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Abstract

Governments often provide employers with financial incentives which depend

on the sets of people they hire. Studying such fiscal policies in a classical

job matching framework, we provide a necessary and sufficient condition for a

policy to preserve the substitute condition (for all revenue functions satisfying

it); this is crucial for equilibrium existence and stability. These policies are

characterized by sums of additively separable and “cardinally concave” transfer

functions. Then we characterize transfer functions that preserve the substitute

condition for several important subclasses of revenue functions: e.g., when

doctors are homogeneous within groups. Implications for auction design are

also discussed.
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1 Introduction

Hiring entities often face various types of external financial incentives originating

from government policies. The United States, through its immigration policy,

essentially imposes a tax on each foreign worker hired by a company (Facchini,

Mayda, and Mishra, 2011, Section 2); its states may provide firm-specific incentives

to boost local employment (Slattery and Zidar, 2020, Page 98). China, through its

Social Welfare Enterprise program, subsidizes a company if its workforce is more

than 35% disabled (Chandra and Wong, 2016, Chapter 1). India’s labor regulation

imposes higher standards on an industrial establishment if it employs more than a

certain number of workers; this amounts to taxation conditional on the total number

of workers (Adhvaryu, Chari, and Sharma, 2012, Page 726). Globally, labor market

interventions during the Covid-19 pandemic often embrace the fiscal approach.1

Such fiscal policies are “soft,” markedly different from the compulsory

“constraints” studied by Kojima, Sun, and Yu (2020b, henceforth, KSY) and

possibly even more prevalent. To study fiscal policy interventions in labor markets

in a way analogous to KSY, we adopt the classical job matching model of Kelso

and Crawford (1982), and investigate which policies interfere with the existence of

competitive equilibrium and thus market stability.2 The question bears theoretical

significance: the existence of competitive equilibria is one central theme of economic

theory (Walras, 1874; Arrow and Debreu, 1954; Kelso and Crawford, 1982; Gul and

Stacchetti, 1999). It bears practical implications too: in different contexts, Roth

(1986, 1991, 2018) observes that markets that are inconsistent with stability often

fail.3

It is well established that the (gross) substitutes condition, a condition on an

employer’s demand correspondence for workers, is sufficient and necessary (in a sense

of maximal domain)4 for the existence of competitive equilibria (Gul and Stacchetti,

1See the summary from https://www.oecd.org/coronavirus/en/.
2In their job matching model, the set of competitive equilibrium allocations equals the set of

core allocations.
3Although compensations were not adjustable in the environments he considered, there is

already some, albeit limited, scope for adjusting compensations within the National Resident
Matching Program (Niederle, 2007). Crawford (2008) advocates introducing wages more explicitly
in this system and other high-profile settings.

4A competitive equilibrium may or may not exist if one employer’s demand correspondence
violates the substitutes condition; but it is easy to construct others’ demand correspondences so
that none exists. Large markets may alleviate the concerns about equilibrium nonexistence in other
settings (Kojima, Pathak, and Roth, 2013; Ashlagi, Braverman, and Hassidim, 2014; Azevedo and
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1999, 2000; Milgrom, 2000; Hatfield et al., 2013; Yang, 2017). It is the requirement

that, roughly speaking, a set of demanded workers should still be demanded after

a rise of the salaries of other workers; and has a rich intellectual history (Arrow,

Block, and Hurwicz, 1959; Kelso and Crawford, 1982; Milgrom, 2017). To study

the existence of competitive equilibria under fiscal policy interventions, we can thus

focus on the question of which policies interfere with the substitutes condition.

For this purpose, we model one hospital making employment decisions over a

finite set of doctors. A revenue function is real-valued and defined on all possible sets

of doctors, and specifies how much revenue the hospital generates if it employs each

set; similarly, a transfer function specifies how much subsidy the hospital receives

from the government (or how much taxation it pays if the value is negative). The

profit of the hospital is the revenue plus the transfer minus total salaries paid

to doctors it employs, and the demand correspondence is derived through profit

maximization. We can accordingly say that a revenue function (or the sum of a

revenue function and a transfer function) satisfies the substitutes condition.

This paper first provides a characterization of transfer functions which preserve

the substitutes condition (for all revenue functions that satisfies the condition), as

KSY finds exactly which constraints preserve the substitutes condition. In other

words, we identify exactly which transfer functions can be added to any revenue

function that satisfies the substitutes condition to produce demand correspondences

that still satisfy the condition. When the government is uninformed of the details

of the revenue function, a transfer policy which does not preserve the substitute

condition could lead to the failure of the substitutes condition and thus market

instability.

Our first main result states: a transfer function preserves the substitutes

condition if and only if it is the sum of an additively separable transfer function

and a cardinally concave transfer function. Roughly speaking, additive separability

means that each doctor is assigned a real number and the total transfer is the sum

of the assigned numbers of hired doctors; cardinal concavity means that the transfer

is a concave-extensible function of the number of hired doctors. The characterized

class of transfer functions is consistent with certain affirmative action policies, e.g.,

promising a fixed amount of subsidy for hiring a particular doctor. However, this

class of transfer functions is still restrictive as, for instance, it rules out subsidizing

Hatfield, 2018; Che, Kim, and Kojima, 2019), but we are unaware of such results in the classical
job matching setting of Kelso and Crawford (1982).
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the hospital for hiring at least a certain number of doctors, a popular job creation

policy (Slattery and Zidar, 2020), or subsidizing for hiring at least a certain number

of minority doctors. Overall, our result suggests that the types of transfer policies

that the government can use safely is severely limited.

The restrictiveness of the characterized transfer policies, however, is at least due

to the demanding condition we impose. Specifically, we require that the transfer

function preserve the substitutes condition for every single revenue function that

satisfies the substitutes condition, but there may be cases in which the government

is better informed of the revenue function. We pursue this idea by introducing

subclasses of revenue functions, called group separability and group concavity. As we

define them, group separability roughly states that the revenue function is the sum

of revenue functions (all of which satisfy the substitutes condition) of the hospital’s

subsidiaries/departments which hire from disjoint groups of doctors; group concavity

says that the revenue function treats doctors within each group as homogeneous and

satisfies the substitutes condition.

We analyze which transfer functions preserve the substitute condition for these

subclasses of revenue functions, as KSY characterizes which constraints preserve the

substitutes condition for all group separable revenue functions.5 These additional

results help us shed light on how the policymaker’s knowledge about revenue

functions (such as group separability and group concavity) leads to a wider class of

permitted transfer functions, which in turn translates into a larger class of policies

that do not jeopardize market stability.

We also characterize which vectorial functions preserve the vectorial substitutes

condition, a classical condition of substitutability when workers/goods are

homogeneous within groups (Milgrom and Strulovici, 2009). The condition is

also equivalent to M\-concavity, the central concept of discrete convex analysis

(see Murota, 2003, 2016, and our Appendix A). It will become clear that our

results, especially the system of characterizations, contribute substantially to the

mathematics of discrete convex analysis.

We further study an environment where the revenue function can be written

as the sum of a group separable revenue function and a group concave revenue

function. We show that profit maximization in this case is consistent with the

5Kojima, Sun, and Yu (2020c) characterize which constraints preserve the substitutes condition
for all group concave revenue functions to complement KSY; the proof strategies and conclusions
are distinctively different from KSY and this paper.
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hospital delegating specific hiring decisions to the department level while only

deciding the “headcount” for each department.

Although we frame our results in a labor market context, their policy

implications for auction design are no less, if not more, significant. As in

job matching models, the substitutes condition is the central condition in many

models of object assignments, or multi-item auctions (see Gul and Stacchetti,

1999, 2000; Ausubel, 2006; Cramton et al., 2010; Milgrom, 2017, for example).

When it is satisfied, many designs are satisfactory; otherwise, as a result of

complementarity in demand, severe pathologies such as the well-known “exposure

problem” arise (Milgrom, 2000; Ausubel and Milgrom, 2002; Klemperer, 2004;

Milgrom, 2004, 2007; Goeree and Lindsay, 2019).6 Auctioneers often need to

build in extra financial incentives to discriminate among bidders and/or objects;

prominent examples include auctions of radio spectrum (Milgrom, 2004, Page 3;

Milgrom 2017, Page 62), land plots (Chen and Kung, 2018), rough diamonds,

online advertising, sourcing and procurement (Vulkan, Roth, and Neeman, 2013,

respectively Pages 317, 368, and 382), etc. If they decide to apply transfer functions

in centralized auctions, they should consider restricting attention to the classes we

pin down in our characterization results, lest allocational efficiencies and/or auction

practicality suffer (it is well known that efficient package auctions that can deal with

complements are rarely practical).

The paper unfolds as follows after the literature review. Section 2 introduces

our model. Section 3 characterizes which transfer functions preserve the substitutes

condition. Section 4 characterizes which transfer functions preserve the substitutes

condition for all group separable and group concave revenue functions, respectively.

Section 5 focuses on the vectorial substitutes condition. Lastly, in Section 6, we

explain how to derive new characterizations from existing ones, discuss future

research, and conclude.

Related Literature

Governments are omnipresent in marketplaces, for the good or the bad (Roth, 2018).

Although we are unaware of any market design research that uses our approach to

study fiscal policy interventions in the form of subsidy and taxation, there is a large

related literature on compulsory policy interventions.

6A few auction designs such as Sun and Yang (2006, 2009, 2014) accommodate complements,
but the types of revenue functions they work with are required to satisfy stylized assumptions and
unlikely to arise from adding an arbitrary transfer function to a revenue function.
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In the job matching framework, KSY studies constraints on the sets of workers

an employer is allowed to hire. KSY identifies exactly which constraints preserve

the substitutes condition for two classes of revenue functions corresponding to the

substitutes condition and group separability. The main connection between KSY

and this paper is that both of them characterize classes of policy interventions that

preserve the substitutes condition.7 In fact, it is simple to combine the results of

these two papers for situations in which both types of policies are present. The main

difference is in the kinds of interventions considered: KSY considers compulsory

constraints, while this paper considers pecuniary transfer policies. Clearly, two

sets of results are mathematically independent. Further, with new insights gained

from developing this paper, we additionally study classes of revenue functions

corresponding to cardinal concavity, group concavity, etc., addressing an important

question8 unanswered by KSY: which other classes of revenue functions may be both

empirically relevant and theoretically interesting, and thus worth studying.

KSY is most related to the current paper. But in transferable utility settings, it is

one among many which study various types of constraints: e.g., Bing, Lehmann, and

Milgrom (2004), Milgrom (2009), Biró et al. (2010), Abizada (2016), Hatfield, Plott,

and Tanaka (2016), Echenique, Miralles, and Zhang (2019), and Gul, Pesendorfer,

and Zhang (2019). It is a surprise for us that fiscal policy interventions have been

largely overlooked by this literature.

