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Abstract

We characterize Pareto optimality via sequential utilitarian welfare maximization:
a utility vector u is Pareto optimal if and only if there exists a finite sequence of non-
negative (and eventually positive) welfare weights such that u maximizes utilitarian
welfare with each successive welfare weights among the previous set of maximizers.
The characterization can be further related to maximization of a piecewise-linear con-
cave social welfare function and sequential bargaining among agents à la generalized
Nash bargaining. We provide conditions enabling simpler utilitarian characterizations
and a version of the second welfare theorem.
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1 Introduction

Pareto optimality is a central concept in economics. When the utility possibility set is
closed and convex, it is natural to associate each Pareto optimum with utilitarian welfare
maximization under a suitably chosen welfare weights of agents. Yet, such a characterization
has been so far elusive.

It is well-known that, given a closed and convex utility possibility set, which we assume
throughout, every Pareto optimal utility vector maximizes some nonnegatively weighted sum
of utilities of agents (see Mas-Colell, Whinston, and Green (1995) Proposition 16.E.2).1 But
the converse is false: not every such maximizer is Pareto optimal. To see this, suppose a
society consists of two agents, 1 and 2, and the utility possibility set is given by U in Figure 1.
All points on the frontier including the vertical segment maximize suitably weighted sums

U

u

u′

u′′

1

1

2

Figure 1: Utilitarian welfare maximization need not yield a Pareto optimum.

of agents’ utilities within U , but not all of them are Pareto optimal. In particular, the
points on the vertical segment strictly below u all maximize the utility sum with weights
φ = (1, 0)—i.e., only 1’s utility. Yet, none of these points are Pareto optimal.

By contrast, if weights are restricted to be strictly positive for all agents, utilitarian max-
imization does always yield a Pareto optimum (Proposition 16.E.2 of Mas-Colell, Whinston,
and Green (1995)). But again the converse is false: not every Pareto optimal outcome can
be obtained in this way. In Figure 1, u′ is Pareto optimal and obtained by utilitarian welfare
maximization with strictly positive weights, but u and u′′, which are Pareto optimal, cannot.

While positive welfare weights do not rationalize points like u in Figure 1, one may
conjecture that they may in the limit; for instance, u is a limit of welfare-maximizing utility
vectors with positive weights (1, 1/n), as n → ∞. Indeed, Arrow, Barankin, and Blackwell
(1953) show that every Pareto optimal vector is a limit of a sequence of utility vectors that
maximize some positively-weighted sum of utilities—a result known as the ABB theorem.2

1Propositions 16.E.2 in Mas-Colell, Whinston, and Green (1995) is stated in the context of an exchange
economy. However, it is straightforward to see that the relationship holds generally as long as the utility
possibility set is convex.

2This theorem has spawned a series of extensions and generalizations to spaces more general than Eu-
clidean space. See Daniilidis (2000) for a survey of ABB theorems.
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K = (0, 1, 0)

S = (α, β, 0)
u1

u2

u3

V = (0, 1, 1)

Figure 2: The “tilted cone” adapted from Arrow, Barankin, and Blackwell (1953) and Bitran
and Magnanti (1979). The set is the convex hull of the portion of the unit disk centered
at the origin in the u1-u2 plane from the point K to the point S (where α2 + β2 = 1 with
α ∈ (0, 1)) and the apex point V = (0, 1, 1). The blue surface, including all of its boundaries
except for the dotted line, is the set of Pareto optimal utility vectors.

Unfortunately, this too does not lead to a characterization when there are more than two
agents:3 again its converse is false—namely, a limit point of such a sequence may not be
Pareto optimal. To see this, suppose there are three agents, 1, 2, and 3, with possible utility
profiles depicted in Figure 2. The point K is a limit of the sequence of points maximizing
a positively-weighted sum of utilities (see the arrow) but is Pareto dominated, say by the
point V . Figure 3 depicts Pareto optima in relationship with alternative notions of utilitarian
welfare maximization.

This paper provides an exact characterization of Pareto optima in terms of utilitarian
welfare maximization. In particular, our characterization views each Pareto optimal vector
u as a result of multiple rounds of utilitarian welfare maximization. The characterization
is easy to explain with the example in Figure 1, reproduced in Figure 4(a). In the first
round, utilities are maximized within U with weights φ1, which is maximized by the thick
vertical segment containing u as explained before. One can interpret this as the social
planner first maximizing the utility of agent 1 while disregarding the welfare of the other
individual completely. Since agent 1 is indifferent among all points as long as he receives the

3When there are two agents, the limit u ∈ U of any sequence {uk} of utilities uk ∈ U maximizing a
positively-weighted sum of utilities is Pareto optimal, where U is the utility possibility set, assumed to be
closed and convex. Let {φk} be the sequence of positive weights, normalized to be in the simplex, such

that uk maximizes
∑2

i=1 φ
k
i u

k
i , and let φ denote its limit (say of a convergent subsequence). Clearly, u must

maximize
∑2

i=1 φiui. If φ1 and φ2 are both positive, then u is Pareto optimal, so assume without loss φ1 = 1
and φ2 = 0. Suppose for contradiction u is not Pareto optimal. Then, there must exist v such that v1 = u1
and v2 > u2. Since uk’s are all Pareto optimal, this means that uk1 ≤ v1 = u1 and uk2 ≥ v2 > u2 for all k, so
uk never converges to u, a contradiction.
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U ++

U P

U +

cl(U ++ )

Figure 3: Alternative notions of utilitarian welfare maximization in relationship with Pareto
optimality. The set UP consists of Pareto optimal utility vectors. The set U+ consists of
utility vectors that maximizing a nonnegatively-weighted sum of utilities. The set U++ con-
sists of utility vectors that maximize a positively-weighted sum of utilities. The containment
U++ ⊂ UP ⊂ U+ is Proposition 16.E.2 in Mas-Colell, Whinston, and Green (1995). The con-
tainment UP ⊂ cl(U++) is from Arrow, Barankin, and Blackwell (1953). The containment
cl(U++) ⊂ U+ is straightforward.

U

u

φ1 = (1, 0)

1

1

(a) First round

u

1

1

φ2 = (1, 1)

(b) Second round

Figure 4: Rationalizing a Pareto optimal point in two rounds of sequential utilitarian welfare
maximization.
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maximum utility, the social planner seeks to engage in further optimization. In the second
and last round, utilities are again maximized but only within the vertical segment, now with
(arbitrary) positive weights φ2. The weights φ2 “rationalize” u as the unique maximizer, as
illustrated in Figure 4(b).4

More generally, our Theorem 1 asserts that a utility vector u is Pareto optimal if and only
if there exists a finite sequence of nonnegative welfare weights, with the terminal weights
being strictly positive for all agents, such that in each round t, u maximizes the round-t
weighted sum of utilities out of those surviving from round t− 1.

Our characterization not only fulfills a long-standing intellectual pursuit on the nature of
Pareto optimality, but it can also serve some useful purposes. First, when one analyzes the
behavior of Pareto optima as a set, a precise identification of the set may be necessary. For
instance, one may study the comparative statics of Pareto optima—i.e., how they change
as the primitives change—utilizing monotone comparative statics methods developed for
optimization (e.g., Topkis (1998) and Milgrom and Shannon (1994)). These methods “track”
how the set varies according to set orders such as strong or weak set order (Topkis (1998)),
which requires exact identification of the set.5 Indeed, Che, Kim, and Kojima (2019) utilize
the exact characterization of the current paper to provide conditions for Pareto optima to
vary monotonically with agents’ preferences. Second, Pareto optimality is sometimes invoked
to rationalize utilitarianism, which may otherwise be problematic due to the ordinal nature
of utilities and the difficulty with interpersonal comparisons of utility (see Yaari (1981)).
For this purpose, an exact characterization of Pareto optima is more appropriate than an
approximate one.6

Our characterization builds on notions of convex geometry. Of particular interest is a
special class of subsets of closed convex sets called (extreme) faces and the property of

4It is worth emphasizing that, in general, the terminal step need not identify a unique element of U but
rather a set. Also, in this example, many normals work for the second-step maximization: in particular,
φ2 = (0, 1) also works. This latter choice makes this sequential maximization procedure feel reminiscent
of serial dictatorship under strict preferences (Svensson, 1999), which implements every Pareto optimal
allocation of agents to indivisible objects sequentially (in a one-to-one manner) by maximizing agents’ welfare
one at a time according to a suitably chosen serial order. Although the idea is similar in spirit, there are a
couple of differences. First, a collection of individuals’ joint (weighted) welfare is maximized in each round
here instead of a single agent’s welfare. More importantly, the sequential procedure, while practically useful,
is unnecessary to find an Pareto optimal allocation in the setting of matching agents to indivisible objects.
A one-round maximization of a weighted sum of utilities finds every Pareto optimum if the weights are set
sufficiently differently across agents to “reflect” their serial orders.

