
 
 
 
 

  

 
 
 

UTMD Working Papers can be downloaded without charge from:  
https://www.mdc.e.u-tokyo.ac.jp/category/wp/ 

 

 

 
Working Papers are a series of manuscripts in their draft form. They are not intended for 
circulation or distribution except as indicated by the author. For that reason Working Papers 
may not be reproduced or distributed without the written consent of the author. 

 
UTMD-016 

 

Assortative Matching with Externalities 

and Farsighted Agents 
 

Kenzo Imamura 
The University of Tokyo Market Design Center 

 
Hideo Konishi 
Boston College 

 
November 4, 2021 

 



Assortative Matching with Externalities and Farsighted

Agents∗

Kenzo Imamura† Hideo Konishi‡

November 4, 2021

Abstract

We consider a one-to-one assortative matching problem in which matched pairs compete

for a prize. With such externalities, the standard solution concept, pairwise stable matching,

may not exist. In this paper, we consider farsighted agents and analyze the largest consistent

set (LCS) of Chwe (1994). Despite the assortative structure of the problem, LCS tend to be

large with the standard effectiveness functions: LCS can be the set of all matchings, including

an empty matching with no matched pair. By modifying the effectiveness function motivated

by Knuth (1976), LCS becomes a singleton of the positive assortative matching. Our results

suggest that the choice of effectiveness function can significantly impact the solution in a

matching problem with externalities.
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1 Introduction

There is a large literature on two-sided matching problems after a celebrated paper by Gale and

Shapley (1962). The structures and the properties of its central solution concept, pairwise stable

matching, have been investigated extensively. At the same time, relatively little attention has been

paid to matching problems with externalities, despite their ubiquity in many matching markets

in the real world. For instance, matched pairs compete after a matching is formed. In this case,

a matched pair cares not only about their partners, but also the other matched pairs.

In this paper, we study a pairs competition problem introduced by Imamura, Konishi, and Pan

(2021). A motivating example that we will refer to throughout this paper is a pairs figure skating

competition. There are male and female figure skaters who differ in their abilities or skills. They

look for partners to participate in a pairs figure skating competition. Once pairs are formed, they

then play a Tullock contest based on each pair’s aggregated effort with complementarity—each

agent makes an effort independently to increase their pair’s probability of winning the prize.1

In this matching problem, agents care not only about their own partners but also other pairs’

profiles. In such a matching problem with externalities, it is important for potential deviators

to know which matching would be realized after a deviation from a matching. This is specified

by an effectiveness function. The standard effectiveness function used in the literature is the one

by Roth and Vande Vate (1990): when a pair of agents deviates from a matching, the resulting

matching is identical to the original matching except that (1) the deviators are matched, and (2)

the deviators’ previous partners stay single.2

However, if agents are myopic, there may not be a pairwise stable matching in this problem.

Consider the following example. Suppose that there are three male and three female skaters with

high, medium, and low ability. It is natural to predict a positive assortative matching as an

outcome of this example. Is it pairwise stable under the above effectiveness function? Consider

a deviation by the high ability male and the medium ability female skaters from the assortative

1Thus, there is a free-rider problem in this pairs competition. For example, if a low-ability male is paired with

a high ability female, then a low ability male agent may not make much effort, free-riding on his partner.
2An effectiveness function assigns a resulting matching to every combination of matching and a pair deviating

from it (Rosenthal 1972). The effectiveness function in Roth and Vande Vate (1990) are commonly used (see

Diamantoudi and Xue 2003, Diamantoudi, Miyagawa, and Xue 2004, and Kojima and Unver 2008).
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matching. Then, according to the effectiveness function, their former partners, the high ability

female and the medium ability male, cannot participate in the pairs competition, since they become

singles. This means that there are only two pairs in the competition, and the deviating pair gets a

high winning probability against the low ability pair. Thus, in the presence of externalities, there

may not be a pairwise stable matching under the standard effectiveness function.

When the high ability male and the medium ability female agents deviate, they do not expect

any reaction from their former partners. Since single agents cannot participate in the pairs contest,

it is beneficial to match with any available partner. Given the two singles dumped by their partners

are available to form a pair, it is probably not reasonable for the deviating pair to expect their

deviation to decrease the number of pairs. Thus, it is natural to investigate whether or not agents’

farsightedness resolves this nonexistence result.

The farsightedness of agents is described by a binary relation ”indirect domination” between

matchings following Harsanyi (1973) and Chwe (1994). We use the largest consistent set (LCS)

introduced by Chwe (1994) as a solution concept. LCS has been an in influential solution concept

with nice properties such as existence and uniqueness under very mild conditions. In addition,

there is a clear result of LCS in a positive assortative matching problem without externalities

(Becker 1973): Diamantoudi and Xue (2003) show that LCS is a singleton of the positive assorta-

tive matching.3 LCS tends to be large and includes other solution concepts such as the farsighted

stable sets and farsighted core. Thus, this result tells the assortative matching is a quite robust

irrespective of solution concepts in the model without externalities. We investigate how LCS

changes in the presence of externalities.