In non-transferable utility settings, fiscal policies are naturally absent. An

incomplete list of compulsory policy research includes studies of floor constraints

(Biró et al., 2010; Huang, 2010), ceiling constraints (Abdulkadiroğlu and Sönmez,

2003; Fragiadakis and Troyan, 2017; Kamada and Kojima, 2018), type-specific

constraints (Hafalir, Yenmez, and Yildirim, 2013; Ehlers et al., 2014; Ellison and

Pathak, 2016; Kominers and Sönmez, 2016; Goto et al., 2017; Dur et al., 2018;

Aygn and Turhan, 2020), proportionality constraints (Nguyen and Vohra, 2019),

multidimensional resource constraints (Delacrtaz, Kominers, and Teytelboym, 2016;

Noda, 2018), and joint constraints imposed on multiple entities (Kamada and

Kojima, 2015, 2017, 2018). To the best of our knowledge, there is no formal

connection between our paper and this literature.

Methodologically, our paper is related to a large literature that examines

various aspects of the substitutes condition (Kelso and Crawford, 1982; Gul and

7Kojima, Sun, and Yu (2020a) offer the full job matching model and welfare analysis.
8In particular, this question was raised in the review process of KSY.
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Stacchetti, 1999; Fujishige and Yang, 2003; Murota, 2003; Hatfield and Milgrom,

2005; Ostrovsky and Paes Leme, 2015; Shioura and Tamura, 2015; Murota, 2016,

2019, 2020, among many others). Some of our results are linked to early studies in

a surprising way. For example, the characterized class of transfer functions which

preserve the substitutes condition has long been recognized to satisfy the substitutes

condition by Bevi, Quinzii, and Silva (1999), and often introduced as a tractable

subclass (Gul and Stacchetti, 1999). We review related results from discrete convex

analysis (Murota, 2016) in Appendix A; it will become apparent that they are

indispensable for our proofs.

2 The Model

There is a finite set of doctors D with cardinality |D| = M . We study the demand

of a single hospital for doctors: investigating one hospital is sufficient for all the

analysis of this paper while simplifying notation.9 A salary schedule is a real-

valued function s : D → R that specifies a salary for each doctor; for each d ∈ D,

sd is short for s(d). A revenue function R : 2D → R maps each subset of doctors

to the revenue of the hospital if it hires them.

An entity called government regulates the labor market using fiscal incentives.

A transfer function T : 2D → R maps each subset of doctors to the amount

of government transfer a hospital receives if it hires them. Naturally, for A ⊂ D,

the two cases of T (A) > 0 and T (A) < 0 correspond to government subsidy and

taxation, respectively. Note that there is no mathematical distinction between a

transfer function and a revenue function, so we can use the same taxonomy for both

of them. For example, we say that a revenue or transfer function S : 2D → R is

additively separable if for each A ⊂ D, S(A) =
∑

d∈A S({d}).
If the hospital hires A ⊂ D while facing a salary schedule s, a revenue function

R, and a transfer function T , its profit is V (A; s, R+T ) = R(A)+T (A)−
∑

d∈A sd,

that is, its revenue plus the government transfer minus the sum of salaries paid to

the doctors. We define the maximal profit function Π( · ;R + T ) : RD → R and

the demand correspondence X( · ;R + T ) : RD → {A : A ⊂ 2D and A 6= ∅} so

9For a model of multiple hospitals competing for doctors, see Kojima, Sun, and Yu (2020a)
which builds upon the results of this paper.

7

Electronic copy available at: https://ssrn.com/abstract=3624343



that for each salary schedule s,

Π(s;R+ T ) = max{V (A; s, R+ T ) : A ⊂ D};

X(s;R+ T ) = {A ⊂ D : V (A; s, R+ T ) = Π(s;R+ T )}.

Each element of X(s;R+ T ) is referred to as a demand set.

Note that we intentionally leave out the possibility of expanding the range of a

revenue or transfer function to R ∪ {−∞} (see Hatfield et al., 2013; Fleiner et al.,

2019; Hatfield et al., 2019, among others). In other words, all sets of doctors are

assumed to be feasible. For results of the more general case in which some sets may

be designated infeasible by the hospital itself or the government, it is straightforward

to combine findings in KSY with those in the current paper. We work with the less

general case for expositional simplicity.

The substitutes condition is the requirement that whenever a set of doctors

is demanded (included in a demand set) given a price schedule, then, after a rise in

others’ salaries, this set must still be demanded.

Definition 1. A demand correspondence X( · ;R) satisfies the substitutes

condition if for any two salary schedules s and s′ with s′ ≥ s, and any A ∈ X(s;R),

there exists A′ ∈ X(s′;R) such that {d ∈ A : sd = s′d} ⊂ A′. A revenue function R

satisfies the substitutes condition if the demand correspondence X( · ;R) satisfies it.

The substitutes condition is a natural assumption in modeling many real-life

economic environments, where complements may be ruled out. One example is a

unit-demand revenue function R, where for each A ⊂ D, R(A) = maxd∈AR({d});
this is natural when only one doctor/unit is needed. The substitutes condition is

more general and is satisfied by other applications as well.

The substitutes condition is commonly assumed also because of its critical role in

obtaining the existence and other regularity properties of competitive equilibria; in

a maximal domain sense, it is both sufficient and necessary (see Gul and Stacchetti,

1999, 2000; Milgrom, 2000; Hatfield et al., 2013; Yang, 2017, among others). As

Kelso and Crawford (1982) point out, nonexistence of equilibria is equivalent to the

nonexistence of stable outcomes (the core is empty), which is linked to undesirable

real-life consequences (see Roth, 1984, 1991, 2018, for example).

Given an environment in which all revenue functions satisfy the substitute

condition, a policymaker may worry that some fiscal policy interventions in the

form of transfer functions can cause the condition to fail – a case where R satisfies

it but R + T does not. To address such a concern, we investigate which transfer

8
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functions preserve the substitutes condition.

Definition 2. A transfer function T preserves the substitutes condition if for

each revenue function R that satisfies the condition, R+T satisfies it. Moreover, T

preserves the substitutes condition for a class of revenue functions if for

each function R in the class, R+ T satisfies the substitute condition.

It is well known that given two revenue functions that satisfy the substitutes

condition, their sum may not. We are unaware of earlier attempts at characterizing

the class of functions that, when added to any function which satisfies the substitutes

condition, preserve the condition.10

Our aim is to study fiscal policy interventions, especially how they interfere

with market stability. Given that the substitutes condition may be viewed as a

necessary and sufficient condition for market equilibrium existence, it is important

to understand exactly which transfer functions preserve the substitutes condition

for different classes of revenue functions (which correspond to scenarios in which

the government has different partial knowledge about hospital revenue functions).

The ensuing sections address this question and provide characterizations of transfer

functions that preserve the substitute condition for various classes of revenue

functions.

3 Preserving the Substitutes Condition

This section provides a characterization of all transfer functions that preserve the

substitutes condition. First, it is easy to see from the definition of the substitutes

condition that it is invariant to the addition of an additively separable transfer

function, so an additively separable transfer function preserves the substitutes

condition.

Proposition 1. Given an additively separable transfer function T , a revenue

function R satisfies the substitutes condition if and only if R+ T satisfies it.

Accordingly, the government can subsidize or tax the hospital for hiring

individual doctors without causing the failure of the substitutes condition or market

stability.

It is worth mentioning that using an additively separable transfer function is

equivalent to directly subsidizing or taxing doctors (rather than the hospital) if

10Murota (2019) provides an excellent summary of operations that preserve discrete convexity,
and thus the substitutes condition, known before KSY and the current paper.
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they work for the hospital. In real life, we can observe both ways of implementation:

e.g., In India, women empowerment subsidies go through firms via programs such

as subsidized training (Rotemberg, 2019, Section I);11 in China, subsidies to rural

teachers are part of their salaries (Lin and Wong, 2012, Page 38).

How about other types of fiscal incentives? For example, the government may

consider subsidizing a hospital when the number or proportion of minorities meets a

certain criterion. Before providing a definitive answer for all transfer functions, we

need to define some classes of transfer functions. Let us denote the set of integers

between m and m′, where m,m′ ∈ Z and m ≤ m′, by [m,m′]Z := {m′′ ∈ Z : m ≤
m′′ ≤ m′}.

A transfer function T is cardinal if there exists an associated function f :

[0,M ]Z → R such that T (A) = f(|A|) for each A ⊂ D. In other words, the transfer

is said to be cardinal if it depends solely on the number of doctors the hospital

hires. Given f and each m ∈ [1,M ]Z, we denote by αfm := f(m) − f(m − 1) the

incremental transfer from hiring a doctor in addition to the m − 1 doctors already

hired, so T (A) = f(0) +
∑

m≤|A| α
f
m for each A ⊂ D.

A transfer function T is cardinally concave if it is cardinal and the associated

function f is extensible to a concave function on R. Equivalently, the requirement

is that the corresponding finite sequence (af1 , a
f
2 , . . . , a

f
M ) be weakly decreasing.

Note that it is possible that entries of the sequence are positive at the beginning

of the sequence and negative toward the end. Such a transfer policy seems to

“softly” discourage the hospital from hiring too few or too many doctors, a feature

reminiscent of a hard interval constraint studied by KSY but more flexible.

Our first main result demonstrates that sums of additively separable transfer

functions and cardinally concave ones form the entire class that preserve the

substitutes condition.

Theorem 1. A transfer function preserves the substitutes condition if and only if

it is the sum of an additively separable transfer function and a cardinally concave

transfer function.

All nontrivial proofs of our results are relegated to the Appendix.

In addition to additively separable transfer functions, Theorem 1 further

supports the idea of basing fiscal policy interventions on cardinally concave ones.

Such flexibility may be useful in applications. For instance, it seems well-suited for

11See https://msme.gov.in/sites/default/files/MSME Schemes English 0.pdf for details.
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tackling the rural hospital problem, the problem of rural hospitals having persistent

difficulties in recruitment (Roth, 1986). Subsidizing a rural hospital according

to how many doctors it hires, regardless of whom, can be more reasonable than

mandating a minimum number (a policy suggested by KSY) in many real-life

environments. Subsidizing hiring is also a common way of boosting employment in

a society. Theorem 1 guarantees that these policies will not destroy substitutability,

which in turn guarantees the existence of stable outcomes.

A simple corollary of Theorem 1 is that transfer functions that satisfy the

substitutes condition is exactly the class that preserve the substitutes condition

for all cardinally concave revenue functions.

Corollary 1. A transfer function preserves the substitutes condition for all

cardinally concave revenue functions if and only if it satisfies the substitutes

condition.