5To illustrate the issue, consider two utility possibility sets U and V , corresponding to two parameters—
or “before” and “after” a change of environment—and let UP and V P denote the sets of Pareto optima.
Typically, comparing UP and V P directly is difficult—hence, the need for “optimization-based” character-
ization. Suppose for instance that V + dominates U+ according to a relevant set order. This still does not
imply that V P dominates UP according to the same set order. The same problem arises when using U++

or cl(U++) for the comparison.
6In fact, Yaari (1981) weakens Pareto optimality to weak Pareto optimality—i.e., no agent should be

made strictly better off from reallocation—to achieve an exact characterization. This weaker notion of
Pareto optimality, what he calls Pareto Principle, is “exactly” characterized by all utility vectors maximizing
nonnegatively-weighted sums of utilities. Weak Pareto optimality, it should be noted, is not as satisfactory
as Pareto optimality from a normative viewpoint.
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(eventual) exposure. Importantly, it is known that any face is “eventually exposed,” that
is, the face coincides with the set of points that sequentially maximize possibly negatively-
weighted sum of utilities.7 While serving as a crucial step toward the proof, this result is
not sufficient for our characterization because we require the weights to be nonnegative and
eventually positive. We prove that nonnegative and eventually positive weights can be found
if and only if the face consists of Pareto optimal points. The proof is nontrivial.

Our characterization has several economic interpretations. First, we provide a sense in
which our characterization “reveals” preferences of the social planner. Formally, for each
Pareto optimal vector u, it maximizes a piecewise-linear concave social welfare function
whose linear pieces are specified by the sequence of welfare weights that rationalize u, a
result reminiscent of a characterization of individual choices by Afriat (1967). Second, we
establish that the sequence of welfare weights identified by our characterization result can be
interpreted as the relative bargaining power of agents in a multi-round variant of generalized
Nash bargaining.

With the main characterization at hand, we next ask when our characterization reduces
to a simple (that is, one-round) utilitarian welfare maximization. First, if individuals’ util-
ities are concave and monotonic in an exchange economy setting, then Pareto optimality is
characterized by utilitarian welfare maximization with nonnegative weights. In this case,
the two sets UP and U+ in Figure 3 coincide. Second, we identify a convex geometric condi-
tion under which Pareto optimality is characterized by utilitarian welfare maximization with
strictly positive weights and find that the condition is met when individuals have piecewise-
linear concave utility functions over a choice set that forms a convex polyhedron. In this
case, the two inner sets in Figure 3 coincide. Last, we employ our methodology to generalize
the second welfare theorem, showing that it holds for all Pareto optimal allocations including
those in which not all types of goods are consumed by all individuals (which are excluded in
the existing theorems) in exchange economies when individuals have piecewise-linear concave
utility functions that satisfy a mild monotonicity property.

The remainder of the paper is organized as follows. Section 2 states the problem formally
and presents our characterization and its economic interpretations. Section 3 proves the
characterization result. Section 4 explores conditions that enable simple characterizations
via one-round utilitarian welfare maximization. Section 5 presents a version of the second-
welfare theorem. Section 6 concludes. The proofs that are not provided in the main text
can be found in the appendix.

2 Statement of Main Result

Let I = {1, 2, . . . , n} denote a finite set of agents and U ⊂ Rn the set of possible utility
profiles they may attain, or utility possibility set.8 We assume that U is closed and convex.
If U stems from an underlying choice space X via utility functions (ui)i∈I : X → Rn, then

7See Theorem 12.7 in Soltan (2015), reproduced as Lemma 3 below.
8Throughout, we use “⊂” to mean weak inclusion, or ⊆, and likewise ⊃ means ⊇. Strict inclusion will

be indicated by ( and ).

6



we let
U = {(ui)i∈I ∈ Rn | ∃x ∈ X, ∀i ∈ I, ui ∈ [ui, ui(x)]} (1)

where ui = infx∈X ui(x).9 That U is closed and convex is arguably a mild assumption
that is satisfied if, for instance, U is induced by utility functions (ui)i∈I that are upper
semicontinuous and concave on a choice set X that is compact and convex.10

For any u, v ∈ U , we write v ≥ u if vi ≥ ui,∀i ∈ I, v > u if v ≥ u and v 6= u, and v � u
if vi > ui,∀i ∈ I. We say a point u in U is Pareto optimal, or maximal if there does not
exist a v ∈ U with v > u. Let UP ⊂ U denote the set of all Pareto optimal points.

For any φ ∈ Rn, consider the optimization problem:

βφ := max
u∈U
〈φ, u〉, (2)

where 〈φ, u〉 :=
∑n

i=1 φiui. We call φ a normal vector since it is the normal vector of
the hyperplane {u ∈ Rn | 〈φ, u〉 = βφ}. Throughout the paper, we only consider nonzero
normal vectors (i.e., φ 6= 0). We say a point u ∈ U maximizes the normal vector φ over
U (or simply maximizes φ) if u is an optimal solution to (2). We call a normal vector φ
nonnegative if φ > 0 and positive if φ� 0. For any vector v ∈ Rn, the support of v is the set
of indices where v is nonzero; i.e., supp v := {i ∈ I | vi 6= 0}. A positive φ has full support;
i.e., suppφ = I.

Of particular interest are the points maximizing utilitarian welfare with nonnegative
weights:

U+ := {u ∈ U | ∃φ > 0 such that u ∈ arg max
u′∈U
〈φ, u′〉}

and those maximizing utilitarian welfare with positive weights:

U++ := {u ∈ U | ∃φ� 0 such that u ∈ arg max
u′∈U
〈φ, u′〉}.

As noted in Figure 3, we have U++ ⊂ UP ⊂ cl(U++) ⊂ U+.

Definition 1 (Sequential utilitarian welfare maximization). We say u ∈ U sequentially
maximizes a tuple Φ = (φ1, φ2, . . . , φT ) of normals over U if

u ∈ U t := arg max
u′∈Ut−1

〈φt, u′〉, for each t = 1, . . . , T, (3)

where U0 = U . We say u ∈ U sequentially maximizes utilitarian welfare over U if
there is a tuple Φ = (φ1, φ2, . . . , φT ) of T ≤ n nonnegative normals (i.e., φt > 0) with φT � 0
such that u sequentially maximizes Φ.

9To be precise, the utility possibility set is often defined as {u ∈ Rn | u = (ui(x))i∈I for some x ∈ X},
which differs from (1). However, the two sets share the same set of maximal points since those points are
on the frontier. Thus, formulating the set U either way makes no difference for our results while the current
formation facilitates our analysis.

10Note that compactness and convexity of the choice set X are satisfied if, for instance, all lotteries of
social outcomes are feasible.
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Theorem 1. Let U be a closed convex set. Then u is Pareto optimal if and only if u
sequentially maximizes utilitarian welfare over U .

This theorem states that even though simple utilitarian welfare maximization may not
characterize Pareto optima, sequential utilitarian welfare maximization does. As discussed
in the introduction, this characterization is useful in its own right—as exemplified by Che,
Kim, and Kojima (2019)—but it also allows for interesting interpretations of Pareto optima
as follows.

First, even though the maximization of a utilitarian welfare function does not charac-
terize Pareto optimal points, our sequential characterization identifies a nonlinear welfare
function that a Pareto optimal point maximizes. In fact, the tuple of normals Φ identified
by Theorem 1 parameterizes a piecewise-linear concave (PLC) social welfare function the
Pareto optimal point maximizes.11

Corollary 1. Let u ∈ U be a Pareto optimal point. Then

u ∈ arg max
u′∈U

W (u′),

where W (u′) := mint∈{1,...,T}〈φt, (u′ − u)〉 with φt > 0,∀t, and φT � 0, where Φ is a tuple
of normals identified in Theorem 1. Moreover, any point in arg maxu′∈U W (u′) is Pareto
optimal.

Proof. By Theorem 1, there is a tuple (φ1, . . . , φT ) with which u sequentially maximizes
utilitarian welfare over U . To show the first part, let u′ ∈ U and U1, . . . , UT be the sets
defined in Definition 1. If u′ ∈ UT , then 〈φt, u′〉 = 〈φt, u〉 for every t, so W (u′) = 0 =
W (u). If u′ 6∈ UT , then there exists t ∈ {1, . . . , T} such that 〈φt, u′〉 < 〈φt, u〉, so W (u′) =
mint∈{1,...,T}〈φt, (u′ − u)〉 < 0 = W (u). Therefore u ∈ arg maxu′∈U W (u′).

To show the second part, let v ∈ arg maxu′∈U W (u′). From the proof of the first part,
v ∈ UT . Therefore, by Theorem 1, v is Pareto optimal.