We obtain two main results. First, with the standard effectiveness function by Roth and Vande

Vate (1990), we find an example of a pairs competition in which LCS is the set of all matchings,

including the empty matching, in which all agents are singles. This result stands in stark contrast

3Diamantoudi and Xue (2003) consider LCS in a class of characteristic function games (thus with no externalities

across coalitions): a hedonic game is an NTU game in which there is a single payoff vector for each coalition

(Banerjee, Konishi, and Sönmez, 2001; Bogomolnaia and Jackson, 2002), and investigated farsighted solutions.

Diamantoudi and Xue (2003) show that if a hedonic game satisfies a top-coalition property introduced by Banerjee,

Konishi, and Sönmez (2001), which includes Becker’s positive assortative matching problem (1973) as a special

case, then LCS is equivalent to a singleton set of the core, which is the positive assortative matching in a two-sided

one-to-one matching context.
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to the one by Diamantoudi and Xue (2003): once externalities across pairs are allowed, LCS

can expand from a singleton to the set of all matchings. Second, we show that LCS becomes a

singleton of the positive assortative matching under an alternative effectiveness function proposed

by Knuth (1976).4 According to this effectiveness function, when a pair of agents deviates from

a matching, the resulting matching is identical to the original matching except that (1) deviators

are matched, and (2) the deviators’ former partners are matched, not single. Thus, with the

Knuth effectiveness function, we obtain the parallel result of Diamantoudi and Xue (2003). Taken

together, our results suggest that the choice of effectiveness function can significantly impact LCS

in a matching problem with externalities. In contrast, it is irrelevant in a matching problem

without externalities.

The rest of the paper is organized as follows. The rest of this section presents a brief literature

review. Section 2 presents the model, and Section 3 presents the results. Section 4 concludes.

1.1 Literature Review

There are three branches of literature are related to our paper. The first branch is the matching

problem with externalities.5 Recently, a number of papers have been written in this field. Sasaki

and Toda (1996) was the first to analyze a one-to-one matching problem with externalities. They

considered a set of admissible matchings which can be realized after a pair is formed (or deviates),

and defined pairwise stable matching, assuming that deviating pairs expect the worst case scenario.

They showed that the admissible set needs to be the set of all matchings to ensure the existence of

a stable matching, and proved that there always exists a Pareto-efficient stable matching. Hafalir

(2007) imposed certain rationality constraints on players’ expecting which set of matchings might

be realized by forming a pair, and showed the existence of stable matching under pessimism as in

Sasaki and Toda (1996). Chen (2019) considered a specific example of Cournot oligopoly game

played by joint ventures, assuming that each pair has unique expectation on the realization of a

matching if it is formed. With this list of expectations for each possible pair, each player chooses

4In the companion paper, Imamura, Konishi, and Pan (2021) show that if we use the Knuth effectiveness

function via swapping, then there is a unique (myopically) pairwise stable matching (via swapping) which is the

assortative matching.
5More generally, there is a large literature of theory of coalition formation with externalities, starting from Hart

and Kurz (1983). For surveys from various aspects, see Bloch (1997), Ray (2008), and Ray and Vohra (2014).
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his/her partner and Chen defined a stable matching as the outcome of this game. Chen identified

conditions under which positively and negatively assortative matchings are stable. Mumcu and

Saglam (2010) introduced outside options, and Fisher and Hafalir (2016) and Chade and Eeckhout

(2020) avoided the impacts of pairwise deviations through externalities by imposing a behavioral

assumption and by considering a continuum of atomless agents, respectively. Bando (2012, 2014)

and Pycia and Yenmez (2021) considered one-to-many and many-to-many matchings, and analyzed

the standard stability concept and its existence by imposing assumptions on agents’ preferences.

Second is the field of farsighted stability. Mauleon, Vannetelbosch, and Vergote (2011), Her-

ings, Mauleon, and Vannetelbosch (2020), and Kimya (2021) considered farsighted agents in one-

to-one matching problems without externalities. The first two papers showed that every farsighted

stable set is a singleton set of a stable matching under coalitional and pairwise effectiveness func-

tions, respectively. Kimya (2021) showed that the largest maximal farsighted set in the spirit

of Dutta and Vartiainen (2020) coincides with LCS by Chwe (1994) in this domain with coali-

tional deviations.6 We consider farsighted agents in the pairs competition model with externalities

in this paper, and show that the choice of effectiveness function matters, providing an example

where LCS, under the standard effectiveness function, is the set of all matchings, including a fully

unmatched matching.