A reader might wonder whether the conclusion of Theorem 1, especially the

necessity of the characterized class of transfer functions, depends on the strong

requirement of preserving the substitutes condition for all revenue functions that

satisfy the substitutes condition. In the rest of this section, we show that this

conclusion can in fact be obtained even for a substantially smaller class of revenue

functions, strengthening the necessity part of the theorem.

A unit-demand revenue function R is binary unit-demand if there exist

d, d′ ∈ D and α > 0 such that R(A) = αmin{1, |A ∩ {d, d′}|} for each A ⊂ D.12 In

other words, the revenue is α > 0 if one of the two doctors d and d′ is hired, and 0

otherwise. The following proposition shows that preserving the substitutes condition

for all binary unit-demand revenue functions implies that a transfer function can be

decomposed into an additively separable part and a cardinally concave part.

Proposition 2. If a transfer function preserves the substitutes condition for all

binary unit-demand revenue functions, then it is the sum of an additively separable

transfer function and a cardinally concave transfer function.

As cardinally concave transfer functions are nondiscriminatory toward doctors,

Proposition 2 highlights the difficulty of designing affirmative action policies beyond

additively separable transfer functions. The class of binary unit-demand revenue

functions is small, and preserving the substitutes condition for them rules out all

transfer functions outside the characterized class. In particular, some of the policies

12A binary disjunctive revenue function defined in KSY is binary unit-demand with α = 1.
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we mentioned before – such as subsidizing the hospital only when it hires at least a

certain number of minority doctors – are ruled out.

It must be emphasized that the same conclusion as Proposition 2 can also be

established for other small classes of revenue functions as well. A trivial example is

a class obtained from adding an additively separable revenue function to all binary

unit-demand revenue functions; a simple application of Proposition 1 proves the

result. Such flexibility suggests that it is not easy to overcome the necessity part of

Theorem 1 by excluding a subclass of revenue functions from consideration.

This section assumes that the government has no knowledge about revenue

functions beyond substitutability. In some situations, the government may possess

further knowledge. The next section analyzes several such settings and characterizes

transfer functions that preserve the substitute condition for different classes of

revenue functions.

4 Subclasses of Revenue Functions

Fix a partition of D, which we denote by P ⊂ 2D \{∅}, so that ∪P := ∪P∈PP = D,

and for any P, P ′ ∈ P with P 6= P ′, P∩P ′ = ∅. Each member of P is called a group.

In practice, a group may form based on a gender, an age group, an ethnic group, a

specialty, a qualification, a location, an educational background, or a combination

of several individual characteristics.

Given P, we investigate which transfer functions preserve the substitutes

condition for all “group separable” revenue functions in the first subsection, and

for all “group concave” revenue functions in the second subsection.

4.1 Group Separability

A revenue function R is group separable if there is a family of functions {RP }P∈P
such that each RP : 2P → R satisfies the substitutes condition, and for each A ⊂ D,

R(A) =
∑

P∈P RP (A ∩ P ).13

A revenue function may be group separable, for example, because the hospital

owns several departments that hire from disjoint pools of doctors corresponding to

different specialties (so each group consists of all doctors of one specialty), or because

it owns several branches that hire from disjoint pools of doctors corresponding to

13KSY formally defines group separable revenue functions, and characterizes which constraints
preserve the substitutes condition for that class of revenue functions.
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different geographical locations. It is plausible that the government may learn these

facts but not further details of the revenue function.

Define a vectorization transformation τ : 2D → ZP so that for each A ⊂ D,

τ(A) is an integer-valued function on P with τ(A)(P ) = |A ∩ P | for each P ∈ P.

For each set of doctors A, τ(A) represents the number of doctors in A who belong

to different groups. We call any W : τ(2D) → R a vectorial function. A

transfer function T is group cardinal if there exists an associated vectorial function

W : τ(2D) → R such that for each A ⊂ D, T (A) = W (τ(A)). In this case, the

transfer depends only on the number of doctors hired from each group, but not on

within-group identities of the doctors. A group cardinal transfer function is group

concave14 if it also satisfies the substitutes condition. A cardinally concave transfer

function is obviously group concave.

The characterization theorem for preserving the substitutes condition for all

group separable revenue functions is as follows.

Theorem 2. A transfer function preserves the substitutes condition for all group

separable revenue functions if and only if it is the sum of an additively separable

transfer function and a group concave transfer function.

This result suggests that, due to the knowledge of group separability of the

revenue function, the government can utilize a broader class of transfer functions

(including group concave ones) without causing the failure of the substitutes

condition or market stability. Policy interventions based on group concave transfer

functions can treat doctors in different groups differently while treating those in

the same group equally (note that this is in a sharp contrast to cardinally concave

transfer functions in Theorem 1). For example, the government can design the

transfer function as a concave-extensible function of the number of doctors hired

from one group or the union of several groups. If this group or union consists

entirely of minorities (or majorities), the policy can be used to achieve diversity or

balance of the workforce.

As in the last section, we end with a proposition which is stronger than the

necessity part of the main theorem. To rule out triviality, we assume that there

exists a group with at least two doctors. We say that a binary unit-demand revenue

function is within-group if its two associated doctors are within the same group.

A within-group binary unit-demand revenue function is group separable.

14A more accurate but longer description may be “group homogeneous and substitutable,”
similar to how a group separable revenue function is actually “group separable and substitutable.”
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Proposition 3. If a transfer function preserves the substitutes condition for all

within-group binary unit-demand revenue functions, then it is the sum of an

additively separable transfer function and a group concave transfer function.

4.2 Group Concavity

Group concavity may be a reasonable simplifying assumption for the revenue

function when doctors within each group are, with regard to generating revenues,

approximately homogeneous or indistinguishable from each other before being

hired.15 Similar to group separability, group concavity of the revenue function may

be easy to observe for the government, while further knowledge may be difficult to

come by.

The main theorem for group concavity is the following.

Theorem 3. Suppose there are at least three groups. A transfer function preserves

the substitutes condition for all group concave revenue functions if and only if it

is the sum of a group separable transfer function and a cardinally concave transfer

function.

Group separability of a transfer function T is consistent with policy interventions

that discriminate within groups. For instance, given a group P ∗ ∈ P and a set of

minority doctors A ⊂ D (which may be unrelated to P), we can consider a concave-

extensible function f : [0, |P ∗ ∩ A|]Z → R, and a transfer function T satisfying

T (B) := f(|P ∗ ∩ A ∩ B|) for each B ⊂ D. Note that T is degenerately group

separable. Hence, in the settings of Theorem 3, such within-group affirmative action,

which is not allowed in the setting of Theorem 1, preserves the substitutes condition

and thus does not threaten market stability.

There is also a strengthening of the necessity part of Theorem 3. A revenue

function R is spline concave in A ⊂ D if there exists a function f : [0, |A|]Z → R,

m∗ ∈ [1, |A|−1]Z, and α > 0 such that f(m) = αmin{m,m∗} for each m ∈ [0, |A|]Z,

and R(B) = f(|A∩B|) for each B ⊂ D.16 In other words, if the revenue function is

spline concave in a set, every additional doctor in the set generates the same positive

revenue for the hospital until a quota is met. We say that a spline concave revenue

function in some P ∈ P is uni-group; when it is in D \P , the complement of some

P ∈ P, we say it is uni-group.

15This class of revenue functions is absent from KSY.
16In the definition, we rule out m∗ = 0 and m∗ = |A|: they correspond to degenerate cases of

additive separability. Also, a spline concave revenue function in A is cardinal if and only if A = D.
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Revenue functions that are uni- or uni-group spline concave form a small subclass

of group concave revenue functions. In general, preserving the substitutes condition

for them dictates a transfer function to be the sum of a group separable transfer

function and a cardinally concave transfer function.

Proposition 4. Suppose there are at least three groups. If a transfer function

preserves the substitutes condition for all uni- and uni-group spline concave revenue

functions, then it is the sum of a group separable transfer function and a cardinally

concave transfer function.

For the case of |P| = 2, the class of permitted transfer functions is larger: a

group concave transfer function is allowed instead of merely a cardinally concave

transfer function.

Proposition 5. Suppose there are two groups. The sum of a group separable

transfer function and a group concave transfer function preserves the substitutes

condition for all group concave revenue functions.17

5 The Vectorial Substitutes Condition

We say that a vectorial function U : τ(2D)→ R satisfies the vectorial substitutes

condition if it is associated with a group concave revenue function R. The condition

is commonly used to model substitutability given homogeneous goods within groups:

it is called the “strong-substitutes valuation” by Milgrom and Strulovici (2009).

Working with a standard object assignment model, they list many applications such

as the allocation of airport landing slots, and show that the condition is crucial for

guaranteeing that competitive equilibria exist, that the core contains the Vickrey

outcomes, and that the “law of aggregate demand” holds. Analogous results are

true for a job matching setting (Kojima, Sun, and Yu, 2020a).

Mathematically, the vectorial substitutes condition is a more general concept

than the substitutes condition. To see this, we only need to adopt the finest partition

P = {{d} : d ∈ D} and represent any A ⊂ D by τ(A) (note that τ is a bijection in

this case). Accordingly, a revenue function that satisfies the substitutes condition

can be viewed as a vectorial function that satisfies the vectorial substitutes condition.

5.1 Preserving the Vectorial Substitutes Condition

We study which vectorial functions preserve the vectorial substitutes condition. In

essence, answering this question tells us which group cardinal transfer functions

17We conjecture that this is a characterization result too.
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preserve the substitutes condition for all group concave revenue functions.18

Definition 3. A vectorial function W preserves the vectorial substitutes

condition if for each vectorial function U that satisfies it, U + W satisfies it.

Moreover, W preserves the vectorial substitutes condition for a class of

vectorial functions if for each function U in the class, U+W satisfies the vectorial

substitute condition.

A vectorial function W is additively separable19 if there exists a family of

functions {fP }P∈P such that fP : [0, |P |]Z → R is concave-extensible for each P ∈ P,

and W (z) =
∑

P∈P fP (z(P )) for each z ∈ τ(2D). When the partition is the finest,

this concept is equivalent to the additive separability of transfer functions.

Abusing notation, for any z ∈ ZP and any collection of groups Q ⊂ P, we denote

the number of doctors in ∪Q by |z(Q)| :=
∑

P∈Q z(P ), and the total number by

|z| := |z(P)|. A vectorial function W : τ(2D) → R is cardinally concave if there

exists a concave-extensible function f : [0,M ]Z → R such that W (z) = f(|z|) for

each z ∈ τ(2D).20

The main theorem tells us that the class identified above contains all vectorial

functions that preserve the vectorial substitutes condition.

Theorem 4. Suppose there are at least three groups. A vectorial function preserves

the vectorial substitutes condition if and only if it is the sum of an additively

separable vectorial function and a cardinally concave vectorial function.