Second, one can think of each Pareto optimum as emerging from a sequence of negoti-
ations among individuals, where φt shapes the agents’ relative bargaining power in round t
negotiation. This idea can be fleshed out in the following way. First, we assume that each
agent has a disagreement utility, normalized as zero, that is less than any Pareto optimal
utility: u ∈ UP means u� 0. For a partition I = {I1, . . . , IT} of I, imagine that the agents
engage in a sequence of bargaining: in round 1, agents in I1 bargain from U to a set V 1 ⊂ U ,
and in round t = 2, . . . , T , agents in set I t bargain from V t−1 to a set V t. The bargaining
protocol in each round t is a generalized Nash bargaining game (Kalai, 1977) in which each
agent i ∈ I t has a bargaining power ψi > 0 such that

∑
i∈It ψi = 1 and a disagreement payoff

11 This interpretation is reminiscent of Afriat’s theorem that also constructs a PLC function to rationalize
observed consumer choices. In Afriat’s theorem, however, every normal vector used in the construction is
strictly positive since it coincides with the price vector associated with each choice. Also, in Afriat’s theorem,
each choice associated with each normal vector is rationalized by the PLC utility function whereas, in our
result, it is only the choices in the last step (i.e., UT ) that are rationalized by the constructed PLC function.

8



0. More specifically, for each t ≥ 1 we set V t := arg maxu∈V t−1

∏
i∈It u

ψi

i and let the solution
v of the bargaining be defined by vi = vti for each i ∈ I t where vt is an arbitrary element
of V t (it turns out that vti = wti for every i ∈ I t if vt, wt ∈ V t). We call such a bargaining
protocol a sequential generalized Nash bargaining game.

Corollary 2. Let u ∈ U be a Pareto optimal point and Φ = (φ1, . . . , φT ) be the normals
with which u sequentially maximizes utilitarian welfare over U . Then, u is a solution to a
sequential generalized Nash bargaining game, where the round-t bargainers are I t = suppφt\
(
⋃
t′≤t−1 I

t′) (with I0 = ∅) and their bargaining powers are ψi =
φtiui∑

j∈It φ
t
juj

for each i ∈ I t.

Proof. Since the sets of bargainers are disjoint across rounds, the game is separated into a
collection of generalized Nash bargaining games. We argue inductively that V t = {u′ ∈ U |
u′i = ui,∀i ∈ ∪t−1`=0I

`} ⊂ U t−1, where U t−1 is defined in (3).
To prove the claim, consider round t = 1. We wish to prove that V 1 = {u′ ∈ U | u′i =

ui,∀i ∈ I1} forms a solution to the round-1 generalized Nash bargaining game, or more
specifically, it solves:

[NB1] max
u′∈U

W 1({u′i}i∈I1) :=
∏
i∈I1

(u′i)
ψi .

If |I1| = 1, then ui, {i} = I1, must maximize u′i within U , and V 1 is clearly the set of
optimal solutions for [NB1]. We thus assume |I1| > 1. To solve [NB1] for this case, consider
a relaxed program:

[NB′1] max
u′∈Rn

W 1({u′i}i∈I1) s.t. 〈φ1, u′〉 ≤ 〈φ1, u〉.

If V 1 is the set of optimal solutions for [NB′1], then V 1 must also be the set of optimal
solutions for [NB1] since V 1 ⊂ U ⊂ {u′ ∈ Rn | 〈φ1, u′〉 ≤ 〈φ1, u〉}. Since [NB′1] has a
strictly concave objective function and a linear constraint with respect to ({u′i}i∈I1), first-
order conditions completely characterize its optimal solution. They yield, for any i, j ∈ I1,

φ1
i

φ1
j

=
ψiu

′
j

ψju′i
⇒ u′i

u′j
=
ui
uj
.

Suppose u′j 6= uj for some j ∈ I1. Then, either u′i > ui for all i ∈ I1 or u′i < ui for
all i ∈ I1. In the former case, the solution violates 〈φ1, u′〉 ≤ 〈φ1, u〉. In the latter case,
W 1({u′i}i∈I1) < W 1({ui}i∈I1) since W 1 is strictly increasing. It follows that the optimal
solutions have u′i = ui for all i ∈ I1—i.e., V 1 forms the optimal solutions for [NB1].

Since the first round bargaining pins down the utilities for all i ∈ I1, the second round
bargaining by I2 occurs over a feasible set V 1 = {u′ ∈ U | u′i = ui,∀i ∈ I1}. The argument
from this point onwards is analogous, noting that V t ⊂ V t−1 ⊂ U t−1.

Remark 1. As mentioned earlier (in Footnote 4), there can be different sets of normals that
characterize the same maximal point: in Figure 4 for instance, φ1 = (1, 0) and φ2 = (0, 1) also
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u2

u1

u3

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

φ1 = (1, 1, 0)

(1, 0,−1)

U

U1

u = (1/2, 1/2,−1/2)

(a) First round

u2

u1

u3

U2

(0, 1, 0)

φ̃2 = (0, 0, 1)

φ2 = (2, 1, 1)

u = (1/2, 1/2,−1/2)

U1

(1, 0,−1)

(b) Second round

Figure 5: Theorem 1 cannot be modified so that the supports of the normals in Φ partition
I.

work, selecting the vertical edge containing u from U and then u from this edge, respectively.
This characterization has a special appeal since it lends a serial-dictatorship interpretation
to Pareto optimal choice: in the example of Figure 4, agents 1 and 2 play as a dictator in
the first and second step, respectively. One way to generalize such a characterization beyond
the two-agent case would be to construct a finite set of normals Φ = (φ1, . . . , φT ) where
the supports of φt for t = 1, . . . , T partition I, so agents in suppφt play jointly as step-t
dictators.

However, such a partition characterization of Pareto optimality does not hold when there
are more than two agents. Consider the maximal point u = (1/2, 1/2,−1/2) of the closed
convex set U in Figure 5. In Step 1, the point u must maximize nonnegative normals over
U of the form φ1 = (α, α, 0) where α > 0 (in the figure we take α = 1), which entails U1

(shaded face weakly below the thick line segment) as the set of maximizers. For the normals
to partition I, the Step 2 normal should be of the form (0, 0, β) for some β > 0 (we take
β = 1 in the normal φ̃2 in the figure). However, u does not maximize such a normal out
of U1 in Step 2. Any normal maximized by u in Step 2 must assign positive weights to at
least one of the first two components, violating the partition structure. However, a strictly
positive normal φ2 = (2, 1, 1) is maximized by u among the points in U1 (indeed, every point
in the thick line segment U2 maximizes φ2).
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3 Proof of Theorem 1

We now prove Theorem 1. The “if” direction is rather straightforward:

Proof of the “if” part of Theorem 1. Let u sequentially maximize utilitarian welfare over U .
Then, there is a tuple (φt)Tt=1 that is sequentially maximized by u and satisfies φt > 0,∀t and
φT � 0. Suppose to the contrary that u is not maximal so there is a point v ∈ U such that
v > u. Observe then that 〈φt, v〉 ≥ 〈φt, u〉,∀t, which implies v ∈ U t,∀t, since u ∈ U t,∀t.
In particular, u, v ∈ UT−1. However, φT � 0 and v > u imply 〈φT , v〉 > 〈φT , u〉, which
contradicts that u ∈ UT .

The “only if” direction of the proof of Theorem 1 is nontrivial. We begin with some
preliminaries necessary for the proof. Only statements of results in this section are given.
Proofs are either found in standard references (such as Soltan (2015)) or placed in the
appendix when not shown elsewhere.

3.1 Preliminaries

Let us first introduce a few concepts that are crucial for our analysis. A face of U is a
nonempty convex subset F of U with the property that if u ∈ F and u = αv + (1 − α)w
for some 0 < α < 1 and v, w ∈ U then it must be that v, w ∈ F . That is, F is a face of a
convex set if none of its elements are convex combinations of elements that lie outside of F .
A proper face of U is a face of U that is a proper subset of U . A face F is an exposed
face of U if there is a normal φ ∈ Rn such that F = arg maxu∈U〈φ, u〉. In this case, we say
that φ exposes F out of U . A face need not be exposed, as can be seen in Figure 1, where u
forms a singleton face (and is thus also an extreme point) that is not exposed. The face U1

in Figure 5 is an example of a higher-dimensional non-exposed face.
For any convex subset G of U , its relative interior ri(G) is the set of all u ∈ G such that

for every u′ ∈ G there exists λ > 0 such that u+ λ(u− u′) ∈ G.
The following lemma shows a face structure of a convex set that is interesting in itself

and useful for our analysis.

Lemma 1 (Corollary 11.11(a) in Soltan (2015)). For a convex set U ⊆ Rn, the collection of
relative interiors of faces—that is, {ri(F ) : F is a face of U}—forms a partition of U .