Third, our paper belongs to the literature of assortative matching. Becker (1973) introduced

the assortative model of marriages. Banerjee, Konishi, and Sönmez (2001) extended Becker’s

assortative matching problem to hedonic coalition formation problems without externalities by

defining a top coalition property. This property guarantees the existence and uniqueness of the

core.7 Diamantoudi and Xue (2003) proved that under the top coalition property, LCS coincides

with a singleton core under the standard effectiveness function in coalition formation problems.

Mauleon, Vannetelbosch, and Vergote (2011) derived the same result in the context of one-to-one

matching. Although our model has the same assortative structure, the results are quite different

with externalities.

6Dutta and Vartiainen (2020) introduced history dependence to the rational expectations farsighted stability in

Dutta and Vohra (2017) to assure nonemptiness of solutions for all finite problems.
7See Bogomolnaia and Jackson (2002) and Leo et al. (2021) as well.
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2 The Model

We first define our one-to-one matching problem with externalities, and introduce basic termi-

nologies in the next subsection, then we move on to introduce (figure skating) pairs competition

problem.

2.1 One-to-One Matching Problems with Externalities

Let M = {m1, ...,mn} and W = {w1, ..., wn} be the sets of male and female agents with |M | =

|W | = n. Let µ : M ∪W → M ∪W be a one-to-one matching: µ(µ(x)) = x for all x ∈ M ∪W

such that if µ(m) 6= m then µ(m) ∈ W , and if µ(w) 6= w then µ(w) ∈M . The set of all matchings

is denoted by M. Each agent x ∈ M ∪W has a complete, transitive, and reflexive preference

relation Rx which is a binary relation over M. Let the associated strict preference relation be

µPxµ
′ (µRxµ

′ and ¬µ′Rxµ), and associated indifference relationship be µIxµ
′ (µRxµ

′ and µ′Rxµ).

A matching µ is fully matched if µ(x) 6= x for all x ∈ M ∪W . Denote a set of all fully matched

matchings by MF . A matching µ is a fully unmatched matching if µ(x) = x for all x ∈M ∪W .

We define an effectiveness function which describes the resulting matching induced by a devia-

tion from the original matching. The following effectiveness function is standard in the literature

of matching theory and coalition formation (Roth and Vande Vate, 1990; Diamantoudi and Xue,

2003; Herings, Mauleon, and Vannetelboch, 2020).

Definition 1. A matching µ′ is induced from µ by a pair (m,w) ∈ M × W , denoted by

µ→(m,w) µ
′, if it holds

(i) µ(m) 6= w and µ′(m) = w;

(ii) µ(m) 6= m⇒ µ′(µ(m)) = µ(m) and µ(w) 6= w ⇒ µ′(µ(w)) = µ(w);

(iii) for all x ∈M ∪W \ {m,w, µ(m), µ(w)}, µ(x) = µ′(x).

In words, the effectiveness function states that when a pair of agents deviates from a matching,

the resulting matching is identical to the original matching except that (1) deviators are matched,

and (2) their previous partners are single. Similarly, we can define the effectiveness function for a

deviation by an agent.
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Definition 2. A matching µ′ is induced from µ by an agent x ∈M∪W , denoted by µ→{x} µ′,

if it holds

(i) µ(x) 6= x and µ′(x) = x;

(ii) µ′(µ(x)) = µ(x);

(iii) for all y ∈M ∪W \ {x, µ(x)}, µ(y) = µ′(y).

A matching µ is pairwise stable if for any S ∈ (M ×W )∪M ∪W and µ′ with µ→S µ
′, there

exists x ∈ S such that µRxµ
′. We denote the set of pairwise stable matchings by PS.

2.2 Pairs Competition Problems

In this section, we provide a tractable one-to-one matching problem with externalities.8 Given

a matching µ ∈ M, the pairs compete for a prize: both agents of the winning pair get a payoff

of 1 each. An unmatched agent cannot participate in the contest and obtains a payoff of zero.

Male and female agents mi and wi are characterized by their abilities ami and awi , respectively.

We assume that am1 > am2 > ... > amn and aw1 > aw2 > ... > awn . There are at most n pairs

in the competition, and we denote each pair by its male agent mi’s number i = 1, ..., n. In this

contest, each agent x of a pair chooses his/her effort level ex simultaneously and independently.