Analogous to Propositions 2-4, Proposition 6 highlights the restrictiveness of

the requirement of preserving the vectorial substitutes condition by focusing on a

small class of vectorial functions.21 A vectorial function U is uni-group spline

concave if it is associated with a uni-group spline concave revenue function. It is

straightforward to show that additively separable, cardinally concave, and uni-group

spline concave vectorial functions all satisfy “M\-concavity,” which is equivalent to

the vectorial substitutes condition (see Appendix A and Murota (2003)).

18This subsection may be viewed as redundant given Subsection 4.2, but the prominence of the
vectorial substitutes condition makes the exercise worthwhile. Another justification is that the
analysis here is needed for the proof of Theorem 3.

19Additively separable vectorial functions should not be confused with additively separable
revenue/transfer functions. We intentionally adopt the same wording to highlight the analogy.
The same logic is behind our naming of cardinally concave vectorial functions.

20It is easy to see that a group concave transfer function is cardinally concave if and only if its
associated vectorial function is cardinally concave.

21An interesting fact we note here is that the class of vectorial functions identified by Proposition
6 is closed under addition, similar to the class of transfer functions identified by Proposition 2.
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Proposition 6. Suppose there are at least three groups. If a vectorial function

preserves the vectorial substitutes condition for all uni-group spline concave vectorial

functions, then it is the sum of an additively separable vectorial function and a

cardinally concave vectorial function.

When |P| = 2, the characterization for preserving the vectorial substitutes

condition is simple.

Proposition 7. Suppose there are two groups. A vectorial function preserves the

vectorial substitutes condition if and only if it satisfies the vectorial substitutes

condition.

It has long been known that the class of all functions that satisfy the vectorial

substitutes condition is not closed under addition, so the fact that it is for the case

of |P| = 2 may be surprising.

When the partition is the finest, i.e., every doctor forms a group, Theorem 4

(as well as Proposition 7) degenerates into Theorem 1, so it is mathematically more

general.

5.2 Delegation of Hiring Decisions

Large organizations often delegate hiring decisions to their departments, possibly

because headquarters often lack the expertise and/or information to measure revenue

impacts of particular candidates. Is there a scenario for the delegation to be

compatible with profit maximization? We will present a tractable class of revenue

functions for which the answer is positive.

We say that a revenue function S : 2D → R is group separable plus concave if

S = S1 +S2, where S1 is group separable and S2 is group concave. Group separable

plus concave revenue functions form a large subclass of revenue functions that satisfy

the substitutes condition, encompassing most subclasses mentioned in this paper as

shown in Figure 1.22 Such S may originate from adding a group concave transfer

function to a group separable revenue function, or adding a group separable transfer

function to a group concave revenue function. As seen in Theorems 2 and 3, those

transfer policies preserve the substitutes condition in their respective settings.

Let the hospital maximize profit V ( · ; s, S), where s is a salary schedule and

S is group separable plus concave as defined above. There is a sense in which the

22Not every revenue function that satisfies the substitutes condition is a group separable plus
concave revenue function. An ingenious example due to Ostrovsky and Paes Leme (2015) is not.
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Condition

Notes: It is assumed that |P| > 2 and for every P ∈ P, |P | > 2. Each class occupies
the smallest convex area that covers its name. For example, group separable plus concave
revenue functions occupy the convex hull of the circle for group separable revenue functions
and the circle for group concave revenue functions. Areas 0, 1, 2, and 3 represent “Zero”
(the zero revenue/transfer function), “Within-Group Binary Unit-Demand,” “Uni-Group
Spline Concave,” and “Uni-Group Spline Concave,” respectively. Every area corresponds to
a nonempty class, except for the shaded area besides Area 0.

Figure 1: Venn Diagram for Representative Classes of Revenue/Transfer Functions

hospital can delegate most hiring decisions to the department level: each department

hires doctors from a particular group, while it only decides how many doctors each

department should hire, based on an optimization problem in the domain of τ(2D).

Let {S1
P }P∈P be associated with S1 and W be the vectorial function associated

with S2. Given s, imagine a department that hires doctors from P ∈ P solving the
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following constrained optimization problem for each m ∈ [0, |P |]Z:

ΠP (m) := max
{
S1
P (A)−

∑
d∈A

sd : A ⊂ P and |A| = m
}

;

XP (m) :=
{
A ⊂ P : S1

P (A)−
∑
d∈A

sd = ΠP (m) and |A| = m
}
.

In words, each department figures out, for every possible exact quota imposed on

them, its profit and demand sets.

The optimization problem at the hospital level can now be written:

max
z∈τ(2D)

W (z) +
∑
P∈P

ΠP (z(P )).

The maximizer z∗ can then be used to dictate the exact quota for each group P

as z∗(P ), while the department associated with P employs any set in XP (z∗(P ))

accordingly. The union of such sets across P is an optimal solution to the hospital’s

profit maximization problem.

It is quite appealing that the hospital can achieve optimality without knowing

{S1
P }P∈P or s. Through delegation of specific hiring decisions to the department

level, it only needs to optimize based on W and {ΠP }P∈P , and each ΠP can be

reported by the associated department. This process may provide a suitable model of

hiring decisions of a large organization, where the top-level management determines

“headcounts” for its units but not whom to fill the positions with.

6 Discussion and Conclusion

In a doctor-hospital job matching setting, this paper studies fiscal policy

interventions in the form of transfer functions, each of which specifies amounts of

subsidy or taxation for all possible sets of doctors to be hired by a hospital. The

current paper investigates which transfer functions preserve the substitutes condition

in several practical settings, and thus preserve the existence and other regularities

of competitive equilibria. Our results are summarized in Table 1. As pointed out

earlier, they are readily applicable to mainstream models of object assignments or

multi-object auctions.

It is easy to derive some new results using our analysis. First, by Proposition 1,

translating a class of revenue functions by additively separable revenue functions

(potentially applying different translations to different revenue functions) never

changes the set of transfer functions that preserve the substitutes condition for
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the class. Second, if one class of revenue functions is the subclass of another, then

preserving the substitutes condition for the former is less restrictive than for the

latter. For instance, the class of unit-demand revenue functions is between the class

of binary unit-demand revenue functions and the class of revenue functions that

preserve the substitutes condition (Figure 1), so, by Theorem 1 and Proposition 2,

every transfer function that preserves the substitutes condition for all unit-demand

revenue functions is the sum of an additively separable transfer function and a

cardinally concave one.

Table 1: Preserving the Substitutes Condition for Different Classes of Revenue
Functions

Revenue Functions Transfer Functions Reference

Substitutes Condition
Additively Separable

+ Cardinally Concave
Theorem 1

Binary Unit-Demand
Additively Separable

+ Cardinally Concave

Theorem 1

Proposition 2

Group Separable
Additively Separable

+ Group Concave
Theorem 2

Within-Group

Binary Unit-Demand

Additively Separable

+ Group Concave

Theorem 2

Proposition 3

Group Concave
Group Separable

+ Cardinally Concave
Theorem 3

Uni- & Uni-Group

Spline Concave

Group Separable

+ Cardinally Concave

Theorem 3

Proposition 4

Cardinally Concave Substitutes Condition Corollary 1

Additively Separable Substitutes Condition Proposition 1

Notes: In each row, the class of transfer functions in the second column is exactly the class

that preserve the substitutes condition for the class of revenue functions in the first column.

The “+” sign represents the fact that a function in the class can be written as the sum of a

function in the class before “+” and one after. For uni- & uni-group spline concave revenue

functions and group concave revenue functions, the results hold when there are more than

two groups. All classes of revenue/transfer functions in the table are shown in Figure 1.

We also characterize exactly which vectorial functions preserve the vectorial

substitutes condition, a prominent condition for modeling substitutability when

doctors/goods may be homogeneous within groups. We further present a scenario
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in which the hospital can delegate specific hiring decisions to the department level,

but still achieve optimality.

Most of our characterization results,23 when translated into the language of

discrete convex analysis, are new (Murota, 2019). Appendix A explains the

connections. In essence, we systematically answer the natural mathematical

question of which M\-concave functions can be added to interesting classes of

M\-concave functions and preserve M\-concavity. The question happens to bear

economic policy relevance, analogous to how KSY’s study of constraints is both

mathematically and economically relevant.

There are still unanswered questions. Despite our best effort, other interesting

classes of revenue functions may still be found and considered. Further, it is an

open question whether generalizing the substitutes condition (Sun and Yang, 2006;

Shioura and Yang, 2015; Baldwin and Klemperer, 2019) alters our conclusions.

Finally, the class of all possible fiscal policy interventions is strictly larger than

those captured by transfer functions (as we define them). For instance, subsidy or

taxation may depend on the salaries of doctors or the states of other hospitals. We

leave these possibilities for future research.

References
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APPENDIX

A The Substitutes Condition and M\-Concavity

This section briefly reviews the connection between the substitutes condition (which

is central to economic theory) and M\-concavity (which is the mainstay of discrete

convex analysis), and relevant results used in this paper (see Murota, 1996; Murota

and Shioura, 1999; Fujishige and Yang, 2003; Murota, 2003; Milgrom and Strulovici,

2009; Shioura and Tamura, 2015; Murota, 2016, 2019, for more details).

Denote the indicator function for P ∈ P by iP ∈ RP , that is, iP (P ) = 1

while iP (P ′) = 0 for each P ′ 6= P . A vectorial function U is M\-concave if for

any z, z′ ∈ τ(2D) and P ∈ P such that z(P ) > z′(P ), either U(z) + U(z′) ≤
U(z − iP ) + U(z′ + iP ), or there exists P ′ ∈ P such that z′(P ′) > z(P ′) and

U(z) + U(z′) ≤ U(z− iP + iP
′
) + U(z′ + iP − iP

′
), or both.

There is an analogous concept for revenue functions. Given any set of doctors

A ⊂ D and d ∈ D, we write A+ d := A ∪ {d} and A− d := A \ {d}, and follow this

convention for other sets too. A revenue function R is discrete concave if for any

A,B ⊂ D and d ∈ A\B, either R(A)+R(B) ≤ R(A−d)+R(B+d), or there exists

d′ ∈ B \A such that R(A) +R(B) ≤ R(A− d+ d′) +R(B + d− d′), or both.24

24A discrete concave revenue function is called an M\-concave set function by Murota (2016).
We rename it to avoid ambiguity.
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The following characterization of the substitutes condition by Fujishige and Yang

(2003) brings together the economics literature on the substitutes condition and

discrete convex analysis.

Lemma 1 (Fujishige and Yang (2003)). A revenue function R satisfies the

substitutes condition if and only if it is discrete concave.