The next lemma shows that maximal points “come in faces.”

Lemma 2. Let u be a maximal point of a closed convex set U in the relative interior of a
face F of U . Then, every point in F is maximal.

Accordingly, we say a face is maximal if all of its elements are maximal. Importantly
for our purpose, Lemma 1 and Lemma 2 imply that every maximal point of U belongs to a
relative interior of a unique maximal face of U (possibly U itself).

11



The next result provides a key step of our argument: every face, possibly non-exposed,
is eventually exposed.12

Lemma 3 (Theorem 12.7 in Soltan (2015)). Let U ⊂ Rn be a convex set and F be a
nonempty proper face of U . There is a sequence of convex sets (Gt)Tt=0 such that

F = GT ⊂ GT−1 ⊂ · · · ⊂ G1 ⊂ G0 = U, (4)

where Gt is a nonempty proper exposed face of Gt−1 for each t = 1, . . . , T .

This lemma, which will be a crucial element of our proof, is already illustrated in the
Introduction. In Figure 4, the singleton face u is exposed in two steps: the vertical segment
is exposed first by a normal (1, 0), and then u is exposed by normal (1, 1) (among many
others) out of that vertical segment. This lemma is not enough for our result, however,
as it is silent about any additional properties on the normals that expose the sequence of
faces. Crucially, our characterization requires the normals to be nonnegative and eventually
positive.

For these additional features, we need to introduce a set of analytical tools. Let J be
any subset of the index set I and let χJ denote the vector whose i-th coordinate is equal to
1 for every i ∈ J and equal to 0 for every i /∈ J . When J is the singleton {i} we simplify
χ{i} to χi. A convex set U is downward closed in coordinates J ⊂ I if, for all u ∈ U
and all τ ≥ 0, u − τχK ∈ U for any subset K of J . A convex set that is downward closed
in coordinates I is simply called downward closed. The downward closure of a closed
convex set U is the downward closed set dc(U) :=

⋃
u∈U(u − Rn

+). It is straightforward to
see that dc(U) is closed and convex if U is closed and convex.

One useful feature of downward closure is that it preserves maximal elements and thus
maximal faces.

Lemma 4. The set of maximal elements of a closed convex set coincides with that of its
downward closure. If F is a maximal face of U then F is a maximal face of dc(U).

Crucially for our arguments, supporting hyperplanes of downward-closed sets must have
nonnegative normals.

Lemma 5. For any closed convex set U that is downward closed in coordinates J ⊂ I, any
supporting hyperplane of U has a normal φ with φj ≥ 0,∀j ∈ J .

The next lemma shows that downward closedness is preserved under maximization for
the coordinates to which the normal assigns zero weights.

Lemma 6. Let F be a face of a closed convex set U that is downward closed in coordinates
J ⊂ I. If φ exposes F out of U , then F is downward closed in coordinates J \ suppφ.

Armed with these preliminary observations, we are now ready to prove the “only if”
direction of Theorem 1.

12Theorem 5 of Lopomo, Rigotti, and Shannon (2019) proves the same result for singleton faces F ; i.e.,
extreme points.
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3.2 Proof of the “only if” direction

Fix any maximal point u of U . We wish to show that u sequentially maximizes utilitarian
welfare over U . The proof consists of several steps.

Step 1. There exists a unique face F of dc(U) such that u ∈ ri(F ). All points of F are
maximal in dc(U).

Proof. By Lemma 4, u is a maximal point of dc(U). By Lemma 1 there is a unique face F
of dc(U) which contains u in ri(F ). By Lemma 2, every point of F is maximal in dc(U), as
desired.

Step 2. The face F (containing u) is a proper face of dc(U).

Proof. If not, we must have F = dc(U). Pick any u′ ∈ dc(U). Then u′′ = u′ − ε(1, 1, . . . , 1)
is also in dc(U) by the downward closure property. Clearly, u′′ is not a maximal point of
dc(U) and cannot belong to F by Step 1, a contradiction.

Step 3. There exists a sequence of convex sets (Gt)Tt=0 of dc(U) such that Gt is a proper
exposed face of Gt−1 for t = 1, . . . , T , where G0 = dc(U), GT = F , and T ≤ n.

Proof. Since F is a proper face of dc(U) by Step 2, the result follows from Lemma 3. For
any set V , let dim(V ) denote its dimension.13 If V ′ is a proper face of convex set V ,
then dim(V ′) < dim(V ) by Theorem 11.4 in Soltan (2015). Thus, we have T ≤ n since
dim(Gt−1) < dim(Gt) and since dim(G0) = dim(dc(U)) = n.

Step 4. There exists a tuple Φ = (φ1, . . . , φT ) such that for each t = 1, . . . , T ,

Gt = arg max
x∈Gt−1

〈φt, x〉,

where φt > 0, φT � 0, and suppφt ⊃ suppφt−1.

Proof. By Step 3, there exists a sequence of normals Ψ = (ψ1, . . . , ψT ) such that, for each
t = 1, . . . , T , ψt exposes Gt out of Gt−1. We construct Φ = (φ1, . . . , φT ) with the stated
properties.

The construction is recursive. First, since G0 = dc(U), by Lemma 5, φ1 := ψ1 is non-
negative. For an inductive hypothesis, suppose that there are φk, k = 1, .., t − 1, with the
stated properties and that for each k = 1, . . . , t − 1, Gk is downward-closed in coordinates
Jk := {i ∈ I | φki = 0} = I \ suppφk. Note that J t−1 ⊂ J t−2 ⊂ · · · ⊂ J0 := I. From now, we
construct φt and show that Gt is downward-closed in coordinates J t = {i ∈ I | φti = 0}.

First, since ψt is a normal for the supporting hyperplane of Gt−1 and Gt−1 is downward-
closed in coordinates J t−1, Lemma 5 implies that ψtj ≥ 0 on coordinates j ∈ J t−1. Consider

13The dimension dim(V ) of a convex subset V of U , including one of U ’s faces, is defined by the dimension

of its affine hull: aff(V ) := {
∑k

j=1 αjv
j | k ∈ N, vj ∈ V, αj ∈ R,

∑k
j=1 αj = 1}.
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next i ∈ suppφt−1 = I \ J t−1. For such i, it is indeed possible for ψti to be negative. But
noting φt−1i > 0 for such i, we define

φt = λtφt−1 + ψt,

where λt > maxi∈suppφt−1 |ψti |/φt−1i is a (sufficiently large) positive scalar. Given this con-
struction, φti ≥ 0 for all i ∈ I and φti > 0 for all i ∈ suppφt−1, that is, suppφt ⊃ suppφt−1.

Let us show that φt exposes Gt out of Gt−1. To this end, let M t := maxx∈Gt−2〈φt−1, x〉.
For all x ∈ Gt−1, we have

〈φt, x〉 = λt〈φt−1, x〉+ 〈ψt, x〉 = λM t + 〈ψt, x〉,

since 〈φt−1, x〉 = M t for all x ∈ Gt−1. Henceforth,

arg max
x∈Gt−1

〈φt, x〉 = arg max
x∈Gt−1

〈ψt, x〉 = Gt.

Since Gt−1 is downward-closed in coordinates J t−1 and φt exposes Gt out of Gt−1, Lemma 6
implies that Gt is downward-closed in coordinates J t−1 \ suppφt = (I \ suppφt−1)\ suppφt =
I \ suppφt = J t, where the penultimate equality holds since suppφt−1 ⊂ suppφt.

It remains to show that φT is positive. Supposing not, there must be some i ∈ I such
that φti = 0 for all t = 1, . . . , T , so i ∈ J t for all t = 1, . . . , T . Then, Lemma 6 implies that
for all t = 1, . . . , T , Gt is downward-closed in coordinate i, which contradicts the fact that
GT = F is maximal.

We have so far shown that u sequentially maximizes welfare over dc(U). We now prove
the main result: u sequentially maximizes welfare over U . To this end, the following last
step suffices.

Step 5. u sequentially maximizes utilitarian welfare over U .

Proof. Recall a sequence of normals Φ from Step 4. Let U0, U1, . . . , UT be convex subsets of
U such that, for each t = 1, . . . , T , U t is the face of U t−1 exposed by normal φt, i.e.,

U t = arg max
x∈Ut−1

〈φt, x〉,

where U0 := U . It suffices to prove that UT = F , as this will prove that u sequentially
maximizes utilitarian welfare over U .

To this end, it suffices to prove F ⊂ U t ⊂ Gt for each t = 0, 1, 2, . . . , T . We proceed
inductively for the proof. First, note that the claim is trivially true for t = 0 because
U0 := U ⊂ dc(U) := G0 and F ⊂ U = U0 by definition. Now, suppose that the claim holds
for t. We show (i) F ⊂ U t+1 and (ii) U t+1 ⊂ Gt+1 as follows.