If mi is matched under µ, pair i’s members’ efforts are aggregated by a CES function Yi =

(aσmie
σ
mi

+ aσµ(mi)
eσµ(mi)

)
1
σ with σ ≥ 0.9 If mi is unmatched under µ, Yi = 0. Given an aggregate

effort profile (Y1, ..., Yn), the winning probability for a pair is determined by a Tullock-style contest:

pair i’s winning probability πi is given by

πi =
Yi∑n
k=1 Yk

. (1)

The effort cost function is common and linear for every agent x: cx(ex) = ex. Therefore, the

expected payoffs of agent x in pair i is

Ux = πi − ex + εaµ(x),

8This is a group contest game with endogenous group formation. Group formation in contests is first analyzed

by Bloch, Sanchez-Pages, and Soubeyran (2006). Here, we consider a specific problem in which groups need to be

pairs in two-sided matching setup. See Imamura, Konishi, and Pan (2021) for details.
9This CES aggregator function becomes a linear function (perfect substitutes) when σ = 1, and becomes a

Cobb-Douglas function when σ = 0 in the limit.
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where aµ(x) is agent x’s payoff from the partner’s ability, and ε > 0 is sufficiently small. This ε is

introduced to break ties when there is only one pair in the competition: agent x in the pair prefers

a high ability partner even though he/she wins with probability one without making effort. Thus,

in the pairs competition problem, for every agent x, preference Px satisfies

(i) for all µ, µ′ ∈M with µ(x) 6= x and µ′(x) 6= x, µPxµ
′ or µ′Pxµ;

(ii) for all µ ∈M with µ(x) 6= x and µ′ ∈M with µ′(x) = x, µPxµ
′;

(iii) for all µ, µ′ ∈M with µ(x), µ′(x) 6= x and aµ(x) > aµ′(x), µPxµ
′;

(iv) for all µ, µ′ ∈M with µ(x) = µ′(x) = x, µIxµ
′.

To provide further properties on preference Px, we analyze equilibrium allocation of pairs

competition problem under µ. We assume that pair i members regard the other groups’ aggregate

effort Y−i =
∑

j 6=i Yj as given, and consider a Nash equilibrium of pair i’s effort contribution game

as the best response of pair i to the other pairs’ aggregate effort Y−i. Solving this problem, we

obtain the total effort by all pairs

Y =
n(µ)− 1∑
j∈N(µ)

1
Aj(µ)

,

where

• N(µ) ≡ {i ∈ {1, ..., n} : µ(mi) ∈ W} is the set of matched pairs under µ;

• n(µ) ≡ |N(µ)| is the number of matched pairs under µ;

• Ai(µ) ≡
(
a

σ
1−σ
mi + a

σ
1−σ
µ(mi)

) 1−σ
σ

is the productivity of pair i ∈ N(µ).

Pair i’s equilibrium winning probability is calculated as10

πi = 1−
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

.

Member x of pair i’s equilibrium payoff under µ when µ(x) 6= x can be explicitly solved as 11

10For the detailed derivations, see Imamura, Konishi, and Pan (2021); Konishi, Pan, and Simeonov (2021).
11We can show that if

∑n
j=1

1
Aj(µ)

> (n(µ) − 1) 1
Ai(µ)

for all i = 1, ..., n, then every pair gets a positive winning

probability, see Imamura, Konishi, Pan (2021); Konishi, Pan, and Simeonov (2021) for the details. This condition

is satisfied for any µ ∈M if
∑n
j=1

1
Aj(µ∗) > (n− 1) 1

Ai(µ∗) holds for the positive assortative matching µ∗.
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Ux =

[
1−

(n(µ)− 1) 1
Ai(µ)∑

j∈N(µ)
1

Aj(µ)

]
︸ ︷︷ ︸

winning probability

[
1−

(n(µ)− 1) 1
Ai(µ)∑

j∈N(µ)
1

Aj(µ)

(
ax

Ai(µ)

)]
︸ ︷︷ ︸+εaµ(x)

net benefits by taking effort dis utility into account

.

Since agent x cannot control ax, we can write Ux as:

Ux = Vx(Ai(µ), E(µ)) + εaµ(x),

where E(µ) is an aggregated externalities index under µ

E(µ) ≡
∑

j∈N(µ)
1

Aj(µ)

n(µ)− 1
.

Note that when agent x gets a higher ability partner, payoff Ux increases due to increases in

both Ai(µ) and E(µ).

It is important to mention two properties of the aggregated externality index E(µ). First,

E(µ) tends to decrease in the number of matched pair n(µ). This is because assuming that is the

average value of 1
Aj(µ)

, 1
n(µ)

∑
j∈N(µ)

1
Aj(µ)

, stays constant, n(µ)
n(µ)−1

decreases as n(µ) goes up. This

externality causes an important difference between the standard matching problem and the one

without externalities. The following example mentioned in the introduction illustrates that.

Example 1. (Imamura, Konishi, and Pan, 2021) Consider a pairs competition problem with M =

{m1,m2,m3} and W = {w1, w2, w3}. Let am1 = aw1 = 1, am2 = aw2 = 0.9, and am3 = aw3 = 0.7.

Set σ = 1
2
, then we have Yi = (a

1
2
mie

1
2
mi + a

1
2

µ(mi)
e

1
2

µ(mi)
)2 and Ai = ami + aµ(mi). For simplicity set

ε = 0.12 We calculate m1’s payoffs under the positive assortative matching µ∗ and matching µ′

with µ∗ →{m1,w2} µ
′.