Given Lemma 1, it is straightforward to prove the following known equivalence

between the vectorial substitutes condition and M\-concavity (Shioura and Tamura,

2015, Theorem 4.1).

Lemma 2. A vectorial function satisfies the vectorial substitutes condition if and

only if it is M\-concave.

Due to this lemma, we use the concept of M\-concavity interchangeably with the

vectorial substitutes condition, and are allowed to utilize powerful results in discrete

convex analysis in our proofs. For example, the combination of the following two

conditions characterize M\-concavity and thus the vectorial substitutes condition.25

Theorem 5 (Murota and Shioura (2018)). A vectorial function U is M\-concave if

and only the following two conditions are both satisfied:

• for any z, z′ ∈ τ(2D) such that |z| > |z′|, there exists P ∈ P such that

z(P ) > z′(P ) and U(z) + U(z′) ≤ U(z− iP ) + U(z′ + iP );

• for any z, z′ ∈ τ(2D) and P ∈ P such that |z| ≤ |z′| and z(P ) > z′(P ), there

exists P ′ ∈ P such that z′(P ′) > z(P ′) and U(z) + U(z′) ≤ U(z− iP + iP
′
) +

U(z′ + iP − iP
′
).

There is obviously a revenue function version of Theorem 5 (again, consider the

finest partition); we refer to it still by Theorem 5.

The combination of the following three local conditions characterize discrete

concavity and thus the substitutes condition. The following statement is Theorem

3.2 of Murota (2016).26

Theorem 6. A revenue function R is discrete concave if and only if for any A ⊂ D,

the following three conditions are all satisfied:

• for any distinct d, d′ ∈ D \A, R(A+ d+ d′) +R(A) ≤ R(A+ d) +R(A+ d′);

25The exact statement of the theorem is absent from Murota and Shioura (2018); it combines
their Theorems 1.1 and 2.1.

26We are unable to track down its first appearance.
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• for any distinct d, d′, d′′ ∈ D \A,

R(A+ d+ d′) +R(A+ d′′) ≤ max{R(A+ d+ d′′) +R(A+ d′),

R(A+ d) +R(A+ d′ + d′′)};

• for any distinct d, d′, d′′, d′′′ ∈ D \A,

R(A+ d+ d′) +R(A+ d′′ + d′′′) ≤ max{R(A+ d+ d′′) +R(A+ d′ + d′′′),

R(A+ d+ d′′′) +R(A+ d′ + d′′)}.

B Main Proofs

B.1 Proofs of Propositions 2 and 3

In preparation for the main proofs, we establish an equation that a transfer function

must satisfy if it preserves the substitutes condition for all spline concave revenue

functions in a set of doctors (defined in Section 4.2).27

Lemma 3. If a transfer function T preserves the substitutes condition for all spline

concave revenue functions in A ⊂ D, then for any B ⊂ D not containing d, d ∈ A,

and any d∗ ∈ D\(A∪B), we have T (B+d+d∗)−T (B+d) = T (B+d+d∗)−T (B+d).

Proof. Suppose, for contradiction, that

T (B + d+ d∗)− T (B + d) > T (B + d+ d∗)− T (B + d). (1)

(The “<” case is symmetric to this “>” case.) In what follows, we will construct

a spline concave revenue function R in A such that R + T does not satisfy the

substitutes condition.

Let α := max{T (C) : C ⊂ D} −min{T (C) : C ⊂ D} + 1 > 0. We define f so

that f(m) = 3αmin{m, |A ∩ B| + 1} for each m ∈ [0, |A|]Z, and, accordingly, R so

that R(C) = f(|C∩A|) for each C ⊂ D. Note that because B ⊂ D does not contain

d, d ∈ A, we can infer that 1 ≤ |A ∩B|+ 1 ≤ |A| − 1. So R is spline concave in A.

Let ∆ := 1
2 [(T (B + d + d∗) − T (B + d)) − (T (B + d + d∗) − T (B + d))] > 0.

Consider a salary schedule s, where sd = α + T (B + d), sd = α + T (B + d),

sd∗ = (T (B + d+ d∗)− T (B + d))−∆, sd = −4α for each d ∈ B, and sd = 4α for

each d /∈ B ∪ {d, d, d∗}.
27To keep the appendix within reasonable length, we have to constantly invoke mathematical

objects defined in later sections to prove results in earlier sections.
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When the hospital faces s, R, and T , we first note that α is so large that all

doctors in B are demanded, that no doctor outside B ∪ {d, d, d∗} is demanded, and

that either d or d is demanded (but not both). This leaves four possibilities for

demand sets: B + d, B + d, B + d+ d∗, and B + d+ d∗. But

V (B + d; s, R+ T ) = 3α|B ∩A|+ 4α|B|+ 2α;

V (B + d; s, R+ T ) = 3α|B ∩A|+ 4α|B|+ 2α;

V (B + d+ d∗; s, R+ T ) = 3α|B ∩A|+ 4α|B|+ 2α+ ∆;

V (B + d+ d∗; s, R+ T ) = 3α|B ∩A|+ 4α|B|+ 2α−∆.

There is a unique demand set B + d+ d∗.

Now, raise the salary of doctor d to 4α to obtain a new salary schedule s′. Under

s′, the cost of d is so large that B + d and B + d + d∗ can never be optimal. We

can compare the profits of B+ d and B+ d+ d∗ (which remain the same as before),

and conclude that there is a unique demand set B+d. Therefore, raising the salary

of doctor d excludes doctor d∗ from the demand set, a violation of the substitutes

condition. This contradicts our assumption.

Under the assumption of Lemma 3, for any B ⊂ D such that d, d ∈ A\B, adding

an arbitrary d∗ ∈ D \ (A ∪ B) to B + d brings about the same change in the value

of the transfer function T as adding d∗ to B + d. Under the same assumption, we

now show that for any C ⊂ D with d ∈ A ∩ C and d ∈ A \ C, swapping d in C for

d brings about the same change in the value of the transfer function T as swapping

d in A ∩ C for d.

Lemma 4. If a transfer function T preserves the substitutes condition for all spline

concave revenue functions in A ⊂ D, then for any C ⊂ D, d ∈ A∩C, and d ∈ A\C,

T (C − d+ d)− T (C) = T ((A ∩ C)− d+ d)− T (A ∩ C). (2)

Proof. We carry out mathematical induction on |C \ A|. First, note that the

statement is trivially true for any C with |C \ A| = 0; i.e., when C = A ∩ C.

Assume that the statement is true for all C such that |C \ A| ≤ m with m being a

nonnegative integer less than |D \A|. Consider C ⊂ D with |C \A| = m+ 1. There

exists d∗ ∈ C \A. By the induction hypothesis,

T (C − d∗ − d+ d)− T (C − d∗) = T ((A ∩ C)− d+ d)− T (A ∩ C).

By Lemma 3, we have T (C − d + d) − T (C − d∗ − d + d) = T (C) − T (C − d∗) by
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setting B = C − d∗ − d, or, equivalently,

T (C − d+ d)− T (C) = T (C − d∗ − d+ d)− T (C − d∗).

We can connect the two equalities above to obtain Equation (2).

Proof of Proposition 3. Take a transfer function T that preserves the substitutes

condition for all within-group binary unit-demand revenue functions. Define an

additively separable transfer function T 1 such that T 1(A) =
∑

d∈A T ({d}) for each

A ⊂ D. Let T 2 := T − T 1. We only need to show that T 2 is group concave.

For any P ∈ P, d, d′ ∈ P , and A ⊂ D such that d ∈ A and d′ /∈ A, we have

T 2(A− d+ d′)− T 2(A) = (T (A− d+ d′)− T 1(A− d+ d′))− (T (A)− T 1(A))

= (T (A− d+ d′)− T (A))− (T 1(A− d+ d′)− T 1(A))

= (T ({d′})− T ({d}))− (T ({d′})− T ({d}))

= 0,

where the third equality follows from Lemma 4 and the definition of T 1. To see

this, we only need to recognize that the class of all binary unit-demand revenue

functions associated with d, d ∈ D is the same as the class of all spline concave

revenue functions in {d, d}, so we can apply Lemma 4 by setting A = {d, d}.
As a result, for any A,B ⊂ D with τ(A) = τ(B), we can turn A into B

by swapping within-group elements one at a time, without changing the transfer

specified by T 2, so T 2(A) = T 2(B). In other words, T 2 is group cardinal; i.e., there

exists a function W : τ(2D)→ R such that T 2(A) = W (τ(A)) for each A ⊂ D.

Suppose T 2 is not group concave. Then, W is not M\-concave by Lemma 2.

There exist z, z ∈ τ(2D) and P ∗ ∈ P such that z(P ∗) > z(P ∗), W (z) + W (z) >

W (z− iP
∗
)+W (z+ iP

∗
), and W (z)+W (z) > W (z− iP

∗
+ iP

′∗
)+W (z′+ iP

∗− iP
′∗

)

for each P ′∗ ∈ P with z′(P ′∗) > z(P ′∗). Define

α :=
1

4
min

{
(W (z) +W (z)−W (z− iP

∗
)−W (z′ + iP

∗
)),

min
P ′∗∈P with z(P ′∗)>z(P ′∗)

(W (z) +W (z′)−W (z− iP
∗

+ iP
′∗

)−W (z′ + iP
∗ − iP

′∗
))
}
,

and consider, for two same-group doctors d and d, a binary unit-demand revenue

function R with R(C) = αmin{1, |C ∩ {d, d}|} for each C ⊂ D. We now show that

R+ T fails the substitutes condition.

Let us consider A,B ⊂ D such that τ(A) = z, τ(B) = z, and |A ∩ B| is the

largest possible among those pairs of sets satisfying the last two conditions. Since
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z(P ∗) > z(P ∗), there exists d∗ ∈ P ∗ such that d∗ ∈ A \B. We have

(R+ T )(A) + (R+ T )(B)− (R+ T )(A− d∗)− (R+ T )(B + d∗)

= (R(A) +R(B)−R(A− d∗)−R(B + d∗))+

(T 1(A) + T 1(B)− T 1(A− d∗)− T 1(B + d∗))+

(T 2(A) + T 2(B)− T 2(A− d∗)− T 2(B + d∗)),

where the first term of the last expression is bounded below by −2α by the

construction of R, the second term is 0 by the definition of T 1, and the third term

equals (W (z) + W (z) −W (z − iP
∗
) −W (z′ + iP

∗
)). So the expression is strictly

positive. We can similarly prove that for any d′∗ ∈ B \A,

(R+ T )(A) + (R+ T )(B) > (R+ T )(A− d∗ + d′∗) + (R+ T )(B + d∗ − d′∗).

In conclusion, R + T cannot be discrete concave. By Lemma 1, R + T fails the

substitutes condition, a contradiction.

Proposition 2 is a corollary of Proposition 3.

