−1, C)). Therefore, we can iteratively apply top-dropping

monotonicity to yield φ(Rk, C) = φ(Rk−1, C).

Summarizing, we have established that

φ(R,C) = φ(R1, C) = φ(R2, C) = · · · = φ(RK , C) = φ∗(RK , C) = φ∗∗(R,C).

This is the end of the proof.

Proof of Proposition 4. The only if part follows from Lemma 2, Lemma 3 and Lemma 6.

Conversely, if a mechanism φ satisfies top-dropping monotonicity, extension monotonicity,

and respects top-top pairs, then it weakly Pareto dominates the DA mechanism from

Lemma 7. Since φ satisfies top-dropping monotonicity, Lemma 8 then implies that φ =

φ∗∗, which completes the proof.
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