For (i), fix any point v in F . Then, since F ⊂ Gt+1 and φt+1 exposes Gt+1 out of Gt, we
have 〈φt+1, v〉 ≥ 〈φt+1, w〉 for every w ∈ Gt. Because U t ⊂ Gt by the inductive assumption,

〈φt+1, v〉 ≥ 〈φt+1, w〉 (5)
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for every w ∈ U t. Moreover, v ∈ U t by the assumption that F ⊂ U t. This fact, combined
with (5), implies that φt+1 is maximized by v over U t and so v ∈ U t+1, since φt+1 exposes
U t+1 out of U t. This holds for every v ∈ F and so F ⊂ U t+1, implying (i) holds for t+ 1.

As for (ii), fix any point v in U t+1. By (i), we know that

〈φt+1, v〉 = 〈φt+1, w〉 (6)

for any w ∈ F , since U t+1 is exposed by φt+1 and F is a subset of U t+1. Also, by definition
of Gt+1 and the fact F ⊂ Gt+1 by construction, we know that

〈φt+1, w〉 ≥ 〈φt+1, z〉 (7)

for any w ∈ F and z ∈ Gt. Combining (6) and (7) implies that 〈φt+1, v〉 ≥ 〈φt+1, z〉 for any
z ∈ Gt. This, and the fact that v ∈ Gt (which immediately follows from v ∈ U t+1 ⊂ U t ⊂ Gt),
means that v ∈ Gt+1. Since this holds for any v ∈ U t+1, we can conclude that U t+1 ⊂ Gt+1,
so (ii) holds for t+ 1.

This completes the induction and establishes the result.

4 Pareto Optimality and Simple Utilitarianism

The previous section provided a precise rationalization of Pareto optimality in terms of
sequential utilitarian welfare maximization. The question remains, however, as to when
Pareto optimality coincides with the simpler notions of utilitarianism: nonnegative and
positive. In particular, this section explores when UP coincides with either U+ or U++.
These conditions follow naturally from our characterization in Theorem 1.

4.1 Pareto Optimality (UP) and Nonnegative Utilitarianism (U+)

One case where UP = U+ is rather well-understood in the literature; the case with strict
convexity. Formally, we say that a set U ⊂ Rn is strictly convex if u, v ∈ U and λ ∈ (0, 1)
imply λu + (1− λ)v ∈ int(U), where int denotes the interior of a set. It is well-known that
if U is closed and strictly convex, then UP = U+.14

Another setting of interest is the following exchange economy environment. Let there be
m types of goods with some integer m > 0. For each k ∈ {1, . . . ,m}, let ēk > 0 be the total
supply of type-k goods in the environment. Let ē denote the vector (ēk)mk=1. Each alternative
x = (xi)i∈I , xi = (xki )

m
k=1 ∈ Rm

+ , specifies consumption bundle xi for each i ∈ I. A profile
of consumption bundles x is said to be feasible if and only if

∑
i∈I xi ≤ ē. In this context,

14 This result appears to be a folk result, and we do not know who first made this observation. For
completeness, we provide a proof sketch here. First, the fact UP ⊂ U+ follows from Theorem 1. To prove
the set inclusion relationship in the opposite direction, suppose for contradiction that u ∈ U maximizes
a nonnegative normal φ but there exists v ∈ U such that v > u. Then, for any λ ∈ (0, 1), a point
w := λu+(1−λ)v satisfies 〈φ,w〉 = λ〈φ, u〉+(1−λ)〈φ, v〉 ≥ 〈φ, u〉. Because U is strictly convex, w ∈ int(U)
and hence there exists x ∈ U such that xi > wi for every i ∈ I. Therefore we obtain 〈φ, x〉 > 〈φ,w〉 ≥ 〈φ, u〉,
a contradiction.
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the choice set X is defined as the set of all feasible profiles of consumption bundles. Each
individual i ∈ I is endowed with a utility function ui : Rm

+ → R.
Suppose that, for each i ∈ I, the utility function ui : Rm

+ → R is concave. We say ui(·)
is strictly monotonic if ui(xi) > ui(yi) for every xi, yi ∈ Rm

+ with xi > yi. Without loss of
generality, we normalize ui(0) = 0 for all i ∈ I: note that ui(0) = minxi∈Rm

+
ui(xi) if ui(·) is

strictly monotonic because 0 ∈ Rm
+ is the smallest element of Rm

+ . The utility possibility set
U is then defined as in (1) with ui = 0,∀i ∈ I. Let us refer to a tuple E := (I, ē, (ui(·))i∈I)
as an economy.

Theorem 2. Let E be an economy where ui(·) is strictly monotonic for each i ∈ I. The
set of Pareto optimal points coincides with those that maximize nonnegative normals, i.e.,
UP = U+.

We note a subtle but crucial difference between this result and existing results in general
equilibrium theory. In the latter, it is customary to restrict attention to a subset of Pareto
optimal points that are supported by an alternative with the additional restriction that
every individual receives a strictly positive amount of every type of good, i.e., xki > 0 for
each i ∈ I and k ∈ {1, . . . ,m} (see Argenziano and Gilboa (2015) for instance). Theorem 2,
by contrast, does not make any such restriction and characterizes the entire set of Pareto
optimal points.

It is worth noting that strict monotonicity of utility function differs from local nonsatia-
tion, a commonly assumed condition in general equilibrium theory (see, for instance, Section
16.C in Mas-Colell, Whinston, and Green (1995)). We say that a utility function ui : Rm

+ → R
is locally nonsatiated if, for any xi ∈ Rm

+ and ε > 0, there exists yi ∈ {yi ∈ Rm
+ | |yi−xi| < ε}

with ui(yi) > ui(xi). The following example shows that the characterization in Theorem 2
does not hold if we weaken the strict monotonicity to local nonsatiation.

Example 1. Suppose that there are two individuals, 1 and 2, as well as two types of divisible
goods 1 and 2 with unit supply each, i.e., ē = (1, 1). Utility functions of the individuals are
given by

u1(x
1, x2) = x1,

u2(x
1, x2) =

√
x1 + x2.

Note that these utility functions satisfy local nonsatiation, but u1(·) fails strict monotonicity
as it is constant in x2. The utility possibility set coincides with U in Figure 1, so UP does
not coincide with U+.

4.2 Pareto Optimality (UP) and Positive Utilitarianism (U++)

The goal of this subsection is to discover natural conditions for UP to coincide with U++.
The following corollary, which follows easily from the proof of Theorem 1, is the key to our
investigation.
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Corollary 3. If u is a maximal element of U that lies in the relative interior of an exposed
face of dc(U) then u maximizes a positive normal over U .

Proof. In the proof of the “only if” part of Theorem 1 in Section 3.2, if u is a maximal
element of U that lies in the relative interior of an exposed face of dc(U), then T = 1 in
Step 3 and by Step 4 we know φ1 is positive. Hence, Φ = (φ1) and so by Step 5, we conclude
that u maximizes the positive normal φ1 over U .

This corollary allows us to prove the following characterization of when UP = U++. The
proof uses the concept of a normal cone and some of its properties, details of which are found
in Appendix C.

Theorem 3. Let U be a closed convex set. Then UP = U++ if and only if every maximal
element of U belongs to some exposed maximal face of dc(U).

We now discuss a few of the nuances in the statement of Theorem 3. First, the condition
cannot be weakened so that every maximal element of U simply lies in a (potentially non-
maximal) exposed face of dc(U). Consider our canonical example in Figure 1. The point u
lies on an exposed face of dc(U) but this face is not a maximal face of dc(U).

Figure 1 also demonstrates that it is not sufficient for a point to lie on a maximal exposed
face of U (as opposed to dc(U)) to guarantee it maximizes a positive normal. Consider the
point u′′, which is a maximal exposed extreme point of U , but clearly does not maximize
any positive normal over U . However, u′′ does not lie on a maximal exposed face of dc(U)
and so does not contradict the theorem.

Given the above nuance, a simpler sufficient condition may be useful. Consider the setting
where all maximal faces of dc(U) are exposed.

Corollary 4. If U is a closed convex set such that all maximal faces of dc(U) are exposed,
then UP = U++.15

Proof. Note that every maximal element of U lies in a maximal face of dc(U) by Lemma 4.
This and the hypothesis imply that every maximal element of U belongs to some exposed
maximal face of dc(U). Applying Theorem 3, we obtain the desired conclusion.