Proof of Proposition 2. Take a transfer function T that preserves the substitutes

condition for all binary unit-demand revenue functions. Let the partition be

the coarsest: P = {D}. Then the set of all within-group binary unit-demand

revenue functions is the set of all binary unit-demand revenue functions. Applying

Proposition 3 tells us that T = T 1 + T 2, where T 1 is additively separable, and T 2

is group concave. But given P = {D}, group concavity is the same as cardinal

concavity.

B.2 Proof of Theorem 1

We first make a simple observation that the sum of two transfer functions that

preserve the substitutes condition still preserves the substitutes condition.28

Lemma 5. The class of transfer functions that preserve the substitutes condition is

closed under addition.

Proof. Consider any two transfer functions T 1 and T 2 that preserve the substitutes

condition. We need to show that T 1 + T 2 preserves the substitutes condition.

But given any revenue function R that satisfies the substitutes condition, by the

28Note that the class of transfer functions that preserve the substitutes condition for a subclass
of revenue functions may not be closed under addition.
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definition of preserving the substitutes condition, R+T 1 satisfies the condition, and

then R+ (T 1 + T 2) = (R+ T 1) + T 2 also satisfies the condition.

The proof of Theorem 1 utilizes results from KSY, so we introduce some of the

concepts there. The hospital may be constrained to pick a set out of a nonempty

collection F ⊂ 2D, called its feasibility collection. For example, for integers

0 ≤ f ≤ c ≤M , the feasibility collection D[f,c] := {A ⊂ D : f ≤ |A∩D| ≤ c} is said

to be defined by an interval constraint; as special cases, D[f,M ], D[0,c], and D[f,f ]

are defined by a floor constraint, a ceiling constraint, and an exact constraint,

respectively. Abusing notation, given F , a revenue function R, and a transfer

function T , we define the maximal profit function Π and demand correspondence X

so that for each salary schedule s,

Π(s;R+ T,F) = max{V (A; s, R+ T ) : A ∈ F};

X(s;R+ T,F) = {A ∈ F : V (A; s, R+ T ) = Π(s;R+ T,F)}.

Since the substitutes condition is defined on demand correspondences, it is

straightforward to extend Definition 1 when constraints are allowed.

A classical characterization of the substitutes condition by Gul and Stacchetti

(1999) generalizes to the case with constraints. A demand correspondenceX(·;R,F)

satisfies the single-improvement property if for any salary schedule s and A ∈ F
such that A /∈ X(s;R,F), there exists A′ ∈ F such that V (A; s, R) < V (A′; s, R),

|A \A′| ≤ 1, and |A′ \A| ≤ 1.

Lemma 6 (Gul and Stacchetti (1999)). A demand correspondence X( · ;R,F)

satisfies the substitutes condition if and only if it satisfies the single-improvement

property.

A feasibility collection F preserves the substitutes condition if for each

revenue function R that satisfies the condition, X( · ;R,F) satisfies it. Theorem 1 of

KSY implies that a feasibility collection defined by an interval constraint preserves

the substitutes condition. Now we proceed to prove Theorem 1.

Proof of Theorem 1. The necessity part follows from Proposition 2. For sufficiency,

due to Proposition 1 and Lemma 5, we only need to show that a cardinally concave

transfer function T preserves the substitutes condition, i.e., given a revenue function

R that satisfies the substitutes condition, R + T satisfies it too. By Lemma 6, we

can instead prove the single-improvement property of R + T (when the hospital is

unconstrained with F = 2D).
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Consider a salary schedule s and a suboptimal A ∈ 2D such that A /∈ X(s;R +

T, 2D); i.e., there exists A∗ ⊂ A such that

R(A∗) + T (A∗)−
∑
d∈A∗

sd > R(A) + T (A)−
∑
d∈A

sd. (3)

We need to find A′ ⊂ D such that |A \ A′| ≤ 1, |A′ \ A| ≤ 1, and R(A′) + T (A′) −∑
d∈A′ sd > R(A) + T (A)−

∑
d∈A sd.

Let f be the concave-extensible function on [0,M ]Z associated with T . Define

α := f(|A|)− f(|A| − 1) and α := f(|A|+ 1)− f(|A|). Construct transfer functions

T and T such that T (B) = f(|A|) + α(|B| − |A|) and T (B) = f(|A|) + α(|B| − |A|)
for each B ⊂ D. By the concave extensibility of f , we have T ≥ T and T ≥ T .

Note that T and T are cardinal, each equal to a constant plus an additively

separable transfer function (which assigns the same transfer amount to each doctor).

Since a constant transfer function does not change demand correspondences, it

preserves the substitutes condition. Hence, by Proposition 1 and Lemma 5, T and

T both preserve the substitutes condition. In particular, R + T and R + T satisfy

the substitutes condition.

When |A∗| ≤ |A|, we have

R(A∗) + T (A∗)−
∑
d∈A∗

sd ≥R(A∗) + T (A∗)−
∑
d∈A∗

sd

>R(A) + T (A)−
∑
d∈A

sd = R(A) + T (A)−
∑
d∈A

sd,

where the first inequality follows from T ≥ T , and the second from Inequality (3).

So A is less profitable than A∗ under s and R+T . Theorem 1 of KSY implies that,

as R+T satisfies the substitutes condition, X( · ;R+T ,D[0,|A|]) does too. But note

that A∗ is feasible under the ceiling constraint of |A| by assumption. Lemma 6 and

the suboptimality of A imply the existence of A′ ∈ D[0,|A|] such that |A′ \ A| ≤ 1,

|A \A′| ≤ 1, and R(A′) + T (A′)−
∑

d∈A′ sd > R(A) + T (A)−
∑

d∈A sd. But then

R(A′) + T (A′)−
∑
d∈A′

sd =R(A′) + T (A′)−
∑
d∈A′

sd

>R(A) + T (A)−
∑
d∈A

sd = R(A) + T (A)−
∑
d∈A

sd,

where the first equality follows from the fact that |A′| equals |A| or |A| − 1.

The case of |A∗| > |A| is analogous. Theorem 1 of KSY implies that as

R + T satisfies the substitutes condition, X( · ;R + T ,D[|A|,M ]) does too. A
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single-improvement opportunity A′ over A under the floor constraint is a single-

improvement opportunity without the constraint. We skip the details.

B.3 Proof of Proposition 6

We first introduce a simple consequence of Lemma 3.

Lemma 7. If a vectorial function W preserves the vectorial substitutes condition

for all spline concave vectorial functions in Q = ∪Q, where Q ( P, then for any

z, z′ ∈ τ(2D) and P ∗ ∈ P \ Q such that |z(Q)| = |z′(Q)|, z(P ) = z′(P ) for each

P ∈ P \ Q, and z(P ∗) < |P ∗|, we have

W (z + iP
∗
)−W (z) = W (z′ + iP

∗
)−W (z′). (4)

Proof. Let W be associated with a group concave transfer function T . Then T

preserves the substitutes condition for all spline concave revenue functions in Q.

Because |z(Q)| = |z′(Q)| and z(P ) = z′(P ) for each P ∈ P \ Q, we can find

A,A′ ⊂ D such that τ(A) = z, τ(A′) = z′, |A ∩Q| = |A′ ∩Q|, and A \Q = A′ \Q.

Let d∗ ∈ P ∗ \A.

Lemma 3 tells us that in the case of |A \A′| = |A′ \A| = 1, T (A+ d∗)−T (A) =

T (A′+d∗)−T (A′), which implies Equation (4). In the case of |A\A′| = |A′\A| > 1,

we can turn A into A′ one element at a time, obtain a series of equations, and connect

them to obtain T (A+ d∗)−T (A) = T (A′+ d∗)−T (A′). So Equation (4) holds.

Equation (4) helps us dissect W .

Lemma 8. When |P| > 2, for a vectorial function W , if Equation (4) holds

for any z, z′ ∈ τ(2D) and any P ∗ ∈ P such that |z(P − P ∗)| = |z′(P − P ∗)|,
z(P ∗) = z′(P ∗) < |P ∗|, then there exists a family of real-valued functions on [0,M ]Z,

{fP }P∈P , and f :→ R such that W (z) =
∑

P∈P fP (z(P ))+f(|z|) for each z ∈ τ(2D).

Proof. We assign values to {fP }P∈P and f by induction. Let f(0) = W (τ(∅)),
f(1) = 0, and for each P ∈ P, fP (0) = 0 and fP (1) = W (iP ). Further, for

p ∈ [2, |P|]Z, set f(p) = W (z)−
∑

P∈P fP (z(P )) for any z ∈ τ(2D) with |z| = p and

z ≤
∑

P∈P iP . We need to show that this way of assigning values to f is independent

of the chosen z. We carry out induction on |z|.
The base cases of |z| = 1 is trivial. Assume that for some p ∈ [1, |P| − 1]Z,

f(p) = W (z) −
∑

P∈P fP (z(P )) is independent of the chosen z ∈ τ(2D) with

|z| = p and z ≤
∑

P∈P iP . Consider z, z ∈ τ(2D) with |z| = |z| = p + 1 and
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z, z ≤
∑

P∈P iP . First, impose the additional assumption that there exists P ∗ ∈ P
with z(P ∗) = z(P ∗) = 1. Hence, we have(

W (z)−
∑
P∈P

fP (z(P ))
)
−
(
W (z)−

∑
P∈P

fP (z(P ))
)

= (W (z)−W (z))−
∑
P∈P

(fP (z(P ))− fP (z(P )))

= (W (z− iP
∗
)−W (z− iP

∗
))−

∑
P∈P

(fP (z(P ))− fP (z(P ))) = 0,

where the second equality follows from Equation (4) and the third follows from the

inductive hypothesis. So the assignment of f(p + 1) is the same based on any two

z and z that share a positive dimension. But any z, z ∈ τ(2D) with |z| = |z| > 1

and z, z ≤
∑

P∈P iP are connected through a series of such z ∈ τ(2D), where any

two neighbors share a positive dimension. We can conclude that the assignment of

f(p+ 1) is the same based on any two z and z, and finish the induction.

Given the above, we can start another induction with the base case as follows:

W (z) =
∑

P∈P fP (z(P )) + f(|z|) for each z ∈ τ(2D) with z ≤
∑

P∈P iP . Assume

that we have assigned values so that W (z) =
∑

P∈P fP (z(P )) + f(|z|) for each

z ∈ τ(2D) with z ≤ y, where y ∈ τ(2D), y ≥
∑

P∈P iP , and y(P ) < |P | for some

P ∈ P. Assign new values so that

fP (y(P ) + 1) =W ((y(P ) + 1)iP )− f(y(P ) + 1);

f(|y|+ 1) =W (y + iP )−
∑
P∈P

fP ((y + iP )(P )).