(i) µ∗ = {(m1, w1), (m2, w2), (m3, w3)}:

Um1(µ
∗) =

(
1−

2× 1
2

1
2

+ 1
1.8

+ 1
1.4

)(
1−

2× 1
2

1
2

+ 1
1.8

+ 1
1.4

× 1

2

)
= 0.312 09

(ii) µ′ = {(m1, w2), (m3, w3)}:

Um1(µ
′) =

(
1−

1
1.9

1
1.9

+ 1
1.4

)(
1−

1
1.9

1
1.9

+ 1
1.4

× 1

1.9

)
= 0.447 20

12The results derived from this example continue to hold for sufficiently small ε > 0.
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Thus, m1 is better off by dumping his superior partner for an inferior partner. For any

other fully matched matching µ ∈ MF , a similar deviation blocks µ. In addition, for any

matching µ 6∈MF , an unmatched pair blocks µ. Thus, there is no pairwise stable matching:

i.e., PS = ∅ in this example.�

Second, E(µ) is larger for more unequal ability distributions across pairs. This is because E(µ)

is a increasing function in
∑

j∈N(µ)
1

Aj(µ)
. This means that if an assortative swapping occurs then

the rest of active agents are all better off. This implies that if (m,w) deviates from a matching

µ with aw > aµ(m) and am > aµ(w), and if µ(m) and µ(w) form a pair to avoid being single

(thus, an assortative swapping), then both higher ability agents m and w are better off, since

such a swapping of partners to induce matching µ′ satisfies E(µ) < E(µ′), am + aw > am + aµ(m),

am + aw > aµ(w) + aw, am
am+aw

< am
am+aµ(m)

, and aw
am+aw

< aw
aµ(w)+aw

. Imamura, Konishi, and Pan

(2021) show the following lemma.

Lemma 1. (Imamura, Konishi, and Pan, 2021) Let µ, m`,mk ∈M with ` < k (thus am` > amk),

and µ(m`), µ(mk) ∈ W with a(µ(m`)) < a(µ(mk)). Let µ′ be such that µ′(m`) = µ(mk) and

µ′(mk) = µ(m`) with µ′(x) = µ(x) for all other x by swapping the partners among these two pairs.

Then, E(µ′) > E(µ) holds.

One important implication of Lemma 1 is that higher ability agents m` and µ(mk) are better

off by the above assortative swapping, since the abilities of their partners improve. We use these

properties to analyze LCS in the next section.

3 The Results

3.1 LCS under the Standard Effectiveness Function

In this section, we consider farsighted agents and analyze the largest consistent set (LCS) intro-

duced by Chwe (1994). We begin by providing a few concepts to define LCS.

Definition 3. A matching µ is indirectly dominated by µ′ if there is a finite sequence of distinct

matchings µ0, ..., µL with µ0 = µ and µL = µ′ such that for every l ∈ {0, ..., L − 1}, µl →S µl+1

holds for some S ∈ M ∪ W ∪ M × W such that µLPxµl for x ∈ S. We denote this indirect

domination by µ� µ′.
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Definition 4. A set of matchings CS(M) ⊆M is consistent if for all µ ∈ CS(M), all µ′

induced by deviation µ →S µ
′ for some S ∈ M ∪W ∪M ×W , there exist µ̃ ∈ CS(M) such that

µ′ � µ̃, and x ∈ S with ¬µ̃Pxµ.

Definition 5. A set of matchings LCS(M) ⊆M is the largest consistent set if it is consistent

and contains all consistent set C(M) ⊆ LCS(M).

Denote the positive assortative matching by µ∗, where µ∗(mk) = wk for all k = 1, ..., n. In

pairs competition problems, µ∗ satisfies the following property.

Lemma 2. (1) For all µ ∈ MF with µ 6= µ∗, µ∗Pm1µ and µ∗Pw1µ hold, and (2) for all k =

2, ..., n− 1, and all µ ∈MF such that (i) µ(mj) = wj for all j = 1, ..., k− 1, and (ii) µ(mk) 6= wk,

if µ 6= µ∗ then µ∗Pmkµ and µ∗Pwkµ hold.

Proof. Suppose that µ ∈ MF and µ 6= µ∗. Then, there is k such that µ(mk) 6= wk. Let

the smallest of such k, and name it k. Then, µ(mj) = wj holds for all j = 1, ..., k − 1, and

aµ(mk) < awk and aµ(wk) < amk . Consider a deviation by assortative swapping µ⇒(mk,wk) µ
′. Since

µ ∈ MF , µ′ ∈ MF holds. By Lemma 1, we have µ′Pmkµ and µ′Pwkµ, and µ′Pmjµ and µ′Pwjµ

for all j = 1, ..., k − 1. Now, suppose that µ′ 6= µ∗. By the same argument, there is the smallest

` > k with µ(m`) 6= w`. Consider assortative swapping µ′ ⇒(m`,w`) µ
′′, then we have µ′′Pmkµ

′ and

µ′′Pwkµ
′ by Lemma 1. Repeating this argument, we have µ∗Pmkµ and µ∗Pwkµ. This proves (2).