However, the converse of Corollary 4 is false, as illustrated by the example in Figure 6.
One sufficient condition for the hypothesis of Corollary 4 to hold is that U is a polyhedron.
In that case, all faces of U are all exposed (Theorem 13.21 of Soltan (2015)); moreover, its
downward closure of a polyhedron is also a polyhedron (Theorem 13.20 of Soltan (2015)),
so all of its faces are exposed. Utility possibility sets that arise as polyhedra is not an

15This cannot be derived easily from Arrow, Barankin, and Blackwell (1953). To see this, recall that
they establish U++ ⊂ UP ⊂ cl(U++). This implies that if U++ is closed then UP = U++. However, in the
“tilted cone” in Figure 2, U++ is not closed since the point K does not lie in U++ but is the limit point
of elements in U++ (indicated by the line in the figure). However, it is straightforward to check that UP

and U++ coincide. One can also check that all maximal faces of dc(U) for U in Figure 2 are exposed, the
condition of Corollary 4.
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Figure 6: The maximal extreme point u is not exposed while UP = U++.

uncommon phenomenon. For example, the following special class of utility functions gives
rise to such a case.

Let X be a polyhedral subset of Rm
+ (possibly Rm

+ itself). The utility function ui : X → R
is piecewise-linear concave (PLC) if there exist finite index set Ki and affine functions
ui,k : Rm

+ → R for each k ∈ Ki such that ui(x) = mink∈Ki
ui,k(x) for all x ∈ X.

PLC utility functions have appeared elsewhere in the literature. For instance, Afriat’s
theorem (Afriat (1967)) shows that they arise naturally in the context of revealed preferences.
Also, the PLC case features prominently in the computer science literature on questions of
hardness in computing equilibria (see Chen, Dai, Du, and Teng (2009) and Garg, Mehta,
Vazirani, and Yazdanbod (2017) for instance). Moreover, it is well-known that concave
functions can be approximated arbitrarily well by PLC functions with sufficiently many
pieces (see, for instance, Bronshteyn and Ivanov (1975); Ghosh, Pananjady, Guntuboyina,
and Ramchandran (2019)).

Proposition 1. If each agent has a PLC utility function defined on a polyhedron X and U
is defined according to (1), then dc(U) is a polyhedron.

The following is obtained immediately from Corollary 4 and Proposition 1, and the fact
that all faces of polyhedra are exposed. It is a clean economic setting where UP and U++

coincide.

Theorem 4. If each agent has a PLC utility function defined on a polyhedron X and U is
defined according to (1), then UP = U++.16

16It is worth noting that the ABB theorem provides an alternative proof of this result. Recall that it
suffices to argue U++ is closed in order to conclude UP = U++. Clearly, the elements of U++ comes in
faces, and a polyhedron has finitely-many faces. Since faces of a polyhedron are closed, and a finite union of
closed sets is closed, this implies that U++ is closed.
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5 Second Welfare Theorem with Piecewise Linear Con-

cave Utility Functions

The notions of exposed face and normal vector play crucial roles for our characterization of
a Pareto optimal utility profile as a welfare-maximizing point. Recall that the normal vector
also plays an important role in the second theorem of welfare economics in identifying a
price vector that supports a Pareto optimal allocation as a competitive equilibrium outcome.
Unlike in our characterization, the idea of a normal vector in the second welfare theorem
applies to the space of goods, not the space of utility profiles. However, the fact that the
two spaces are closely connected hints at the possibility of establishing the second welfare
theorem using the machinery we have developed so far. We do so in the current section
under a set of assumptions on the agent preferences and endowments that generalize the
existing welfare theorem in a certain direction.

To begin, consider an exchange economy with n agents (index by i) and m goods (indexed
by k) introduced in Section 4.1. Suppose that each agent i is endowed with a vector of goods
ei ∈ Rm

+\{0} and let ē =
∑

i∈I ei. A vector p ∈ Rm is referred to as a price profile. A pair
(p, x) of a price profile p and a profile x = (xi)i∈I of consumption bundles is a Walrasian
equilibrium if

1.
∑

i∈I xi = ē, and
2. xi ∈ arg maxyi∈Bi(p) ui(yi) for each i ∈ I, where Bi(p) := {yi ∈ Rm

+ | 〈p, yi〉 ≤
〈p, ei〉} is the budget set of i.

We consider a case where utility functions of all players are piecewise-linear concave
(PLC), as defined in Section 4.2. PLC utility functions may appear somewhat restrictive,
but as noted earlier any concave function can be approximated arbitrarily closely by a PLC
utility function. Meanwhile, we make a weaker assumption in another dimension—preference
monotonicity. The existing second welfare theorem assumes agents’ utility functions to be
strictly monotonic. We invoke a weaker form of monotonicity. Say that an allocation (xi)i∈I
is strictly feasible for good k if it is feasible and satisfies

∑
i∈I x

k
i < ēk. We assume that the

agent preferences are monotonic under limited resources in the following sense: for any
allocation (xi)i∈I that is strictly feasible for good k, there exist an agent j and x̃j ∈ Rm

+ such
that uj(x̃j) > uj(xj) while x̃k

′
j = xk

′
j ,∀k′ 6= k, x̃kj > xkj , and x̃kj +

∑
i 6=j x

k
j ≤ ēk. That is,

given any allocation that does not exhaust the endowment of good k, there exists an agent
who gets better off by consuming more of that good within its endowment. This condition is
fairly weak. For instance, it allows for agents to consider certain good indifferently or even
as bads (rather than goods), as long as there is at least one agent who likes to consume that
good. We are now ready to prove the second welfare theorem under the above assumptions.

Theorem 5. Consider the exchange economy described above. If (ui(ei))i∈I is Pareto op-
timal, then there exists a positive price vector p � 0 such that (p, (ei)i∈I) is a Walrasian
equilibrium.

In addition to the weakening of preference monotonicity, we also dispense with the typical
assumption required by the existing second-welfare theorem that every consumer have a
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positive endowment for every type of good (i.e., ei � 0,∀i ∈ I). The positive endowment
assumption can be quite restrictive, excluding many realistic situations. In fact, relaxing
the same assumption was an important motivation behind Arrow’s generalization of the first
welfare theorem.17

At the same time, the theorem assumes PLC utility functions. This assumption guar-
antees that the “upper contour set” of the target allocation—or the set of goods weakly
preferred to (ei)i∈I—is a polyhedron. Meanwhile, preference monotonicity and Pareto-
optimality of (ui(ei))i∈I ensure that the vector ē is a (minimal) face of this set. Invoking
Theorem 4, ē is then exposed by a positive normal (or price vector) that supports (ei)i∈I as
a competitive equilibrium allocation.

6 Conclusion

In this paper, we characterized Pareto optimality via a new notion of sequential utilitarian
welfare maximization. We established a strong connection between Pareto optimality and the
geometric concept of exposed faces, where sequentiality was tied to the notion of “eventual”
exposure. We used these insights to obtain conditions for characterizations by simpler,
nonsequential utilitarian welfare maximizations and highlighted implications for polyhedral
sets of utility vectors (and their associated PLC utility functions) whose faces are all exposed.
This connection allowed us to establish a second welfare theorem in economies with PLC
utilities under weaker regularity conditions than those in the existing literature.

The application of our methodology to the second welfare theorem suggests two related
areas of exploration for future work. The first relates to further exploration of how our main
results drive implications for problems stated in the choice space X, as opposed to the utility
possibility space U . Indeed, examining the structure of what points in the choice set give rise
to Pareto optima has been a major focus in the multi-objective optimization literature. An
early contribution in that literature is Charnes and Cooper (1967), who showed an equiva-
lence between the problem of finding Pareto-optimal solutions (in the choice set X) and that
of solving a constrained nonlinear programming problem. Following their contribution, tech-
niques in nonlinear programming were utilized to characterize Pareto optima under various
conditions (Ehrgott, 2005; Ben-Israel, Ben-Tal, and Charnes, 1977; Van Rooyen, Zhou, and
Zlobec, 1994; Glover, Jeyakumar, and Rubinov, 1999; Ben-Tal, 1980) all of which require
some form of differentiability of the utility functions. We believe further investigation into
our approach may have the potential to add to this literature in at least two aspects. First,
our characterization does not assume any form of differentiability. Indeed, the subtlety in-
volving non-exposure of maximal faces often arises when utility functions are not smooth
(e.g., Example 1). Our methods may suggest ways to handle Pareto optimality when dif-
ferentiability fails. Second, our methods may suggest a bridge between existing results in
the domain space and results in the utility possibility space, where notions of (sequential)

17“While listening to a talk about housing by Franko Modigliani, Arrow realized that most people consume
nothing of most goods (for example living in just one particular kind of house), and thus that the prevailing
efficiency proofs assumed away all the realistic cases,” according to Geanakoplos (2019).
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welfare maximization are salient and allow for more natural economic interpretations. In-
deed, none of the characterizations in the above references are in terms of notions of welfare
maximization.