We only need to show that W (z) =
∑

P∈P fP (z(P )) + f(|z|) for each z ∈ τ(2D)

with τ(∅) ≤ z ≤ y + iP and z(P ) = y(P ) + 1. We do this by strong induction on

m := |z(P − P )|.29 The case of m = 0 follows from the assignment of fP (y(P ) + 1)

and fP (0) above. The case of m = |y(P − P )| follows from the assignment of

f(|y|+ 1).

Assume that for some m ∈ [0, |y(P−P )|−2]Z, W (z) =
∑

P∈P fP (z(P ))+f(|z|)
for each z ∈ τ(2D) satisfying z(P ) = y(P )+1, z(P ) ≤ y(P ) for each P ∈ P−P , and

|z(P − P )| ≤ m. Consider x ∈ τ(2D) that satisfies x(P ) = y(P ) + 1, x(P ) ≤ y(P )

for each P ∈ P − P , and |x(P − P )| = m + 1. Since m + 1 ∈ [1, |y(P − P )| − 1]Z,

|P| > 2, and y ≥
∑

P∈P iP , there exists distinct P ∗, P ∈ P −P such that x(P ∗) ≥ 1

29Note that this is an induction argument within an induction argument.

36

Electronic copy available at: https://ssrn.com/abstract=3624343



and x(P ) < y(P ). Hence, we have

W (x) = W (x− iP
∗
) +W (x− iP + iP )−W (x− iP − iP

∗
+ iP )

=
∑
P∈P

fP (x(P )) + f(|x|),

where the first equality follows from Equation (4), and the second follows from the

induction hypotheses, i.e., W (z) =
∑

P∈P fP (z(P ))+f(|z|) holds for all three terms.

In conclusion, we have W (z) =
∑

P∈P fP (z(P )) + f(|z|) for each z ∈ τ(2D)

satisfying z(P ) = y(P ) + 1, z(P ) ≤ y(P ) for P ∈ P − P , and |z(P − P )| ≤
|y(P − P )| − 1. Combining this with earlier results, we are done.

Proof of Proposition 6. Take a vectorial function W on τ(2D) that preserves the

vectorial substitutes condition for all uni-group spline concave vectorial functions.

By Lemma 7, we know the conditions of Lemma 8 are satisfied. We only need to

show that all obtained functions, {fP }P∈P and f , are concave-extensible.

Let αP (m + 1) = fP (m + 1) − fP (m) for any m ∈ [0, |P | − 1]Z and P ∈ P.

Lemma 8 says that for any distinct P, P ′ ∈ P and m ∈ [1, |P | − 1]Z,

W ((m+ 1)iP )−W (miP + iP
′
) = fP (m+ 1)− fP (m)− fP ′(1) = αP (m+ 1)− fP ′(1);

W (miP )−W ((m− 1)iP + iP
′
) = fP (m)− fP (m− 1)− fP ′(1) = αP (m)− fP ′(1).

Using a “small-α” argument analogous to the one in the proof of Proposition 3, we

can show that W : τ(2D)→ R must be M\-concave. Thus, by the first condition in

Theorem 5, we have

αP (m+ 1)− αP (m)

= (W ((m+ 1)iP ) +W ((m− 1)iP + iP
′
))− (W (miP + iP

′
) +W (miP ))

≤ (W (miP ) +W (miP + iP
′
))− (W (miP + iP

′
) +W (miP )) = 0.

Therefore, fP is concave-extensible.

Let β(m+ 1) = f(m+ 1)− f(m) for m ∈ [0, |D|− 1]Z. For any m ∈ [1, |D|− 1]Z,

find z ∈ τ(2D) and P , P ∈ P such that z(P ), z(P ) ≥ 1 and |z| = m + 1 ≥ 2. By

Lemma 8, we know

W (z)−W (z− iP ) = [f(m+ 1)− f(m)] + [fP (z(P ))− fP (z(P )− 1)]

= β(m+ 1) + [fP (z(P ))− fP (z(P )− 1)];

W (z− iP )−W (z− iP − iP ) = [f(m)− f(m− 1)] + [fP (z(P ))− fP (z(P )− 1)]

= β(m) + [fP (z(P ))− fP (z(P )− 1)].
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Thus, by the first condition in Theorem 5, we have

β(m+ 1)− β(m) = [W (z) +W (z− iP − iP )]− [W (z− iP ) +W (z− iP )]

≤ [W (z− iP ) +W (z− iP )]− [W (z− iP ) +W (z− iP )] = 0.

Therefore, f is concave-extensible.

B.4 Proof of Proposition 4

Lemma 4 easily implies the following results.

Lemma 9. If a transfer function T preserves the substitutes condition for all spline

concave revenue functions in A ⊂ D, then for any B ⊂ D \ A and C,C ⊂ A such

that |C| = |C|,

T (B ∪ C)− T (B ∪ C) = T (C)− T (C). (5)

Proof. We can start with setting the C in Equation (2) to be B ∪C, and swapping

one element in C \ C – say d – for one element in C \ C – say d. This gives us

one equation. Continue the swapping until C becomes C, and connect all obtained

equations to get Equation (5).

Proof of Proposition 4. Take a transfer function T that preserves the substitutes

condition for all uni-group and uni-group spline concave revenue functions. Define

a transfer function T 1 such that T 1(A) =
∑

P∈P T (A ∩ P ) for each A ⊂ D, and let

T 2 := T − T 1.

For any P ∈ P, d, d′ ∈ P , and A ⊂ D such that d ∈ A and d′ /∈ A, we have

T 2(A− d+ d′)− T 2(A)

= (T (A− d+ d′)− T 1(A− d+ d′))− (T (A)− T 1(A))

= (T (A− d+ d′)− T (A))− (T 1(A− d+ d′)− T 1(A))

= (T (A− d+ d′)− T (A))− (T ((A ∩ P )− d+ d′)− T (A ∩ P )) = 0,

where the third equality follows from the definition of T 1, and fourth follows from

Lemma 9. As a result, T 2 is group cardinal; there exists a vectorial function

W on τ(2D) such that for each A ⊂ D, T 2(A) = W (τ(A)). We have T (A) =∑
P∈P T (A ∩ P ) +W (τ(A)) for each A ⊂ D.

We now show that W satisfies the conditions of Lemma 8. Pick any z, z′ ∈ τ(2D)

and P ∗ ∈ P such that |z(P − P ∗)| = |z′(P − P ∗)|, z(P ∗) = z′(P ∗) < |P ∗|. We can

find A,A′ ⊂ D such that τ(A) = z, τ(A′) = z′, and A ∩ P ∗ = A′ ∩ P ∗. Because T
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preserves the substitutes condition for all uni-group spline concave revenue functions,

by Lemma 9, for any d ∈ P ∗ \A, we can derive

T (A+ d)− T (A) = T (A′ + d)− T (A′). (6)

We obtain Equation (4) through

W (z + iP
∗
)−W (z) = W (τ(A+ d))−W (τ(A))

= (T (A+ d)− T 1(A+ d))− (T (A)− T 1(A))

= (T (A+ d)− T (A))− (T ((A+ d) ∩ P ∗)− T (A ∩ P ∗))

= (T (A′ + d)− T (A′))− (T ((A′ + d) ∩ P ∗)− T (A′ ∩ P ∗))

= (T (A′ + d)− T 1(A′ + d))− (T (A′)− T 1(A′))

= W (τ(A′ + d))−W (τ(A′))

= W (z′ + iP
∗
)−W (z′),

where the fourth equality follows from Equation (6). Therefore, by Lemma 8, there

exists {fP }P∈P and f such that W (z) =
∑

P∈P fP (z(P ))+f(|z|) for each z ∈ τ(2D).

For each P ∈ P, define TP : 2P → R so that TP (A) = T (A)+fP (|A|) for each A ⊂ P .

We have T (A) =
∑

P∈P TP (A ∩ P ) + f(|A|) for each A ⊂ D.

Next, we show that each TP satisfies the substitutes condition on 2P , through

proving the three conditions of Theorem 6. Let Ψ :=
∑

P ′∈P−P TP ′(∅)). Pick any

A,B ⊂ P with |A| = |B| and any d ∈ A\B. Using a “small-α” argument analogous

to the one in the proof of Proposition 3, we can prove that T must satisfy the

substitutes condition. By the second condition in Theorem 5, there exists d′ ∈ B \A
such that

T (A) + T (B) ≤ T (A− d+ d′) + T (B + d− d′).

Then we know the third condition of Theorem 6 holds as a special case of the

following (i.e., when |A \B| = 2):

TP (A) + TP (B)

= (T (A)− f(|A|)−Ψ) + (T (B)− f(|B|)−Ψ)

≤ (T (A− d+ d′)− f(|A− d+ d′|)−Ψ) + (T (B + d− d′)− f(|B + d− d′|)−Ψ)

=TP (A− d+ d′) + TP (B + d− d′).

Pick any A ⊂ P and distinct d, d′, d′′ ∈ P \A. By the first condition in Theorem

39

Electronic copy available at: https://ssrn.com/abstract=3624343



5, we have

T (A+d+d′)+T (A+d′′) ≤ max{T (A+d)+T (A+d′+d′′), T (A+d′)+T (A+d+d′′)}.

Without loss of generality, assume T (A+d+d′)+T (A+d′′) ≤ T (A+d)+T (A+d′+d′′).

Then we know the second condition of Theorem 6 holds:

TP (A+ d+ d′) + TP (A+ d′′)

= (T (A+ d+ d′)− f(|A|+ 2)−Ψ) + (T (A+ d′′)− f(|A|+ 1)−Ψ)

≤ (T (A+ d′ + d′′)− f(|A|+ 2)−Ψ) + (T (A+ d)− f(|A|+ 1)−Ψ)

=TP (A+ d′ + d′′) + TP (A+ d).

Pick any A ⊂ P and any distinct d, d′ ∈ P \ A. Choose any two distinct

P̄ , P̂ ∈ P −P , any d′′ ∈ P̄ , and d′′′ ∈ P̂ . By the second condition in Theorem 5, we

see that

T (A+ d+ d′) + T (A+ d′′ + d′′′)

≤ max{T (A+ d+ d′′) + T (A+ d′ + d′′′), T (A+ d′ + d′′) + T (A+ d+ d′′′)}.

Without loss of generality, assume T (A + d + d′) + T (A + d′′ + d′′′) ≤ T (A + d +

d′′) + T (A+ d′ + d′′′). Then we know the first condition of Theorem 6 holds:

TP (A+ d+ d′) + TP (A)

= (T (A+ d+ d′)− f(|A|+ 2)−Ψ)

+ (T (A+ d′′ + d′′′)− f(|A|+ 2)−Ψ + TP̄ (∅) + TP̂ (∅)− TP̄ (d′′)− TP̂ (d′′′))

≤ (T (A+ d+ d′′)− f(|A|+ 2)−Ψ + TP̄ (∅)− TP̄ (d′′))

+ (T (A+ d′ + d′′′)− f(|A|+ 2)−Ψ + TP̂ (∅)− TP̂ (d′′′))

= TP (A+ d) + TP (A+ d′).