(1) can be shown similarly.�

This lemma shows that among matchings in MF , an under-externality version of the top

coalition property introduced by Banerjee, Konishi, and Sönmez (2001) holds in the pairs com-

petition problem. Diamantoudi and Xue (2003) show that the top-coalition property assures

LCS(M) = {µ∗} without externalities. Even with externalities, we indeed have one direction of

inclusion relationship.

Proposition 1. In the pairs competition problem, µ∗ ∈ LCS(M) holds.

Proof. It is easy to see that for all matching µ ∈ M, µ � µ∗ holds. In fact, consider deviation

pairs (m1, w1), (m2, w2), ... , (mn, wn) in this order from µ, and let the first unmatched assortative

pair deviate from µ. After the first deviation, let the next unmatched assotative pair deviate, and
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so on and so forth. This is an indirect dominance relationship, since µ∗ is the best outcome for

all assortative pairs, given that all higher ability assortative pairs have been matched by Lemma

1. This implies that a matching that results from a deviation from µ∗ is indirectly dominated by

µ∗. Thus, we conclude µ∗ ∈ LCS(M).�

Due to the assortative structure, one might think that LCS is a singleton of the assortative

matching {µ∗}. However, the other direction of inclusion relationship does not hold in the model

with externalities: LCS includes not only µ∗, but also many other matchings. Perhaps surprisingly,

LCS in Example 1 coincides with the set of all matchings M, including the empty matching.

Proposition 2. In Example 1, LCS(M) =M.

To prove the above statement, we introduce some notations. Let the sets of matchings

with three, two, one, and zero pairs be M3 = {µ ∈M : |{x ∈M ∪W : µ(x) = x}| = 0}, M2 =

{µ ∈M : |{x ∈M ∪W : µ(x) = x}| = 2}, M1 = {µ ∈M : |{x ∈M ∪W : µ(x) = x}| = 4}, and

M0 = {µ ∈M : |{x ∈M ∪W : µ(x) = x}| = 6}, respectively.

For use later, we calculate m1’s payoffs under a few relevant matchings:

(i) µ1 = µ∗ = {(m1, w1), (m2, w2), (m3, w3)}:

Um1(µ1) =

(
1−

2× 1
2

1
2

+ 1
1.8

+ 1
1.4

)(
1−

2× 1
2

1
2

+ 1
1.8

+ 1
1.4

× 1

2

)
= 0.312 09

(ii) µ2 = {(m1, w3), (m2, w1)}:

Um1(µ2) =

(
1−

1
1.7

1
1.7

+ 1
1.9

)(
1−

1
1.7

1
1.7

+ 1
1.9

× 1

1.7

)
= 0.32562

(iii) µ3 = {(m1, w1), (m2, w2)}:

Um1(µ3) =

(
1−

1
2

1
2

+ 1
1.8

)(
1−

1
2

1
2

+ 1
1.8

× 1

2

)
= 0.40166

(iv) µ4 = {(m1, w2), (m2, w3)}:

Um1(µ4) =

(
1−

1
1.9

1
1.9

+ 1
1.6

)(
1−

1
1.9

1
1.9

+ 1
1.6

× 1

1.9

)
= 0.41224

12



Naturally, we assume Ux(µ) = 0 for all x ∈ M ∪ W if µ ∈ M0. We also assume that if

µ ∈ M1, the pair wins with probability 1, but agents still slightly prefer a partner with higher

ability: i.e., for x with µ(x) 6= x, Ux(µ) = 1 if µ(x) = m1 or µ(x) = w1, Ux = 1 − ε if µ(x) = m2

or µ(x) = w2, and Ux = 1 − 2ε if µ(x) = m3 or µ(x) = w3, where ε > 0 is arbitrarily close to

zero. This construction of payoffs of single pair matchings guarantees that for all µ ∈ M1, all

µ′ ∈M3 ∪M2, and all x with µ(x) 6= x and µ′(x) 6= x, µPxµ
′ holds.

In this particular example, we can also show through direct calculation that for all µ ∈ M2,

all µ′ ∈ M3, and all x with µ(x) 6= x (and µ′(x) 6= x), µPxµ
′ holds. The calculations show that

Um1(µ1) < Um1(µ2) holds even though µ1 is the most preferable matching inM3 for m1 and µ2 is

the least preferable in M2 for m1. We write down this property formally.