The second area of future work, partially inspired by the application of our methodology
to the second welfare theorem, would be to examine how the notion of exposure can be used to
enhance separating hyperplane arguments that may arise in other economic settings. Indeed,
the standard proof of the second welfare theorem uses a supporting hyperplane argument
at the endowment point but does not leverage the fact that this point is a minimal element
of the “upper contour set.” We show how this minimality allows us to strengthen usual
separation arguments to guarantee the existence of strictly positive prices (as opposed to just
nonnegative prices). This strict positivity allowed us to relax assumptions that are typically
used to guarantee strictly positive wealth (e.g., strictly positive endowment for every agent).
We believe there is scope to explore other economic settings where separating hyperplane
arguments are used and similarly relax conditions needed to ensure strict positivity when
maximality or minimality (in combination with notions of exposure) may be used to assure
the existence of a separating hyperplane with a strictly positive normal.

A Proofs of preliminary results for Theorem 1

A.1 Proof of Lemma 2

The stated result is immediate in the case F is a singleton, so we may assume that F is
not a singleton. Suppose for contradiction that F contains a nonmaximal element u′. Thus,
there exists a v ∈ U such that v > u′. Since u ∈ ri(F ), there exists λ > 0 such that
w′ = u+ λ(u− u′) ∈ F . Now let z = αw′ + (1− α)v, where α = 1

1+λ
or α(1 + λ) = 1. Note

that z ∈ U since U is convex. Also,

z = α (u+ λ(u− u′)) + (1− α)v = u− αλu′ + (1− α)v = u+ (1− α)(v − u′) > u,

contradicting the maximality of u.

A.2 Proof of Lemma 4

Let U be a closed convex set and dc(U) its downward closure. Let u be a maximal element
of dc(U); that is, (u + Rn

+) ∩ dc(U) = {u}. If u ∈ U then this implies (u + Rn
+) ∩ U = {u}

since U ⊂ dc(U) and so u is a maximal element of U . Note that if u ∈ dc(U) \ U then it
cannot be maximal. Indeed, this implies that u = v−w for some v ∈ U and nonzero w ∈ Rn

+

and so v > u and so u is not maximal.
Conversely, we prove the contrapositive. Suppose u ∈ dc(U) is not a maximal element.

This implies that there exists a w 6= u with w ∈ dc(U) and w ≥ u. But then we can find a
v ≥ w ≥ u and v 6= u and v ∈ U . This implies that u is not a maximal element of U .

We next prove the second statement. To see that F is a face of dc(U), consider any
x, y ∈ dc(U) and λ ∈ (0, 1) such that z = λx + (1 − λ)y ∈ F . We need to show that
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both x and y belong to F . We first show that x and y are both maximal. Suppose for
contradiction that x is not maximal. Then, we must have some x′ ∈ dc(U) such that x′ > x.
Let z′ = λx′+(1−λ)y and observe that z′ ∈ dc(U), z′ ≥ z, and z′ 6= z, which contradicts the
maximality of z. Given that x and y are both maximal, we must have x, y ∈ U since there
is no maximal point in dc(U)\U . That F is a face of U then implies x, y ∈ F as desired.

A.3 Proof of Lemma 5

Suppose there exists a supporting normal φ (i.e., there exists a βφ such that 〈φ, u〉 ≤ βφ
for all u in U) with a negative component φj for some j ∈ J . Let v be an arbitrary
element of U . Since U is downward closed in coordinates J , we also have v − λχj ∈ U
for any λ ≥ 0, where χj is the unit vector with 1 in component j. However, observe that
〈φ, v−λχj〉 = 〈φ, v〉−λ〈φ, χj〉 = 〈φ, v〉−λφj. But 〈φ, v〉−λφj →∞ as λ→∞ since φj < 0.
This contradicts the fact that φ is a supporting normal.

A.4 Proof of Lemma 6

Take any j ∈ K := J \ suppφ and set u′ = u − εχj for some u ∈ F and ε > 0. Since
U is downward closed in coordinates J and j ∈ J , we have u′ ∈ U . Moreover, 〈φ, u′〉 =
〈φ, u − εχj〉 = 〈φ, u〉 − ε〈φ, χj〉 = 〈φ, u〉 − εφj = 〈φ, u〉 since φj = 0 when j ∈ K since no
element of K lies in suppφ. But then u′ ∈ F since 〈φ, u′〉 = 〈φ, u〉 = maxv∈U〈φ, v〉 and
F = maxv∈U〈φ, v〉 since F is exposed by φ.

B Proof of Theorem 2

Proof. The relationship UP ⊂ U+ follows from Theorem 1 because if u is Pareto optimal,
then it maximizes a sequential set of normals Φ = (φ1, . . . , φT ), and hence u maximizes a
nonnegative normal φ1. In the remainder of this proof, we will show the relation U+ ⊂ UP .

Suppose for contradiction that the desired conclusion does not hold. Then there exists
u ∈ U+ \ UP . More specifically, there exists some u′ ∈ U such that u′ > u while u ∈
arg maxv∈U〈φ, v〉 for some nonnegative normal φ. We first note that φj = 0 for every j ∈ I
such that u′j > uj. This is because otherwise φj > 0 and u′j > uj, but this and the fact
that u′ ≥ u imply 〈φ, u′〉 > 〈φ, u〉, contradicting the assumption that u ∈ arg maxv∈U〈φ, v〉.
Now, fix j ∈ I with φj = 0 and u′j > uj: Note that there exists such j ∈ I because u′ > u.
Also, fix j′ ∈ I such that φj′ > 0; note that such j′ exists because φ is a nonnegative normal
and that j′ 6= j because φj = 0. Then, because uj ≥ 0 (recall that the minimum utility for
each individual is normalized to 0), we have u′j > uj ≥ 0. Let x = (xi)i∈I ∈ X be such that
u′ ≤ (ui(xi))i∈I : Such x exists by the definition of U and the assumption that u′ ∈ U . Then
it follows that uj(xj) ≥ u′j > 0, so xj ≥ 0 and xj 6= 0 because xj ∈ Rm

+ and uj(0) = 0. Then
consider an alternative consumption profile y ∈ Rm

+ defined as yj = 0, yj′ = xj′ + xj, and
xi = yi for all i 6= j, j′; Note that y ∈ X (this is because

∑
i∈I yi =

∑
i∈I xi by definition of

y and
∑

i∈I xi ≤ ē by the assumption that x ∈ X) and hence u(y) ∈ U . Then, because the
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utility function uj′(·) is strictly monotonic by assumption while xj ≥ 0 and xj 6= 0, we have
uj′(yj′) > uj′(xj′) ≥ u′j′ ≥ uj′ . Moreover, by construction we have ui(yi) = ui(xi) ≥ u′i ≥ ui
for every i 6= j, j′. Therefore, because φj = 0 and φj′ > 0, we have 〈φ, u(y)〉 > 〈φ, u〉, which
is a contradiction to the assumption that u ∈ arg maxv∈U〈φ, v〉.

C Proof of Theorem 3

The proof uses results from the following three lemmas:

Lemma C.1 (Line Segment Principle, see Proposition 1.3.1 in Bertsekas (2009)). Let U be
a closed convex set. If u ∈ ri(U) and v ∈ U , then [u, v) ∈ ri(U), where [u, v) := {u′ ∈ U |u′ =
λu+ (1− λ)v,∃λ ∈ (0, 1]}.

The normal cone of U at a point u ∈ U is the set

NU(u) = {φ ∈ Rn | 〈φ, u〉 ≥ 〈φ, v〉 for all v ∈ U} .

If φ ∈ NU(u) then u is a maximizer of the linear function 〈φ, u〉 over the set U .

Lemma C.2. Let F be a face of a convex set U . Then every point in the relative interior
of F has the same normal cone.

Proof. Let u, u′ be distinct in the relative interior of F and suppose NU(u) contains an
element φ not in NU(u′). This implies 〈φ, u〉 > 〈φ, u′〉. Since u is the relative interior,
the point v = u + λ(u − u′) lies in F for a sufficiently small positive λ. But, 〈φ, v〉 =
〈φ, u〉+ λ〈φ, u− u′〉 > 〈φ, u〉, violating the assumption that φ is in NU(u).

The above result lets us define the normal cone of a face F of U , denoted NU(F ), as the
normal cone of each of its relative interior points.Next, let us consider the relative boundary
of F , defined as F \ ri(F ). As the next result shows, the relative boundary points of a face
F must contain NU(F ) and additional normal vectors.

Lemma C.3. Let F be a face of a convex set U . Then every relative boundary point u of
F has NU(u) ⊃ NU(F ).