Finally, we prove f is concave-extensible. For any m ∈ [1, |D| − 1]Z, pick A ⊂ D
so that |A| = m − 1 and there exists d′ ∈ P ′ and d′′ ∈ P ′′ for distinct P ′, P ′′ ∈ P.

Let Φ :=
∑

P∈P TP (A∩P ). Note that T (A+d′+d′′)+T (A) ≤ T (A+d′)+T (A+d′′)
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by the first condition of Theorem 6. Thus we know

f(m+ 1)− f(m)

= (T (A+ d′ + d′′)− Φ + TP ′(A ∩ P ′) + TP ′′(A ∩ P ′′)− TP ′(A ∩ P ′ + d′)

− TP ′′(A ∩ P ′′ + d′′)) − (T (A+ d′)− Φ + TP ′(A ∩ P ′)− TP ′(A ∩ P ′ + d′))

≤ (T (A+ d′′)− Φ + TP ′′(A ∩ P ′′)− TP ′′(A ∩ P ′′ + d′′)) − (T (A)− Φ)

= f(m)− f(m− 1)

This concludes the proof.

B.5 Proofs of Theorems 2, 3, and 4

We prove a known result for completeness (Murota, 2019, Proposition 4.14).

Lemma 10. An additively separable vectorial function preserves the vectorial

substitutes condition.

Proof. Let a vectorial function U satisfy the vectorial substitutes condition and

thus M\-concavity (Lemma 2), and a vectorial function W be additively separable

with respect to a family of concave-extensible functions {fP }P∈P . Take any

z, z′ ∈ τ(2D) and P̂ ∈ P such that z(P̂ ) > z′(P̂ ). Since U is M\-concave, either

U(z−iP̂ )+U(z′+iP̂ ) ≥ U(z)+U(z′), or there exists P̂ ′ ∈ P such that z′(P̂ ′) > z(P̂ ′)

and U(z− iP̂ + iP̂
′
) + U(z′ + iP̂ − iP̂

′
) ≥ U(z) + U(z′), or both.

In the first case, U(z− iP̂ )+U(z′+ iP̂ )−U(z)−U(z′) is nonnegative. Moreover,

by the additive separability of W and z(P̂ ) > z′(P̂ ),

U(z− iP̂ ) + U(z′ + iP̂ )− U(z)− U(z′)

= fP̂ (z(P̂ )− 1) + fP̂ (z′(P̂ ) + 1)− fP̂ (z(P̂ ))− fP̂ (z′(P̂ )) ≥ 0.

So we have (U +W )(z− iP̂ ) + (U +W )(z′ + iP̂ )− (U +W )(z)− (U +W )(z′) ≥ 0.

In the second case, we can similarly show

(U +W )(z− iP̂ + iP̂
′
) + (U +W )(z′ + iP̂ − iP̂

′
) ≥ (U +W )(z) + (U +W )(z′).

Combining these two cases proves that U +W is M\-concave.

Analogous to Lemma 5, it is easy to see the following result.

Lemma 11. The class of vectorial functions that preserve the vectorial substitutes

condition is closed under addition.

Proof of Theorem 4. The necessity part follows from Proposition 6. For sufficiency,

in view of Proposition 10 and Lemma 11, we only need to show that given a vectorial
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function U associated with a revenue function R that satisfies the substitutes

condition, and a vectorial function W associated with a cardinally concave transfer

function T , U +W satisfies the vectorial substitutes condition. But Theorem 1 says

that R + T satisfies the substitutes condition. Because U + W is associated with

R+ T , it satisfies the vectorial substitutes condition.

Adding group separable transfer functions to group concave revenue functions

gives us a new subclass of functions that satisfy the substitutes condition.

Lemma 12. The sum of a group concave revenue function and a group separable

transfer function satisfies the substitutes condition.

Proof. We show that R + T , where R is a group separable revenue function and T

is a group concave transfer function, satisfies the single-improvement property, that

is, for any salary schedule s and A ⊂ D such that A /∈ X(s;R+ T ), we need to find

A′ ⊂ D such that V (A; s, R+ T ) < V (A′; s, R+ T ), |A \A′| ≤ 1, and |A′ \A| ≤ 1.

Within each group P , denote the profit function associated with its revenue

function RP by VP ( · ; s|P , RP ).30 Suppose that there exists P ∗ ∈ P and d, d′ ∈ P ∗

such that d ∈ A, d′ /∈ A, and VP ∗((A∩P ∗)−d+d′; s|P ∗ , RP ) > VP ∗(A∩P ∗; s|P ∗ , RP ).

In such a case, because V (A− d+ d′; s, R) > V (A; s, R) and T (A− d+ d′) = T (A),

we have V (A − d + d′; s, R + T ) > V (A; s, R + T ). We can set A′ = A − d + d′ for

this simple case. Thus, without loss of generality, we assume nonexistence of such

P ∗.

Hence, within every group P ∈ P, A ∩ P offers the maximal profit under the

exact constraint of |A∩P | (given the salary schedule s|P and revenue function RP ).

For every P ∈ P, define fP : [0, |P |]Z → R such that

fP (m) = max{VP (B; s|P , RP ) : B ⊂ P and |B| = m},

which is the maximal profit under the exact constraint of m within group P . So

VP (A∩P ; s|P , RP ) = fP (|A∩P |) for each P ∈ P. Define W : τ(2D)→ R such that

W (z) =
∑

P∈P fP (z(P )) for each z ∈ τ(2D).

By Lemma 20 of KSY, each fP is concave-extensible, and thus W is additively

separable. Define U : τ(2D) → R to be associated with T . According to

Proposition 10, W + U is M\-concave; it satisfies a multi-unit single-improvement

property (Murota, 2003; Milgrom and Strulovici, 2009). In other words, at

least one of the following 3 statements must be true: there exists P̃ ∈ P
30Here, s|P is the restriction of salary schedule s to P .
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such that (W + U)(τ(A) + iP̃ ) > (W + U)(τ(A)); there exists P̃ ∈ P such

that (W + U)(τ(A) − iP̃ ) > (W + U)(τ(A)); there exists P̃ , P̃ ′ ∈ P such that

(W + U)(τ(A)− iP̃ + iP̃
′
) > (W + U)(τ(A)).

In the first case, we can use Lemma 19 of KSY to find d∗ ∈ P̃ \ A such that

VP̃ ((A ∩ P̃ ) + d∗; s|P̃ , RP̃ ) = fP̃ (|A ∩ P̃ |+ 1). Consequently,

V (A+ d∗; s, R+ T ) = (W + U)(τ(A) + iP̃ ) > (W + U)(τ(A)) = V (A; s, R+ T ),

so A + d∗ ⊂ D is a single-improvement opportunity and we can set A′ = A + d∗.

Similarly, in the second case, we can find A− d∗ ⊂ D with d∗ ∈ P̃ ∩ A as a single-

improvement opportunity; in the third case, we can find A − d∗ + d† ⊂ D with

d∗ ∈ P̃ ∩A and d† ∈ P̃ ′ \A as a single-improvement opportunity.

Proof of Theorem 3. The necessity part follows from Proposition 4 because all

involved spline concave revenue functions are group concave. For sufficiency,

consider a group concave revenue function R, a group separable transfer function

T 1, and a cardinally concave transfer function T 2. Lemma 12 says that R + T 1

satisfies the substitutes condition; and so Theorem 1 implies that (R + T 1) + T 2

satisfies the substitutes condition.

Proof of Theorem 2. The necessity part follows from Proposition 3 because all

within-group binary unit-demand revenue functions are group separable. For

sufficiency, consider a group separable revenue function R, an additively separable

transfer function T 1, and a group concave transfer function T 2. Lemma 12 says

that R + T 2 satisfies the substitutes condition; and so Theorem 1 implies that

(R+ T 2) + T 1 satisfies the substitutes condition.

B.6 Proofs of Proposition 5 and Proposition 7

When |P| = 2, we have the following result.

Lemma 13. Suppose there are two groups. The sum of two vectorial functions that

both satisfy the vectorial substitutes condition satisfies it.

Proof. Given two vectorial functions U and U ′ that both satisfy the vectorial

substitutes condition, we show that U+U ′ is M\-concave. Consider any z, z′ ∈ τ(2D)

and P ∈ P such that z(P ) > z′(P ). There is only one other P ′ ∈ P.

If |z| ≤ |z′|, we can apply the second condition in Theorem 5 to both U and U ′

to obtain U(z) + U(z′) ≤ U(z − iP + iP
′
) + U(z′ + iP − iP

′
) and U ′(z) + U ′(z′) ≤
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U ′(z− iP + iP
′
) + U ′(z′ + iP − iP

′
). Combining these two inequalities gives us

(U + U ′)(z) + (U + U ′)(z′) ≤ (U + U ′)(z− iP + iP
′
) + (U + U ′)(z′ + iP − iP

′
).

If |z| > |z′| and z′(P ′) ≥ z(P ′), we can apply the first condition in Theorem

5 to both U and U ′ to obtain U(z) + U(z′) ≤ U(z − iP ) + U(z′ + iP ) and

U ′(z) + U ′(z′) ≤ U ′(z − iP ) + U ′(z′ + iP ). (Note that, due to z′(P ′) ≥ z(P ′), we

cannot replace iP with iP
′

in these inequalities.) Combining these two inequalities

gives us

(U + U ′)(z) + (U + U ′)(z′) ≤ (U + U ′)(z− iP ) + (U + U ′)(z′ + iP ).

If |z| > |z′| and z′(P ′) < z(P ′), we can apply the definition of M\-concavity

to U and U ′. Because the second case of the definition is never possible due to

z′(P ′) ≤ z(P ′), the first case must be true. So U(z)+U(z′) ≤ U(z− iP )+U(z′+ iP )

and U ′(z)+U ′(z′) ≤ U ′(z−iP )+U ′(z′+iP ). They are the same as the last case.

Proof of Proposition 7. For necessity, since the zero vectorial function satisfies the

vectorial substitutes condition, preserving it requires a vectorial function to satisfy

it itself. The sufficiency part follows from Lemma 13.

Proof of Proposition 5. We start with a group concave revenue function R, a group

separable transfer function T , and a group concave transfer function T ′. To show

that R+(T+T ′) satisfies the substitutes condition, we first note that R+T ′ satisfies

it by Lemma 13. Then, we know (R+ T ′) + T satisfies it by Theorem 2.
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