Strong Negative Externalities in Size (SNES). Suppose that (i) µ ∈M1 and µ′ ∈M2∪M3,

or (ii) µ ∈M2 and µ′ ∈M3. If for all x ∈M ∪W with µ(x) 6= x and µ′(x) 6= x, µPxµ
′ holds.

With SNES, we can show the following claim.

Claim. In Example 1, M1 ∪M2 ∪M3 is consistent.

Proof. First pick µ ∈ M1. Let µ(m) = w. There are two potential deviation from µ. (Case 1)

Suppose that a pair (m′, w′) with m′ 6= m and w 6= w′ deviates. The resulting matching µ′ satisfies

µ′(m) = w and µ′(m′) = w′. In this case, (m,w′) can deviate from µ′ creating µ′′(m) = w′. This

is profitable by SNES. Thus, µ′ � µ′′ holds. Clearly, µ′′ ∈M1 and Um′(µ
′′) 6> Um′(µ). This shows

that the pair (m′, w′) would not deviate from µ. (Case 2) Suppose that a pair (m,w′) with w′ 6= w

deviates from µ, creating µ′ with µ′(m) = w′. Consider µ′′ ∈ M3 with µ′′(m) = w′ by matching

singles. Clearly µ′ � µ′′ holds and Um(µ′′) < Um(µ) by SNES. Again, (m,w′) does not deviate

from µ. (Possible deviations (m′, w) also do not occur by symmetry.)

We can apply similar arguments to the case of µ ∈ M2. If a deviation pair creates µ′ ∈ M1,

then there is µ′′ ∈ M3 with µ′ � µ′′ by matching two single agents. By SNES, the original

deviation is not profitable. If an agent deviates unilaterally by severing his/her match creating

µ′ ∈M1, then there is µ′′ ∈M2 with µ′ � µ′′ by matching a pair excluding the original deviator.

Clearly, the original deviator does not benefit. If a deviation pair creates µ′ ∈ M2, then there

is µ′′ ∈ M3 with µ′ � µ′′ by matching two single agents. By SNES, the original deviation is
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not profitable. If a deviation (m,w) creates µ′ ∈ M3 by matching two single agents, then w can

deviate with m′ 6= m to create µ′′ ∈ M2 with µ′ � µ′′ by SNES. However, then Um(µ′′) 6> Um(µ)

holds, and the original deviation is not profitable.

Finally, consider the case µ ∈M3. In this case, any deviation pair (m,w) generates µ′ ∈M2.

Let µ′(m) = w and µ′(m′) = w′ (m′ 6= m). In this case, suppose that (m′, w) deviates from µ′,

creating µ′′ ∈ M1. By SNES, µ′ � µ′′ holds, and agent m is not better off. Even if a single’s

unilateral deviation creates µ′ ∈ M2, a further deviation from µ′, creating µ′′ ∈ M1 does not

make the original deviator better off. We have completed the proof.�

Proof of Proposition 2. In order to show that M is LCS, we need to show that the fully

unmatched matching µ0 (µ0(x) = x for all x ∈ M ∪W ) belongs to LCS. For this, we can utilize

the above calculations. First, suppose that (m1, w1) deviates from µ0. Then, (m2, w2) can deviate

to create µ3 (see above). However, then (m1, w2) and (m2, w3) sequentially deviate, creating µ4.

Agent m1 is better off by moving from µ3 to µ4. Thus µ3 � µ4. However, the other initial deviator

w1 is not better off. Second, suppose that (m,w) 6= (m1, w1) deviates. Since (m,w) 6= (m1, w1),

m 6= m1 or w 6= w1 holds. Without loss of generality, assume m 6= m1. Then, after (m,w)’s

deviation, (m1, w) can deviate, and w is better off since we assumed that w slightly prefers a

higher ability partner, and m cannot be better off by deviating with w initially. Hence, the LCS

of this example is M itself.�

We conclude this section with a remark. The above result does not depend on pairwise de-

viations. Even if larger coalitions are allowed to deviate, both Propositions 1 and 2 continue to

hold.

3.2 LCS under the Knuth Effectiveness Function

We consider the effectiveness function introduced by Knuth (1976) in this section. In our problem,

unmatched agents get the lowest payoff of zero, since he/she cannot participate in the contest.

Thus, it is not natural to think that a deviation’s outcome leaves single agents who themselves can

be paired. Since a deviation by a pair creates two single agents if both deviators had a partner,

these abandoned agents might be considered to be the most natural ones to form a pair. We

introduce a few concepts to formalize this idea.
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Definition 6. A matching µ′ ∈ M is obtained from µ ∈ M by swapping induced by a

deviation (m,w) if it holds

(i) µ(m) 6= m and µ(w) 6= w;

(ii) µ′(m) = w and µ′(µ(w)) = µ(m);

(iii) for all x ∈M ∪W \ {m,w, µ(m), µ(w)}, µ(x) = µ′(x).