Proof. Let u be in the relative boundary of F . Suppose there is a normal φ in NU(v) (where
v is any relative interior element of F ) that is not in NU(u). That is,

〈φ, u〉 6= 〈φ, v〉. (8)

By the Line Segment Principle, we can get an element of relative interior of F arbitrarily
close to u, which yield a contradiction of the continuity of 〈φ, ·〉 because of (8).

Proof of Theorem 3. (⇐) Observe that U++ ⊂ UP is immediate from Proposition 16.E.2 in
Mas-Colell, Whinston, and Green (1995). It remains to show UP ⊂ U++. Let u ∈ UP . If
u lies in the relative interior of an exposed face of dc(U), then u ∈ U++ from Corollary 3.
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The remaining case is where u lies on the relative boundary of a maximal exposed face F
of dc(U). Since F is a maximal exposed face, then an element v in its relative interior
maximizes a positive normal φ, again by Corollary 3. By Lemma C.2, this implies that the
normal cone NU(F ) of face F contains φ and so, by Lemma C.3, the normal cone NU(u) of
the point u contains φ. In other words, u maximizes the positive normal φ. This completes
the proof.
(⇒) Let u be a maximal element of U . By the equivalence of UP and U++, u maximizes
a positive normal φ. Let F = arg maxv∈U〈φ, v〉. We claim that F is a maximal exposed
face of dc(U), which clearly contains u. The fact that F is maximal in dc(U) follows since
Proposition 16.E.2 in Mas-Colell, Whinston, and Green (1995) (along with Lemma 2) implies
F is maximal in U and thus maximal in dc(U) by Lemma 4. Suppose to the contrary that F
is not exposed in dc(U). Then, there must exist an element u′ ∈ dc(U)\U that maximizes φ
but is not in F . However, since u′ in dc(U) \ U there must exist a u′′ ∈ U such that u′ ≤ u′′

and u′i < u′′i for some index i. But, this implies that 〈φ, u〉 ≥ 〈φ, u′′〉 > 〈φ, u′〉, where the
weak inequality holds by the definition of F and the strict inequality holds since φ is positive.
This yields a contradiction and so we conclude that F is an exposed face of dc(U).

D Proof of Proposition 1

For each k ∈ Ki, let Xi,k = {x ∈ X | ui,k(x) ≤ ui,k′(x), ∀k′ ∈ Ki}. Since X is a polyhedron
and all functions (ui,k)k∈Ki

are affine, Xi,k is an intersection of finitely many polyhedra and
thus a polyhedron.

Now let K = {k = (ki)i∈I | ki ∈ Ki for all i}. For each k ∈ K, let Xk = ∩i∈IXi,ki and
observe that Xk is a polyhedron. Also, all functions u1(·), . . . , uI(·) are affine on Xk since for
each i ∈ I, ui(x) = ui,ki(x),∀x ∈ Xk. Then, by Theorem 13.21 of Soltan (2015), the set Uk =
{(ui(x))i∈I | x ∈ Xk} is a polyhedron. Observe that U = {(ui(x))i∈I | x ∈ X} = ∪k∈KUk.
While we do not know whether the set U , which is a union of polyhedra, is a polyhedron,
Theorem 13.19 of Soltan (2015) shows that U := cl(conv ∪k∈K Uk) is a polyhedron, where cl
and conv denote the closure and convex hull, respectively.

Next, we show that dc(U) = dc(U). By definition of U , dc(U) ⊂ dc(U) is clear. To
show dc(U) ⊂ dc(U), consider any ũ ∈ conv ∪k∈K Uk so that ũ =

∑
k∈K λkũk for some

weight (λk)k∈K and ũk ∈ ∪k′∈KUk′ . Also, for each ũk, we can find x̃k ∈ Xk such that
(ui(x̃k))i∈I = ũk. Letting x =

∑
k∈K λkx̃k, observe that x ∈ X by the convexity of X and

that for all i ∈ I, ui(x) ≥
∑

k∈K λkui(x̃k) = ũi by the concavity of ui(·), which means that
ũ ∈ dc(U). Thus, conv ∪k∈K Uk ⊂ dc(U), implying that cl(conv ∪k∈K Uk) ⊂ dc(U) since
dc(U) is closed, from which dc(U) ⊂ dc(U) follows, as desired.

Lastly, observe that dc(U) = U + Rn
− and that both U and Rn

− are polyhedra, which
implies (by Theorem 13.20 of Soltan (2015)) that dc(U) = dc(U) is a polyhedron.
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E Proof of Theorem 5

The proof of Theorem 5 uses the following preliminary results.

Lemma E.1. The following properties on polyhedra hold:

(i) Let P1, P2, . . . , Pn be a finite collection of polyhedra in Rm. The Cartesian product
P1 × P2 × · · · × Pn is a polyhedron in Rmn.

(ii) Let π : Rd → Rm be a affine map and let P be a polyhedron in Rd. Then π(P )
is a polyhedron.

(iii) All faces of a polyhedron are exposed.
(iv) The downward closure of a polyhedron is also a polyhedron.

Proof. (i) Consider two polyhedra in Rm, P1 and P2. Letting Q1 := P1 × Rm and Q2 :=
Rm×P2, each Qk is a polyhedron in R2m, so P1×P2 = ∩k=1,2Qk is a polyhedron in R2m. The
result follows from applying this argument repeatedly. (ii) This is Theorem 13.21 in Soltan
(2015). (iii) This is Corollary 13.12 in Soltan (2015). (iv) This follows since dc(P ) = P +Rn

−
where Rn

− is the nonpositive orthant of Rn and applying Theorem 13.20 of Soltan (2015).

Let Ai := {x ∈ Rm
+ | ui(x) ≥ ui(ei)} for each agent i. Observe that each Ai is a

polyhedron since it is an intersection of two polyhedra, {x ∈ Rm | x ≥ 0} and {x ∈ Rm |
ui(x) ≥ ui(ei)} = ∩k∈Ki

{x ∈ Rm | ui,k(x) ≥ ui(ei)}
Consider the set A =

{
x ∈ Rm

+ | ∃x1 ∈ A1, x2 ∈ A2, . . . , xn ∈ An s.t. x =
∑

i∈I xi
}

. Ob-
serve that A is the image of the set A1 × A2 × · · · × An under the affine mapping π that
maps (xi)i∈I to

∑
i∈I xi. By Lemma E.1(i) and (ii), A itself is a polyhedron.

Next, we argue that ē is a minimal element of the set A. Suppose for contradiction that
there exists an element x ∈ A where x < ē where xk < ēk for some good k. Since x ∈ A,
there exists an allocation (yi)i∈I where yi ∈ Ai such that x =

∑
i∈I yi. Since this allocation

is strictly feasible for the good k, the monotone preference under limited resources implies
that there are some agent j and ỹj ∈ Rm

+ such that uj(yj) < uj(ỹj) while ỹk
′
j = yk

′
j ,∀k′ 6= k,

ỹkj > ykj , and ỹkj +
∑

i 6=j y
k
i ≤ ēk. Now consider an alternative allocation (zi)i∈I , which

is identical to (yi)i∈I except that zj = ỹj. Note that this allocation is feasible under the
endowment ē and that uj(zj) > uj(yj) ≥ uj(ej) while ui(zi) = ui(yi) ≥ ui(ei),∀i 6= j, which
contradicts the Pareto optimality of (ei)i∈I .

That ē is a minimal element of A implies that −ē is a maximal element of −A. By
Lemma 4, this implies that −ē is a maximal element of dc(−A). Moreover, by Lemma E.1(iv)
dc(−A) is a polyhedron and so by Lemma E.1(iii) all of its faces are exposed. Thus, by
Corollary 3, there exists a supporting hyperplane of −A through the point −ē with a positive
normal φ. The same normal p := φ can define a supporting hyperplane to A through the
point ē; that is,

〈p, y〉 ≥ 〈p, ē〉,∀y ∈ A,

where p is a strictly positive vector of prices.
It remains to show that the positive price vector p just constructed supports the allocation

(ei)i∈I as a Walrasian equilibrium. For this, it suffices to show that each ei maximizes ui(·)
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under the prices p and the budget 〈p, ei〉. To do so, we take any xi with ui(xi) > ui(ei) and
will show that agent i cannot afford xi.

By continuity of ui, the inequality ui(xi) > ui(ei) implies that for some λ < 1 but
sufficiently close to 1, we have ui(λxi) > ui(ei), so by definition we have λxi ∈ Ai. This
implies that λxi +

∑
j 6=i ej ∈ A. Since 〈p, λxi +

∑
j 6=i ej〉 ≥ 〈p,

∑
i∈I ei〉, we must also have

〈p, λxi〉 ≥ 〈p, ei〉. Dividing through by λ gives 〈p, xi〉 ≥ 〈 1λp, ei〉 > 〈p, ei〉 where the strict
inequality holds since ei is nonnegative and nonzero while p is strictly positive.
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