Definition 7. Effectiveness function ⇒Son M is such that (a) for µ ∈ M and (m,w) with

µ(m) 6= m and µ(w) 6= w, µ ⇒S µ
′ iff µ′ is obtained from µ by swapping induced by a deviation

(m,w), and (b) for any other µ ∈M and S ∈M ∪W ∪M ×W , µ⇒S µ
′ iff µ→S µ

′.

Denote LCS under the effectiveness function ⇒S by LCS⇒(M). Since under the ef-

fectiveness function with swapping ⇒S, the number of pairs does not decrease as a result of a

pairwise deviation. Imamura, Konishi, and Pan (2021) show that pairwise stable matching with

the effectiveness function with swapping ⇒S exists in the pairs competition problems, which is the

positive assortative matching µ∗. The reason is any anti-assortative deviation is not appealing to

a higher ability agent, both because he/she will get an inferior partner and the externality index

goes down.

Diamantoudi and Xue (2003) showed that if a hedonic game satisfies the top-coalition property,

then LCS is the singleton core, which is the assortative matching in the one-to-one matching

problem without externalities. Does the same result hold in our problem under the effectiveness

function with swapping? The following proposition shows that the answer is affirmative.

Proposition 3. In the pairs competition problem, LCS under effectiveness function ⇒S only

includes µ∗:i.e., LCS⇒(M) = {µ∗}.

Proof. First notice LCS⇒(M) ⊆ MF . If µ has unmatched singles, any unmatched pair (m,w)

can deviate from µ to obtain positive payoffs. Since both m and w will have partners under

effectiveness function ⇒S, after the deviation they retain positive payoffs, regardless of subsequent

deviations. Since m and w obtain zero payoffs from matching µ, they certainly deviate from µ.

Thus, µ /∈ LCS⇒(M), and we conclude LCS⇒(M) ⊆MF .

Now, we will prove LCS⇒(M) = {µ∗}. First, we prove the following claim.
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Claim. For all µ ∈ LCS⇒(M), we have µ(m1) = w1.

Proof of Claim. Consider a set of full matchings in which m1 and w1 are not matched: MF
¬1 ≡

{µ ∈MF : µ(m1) 6= w1}. This is a finite set, and the elements of MF
¬1, µ1, ..., µK can be ordered

by the values of their externality index in an increasing manner: E(µ1) ≤ E(µ2) ≤ ... ≤ E(µK).

We first show that µ1 /∈ LCS⇒(M). Consider µ1 ⇒(m1,w1) µ̃
1. Since E(µ̃1) > E(µ1), neither

m1 nor w1 has an incentive to perform an anti-assortative swapping from µ̃1 since µ̃1 6� µ1.

This proves µ1 /∈ LCS⇒(M). Second consider µ2 ⇒(m1,w1) µ̃
2. Since E(µ̃2) > E(µ2), we have

µ̃2 6� µ2 and µ2 /∈ LCS⇒(M). Repeating the same argument, we conclude µk /∈ LCS⇒(M) for

all k = 1, ..., K. We completed the proof.�

We apply the above argument in the claim repeatedly. Let MF
¬2 ≡ {µ ∈ MF : µ(m1) = w1

and µ(m2) 6= w2}. This is a finite set, and its elements can be ordered by their externality index.

By the same argument, we conclude MF
¬2 ∩ LCS⇒(MF ) = ∅. So, we move on to MF

¬3 ≡ {µ ∈

MF : µ(m1) = w1, µ(m2) = w2 and µ(m3) 6= w3}, and so on. This proves that only µ∗ remains in

LCS⇒(M). We completed the proof.�

4 Concluding Remarks

In this paper, we analyzed farsighted agents in a one-to-one matching problem with externalities

and the assortative structure. In the matching problem without externalities of Becker (1973), the

assortative matching is a quite robust prediction irrespective of pairwise or coalitional deviations

and the choice of effectiveness function. However, with externalities, we showed that the choice

of effectiveness function is crucial: LCS can be the set of all matchings with the Roth Vande Vate

effectiveness function, or a singleton set of the assortative matching with the Knuth one. Thus,

our results show that LCS is sensitive to the setup of the problem in the presence of externalities.

We conclude the paper with a couple of observations. First, in the definition of the consistent

set, we assumed any matching inM can be in a consistent set. However, one may argue that if a

matching is outside of MF , there is at least one eligible pair of male and female agents who are

currently single. This means that they are getting the lowest possible payoffs, and they do not lose

anything by trying to form a pair even though there may be a sequence of further deviations. If
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this argument is appealing, it might make sense to choose the candidates of consistent set from the

subsets ofMF . In the following, we will consider consistent sets inMF , while we use the standard

effectiveness function and indirect domination relation � defined on the set of all matchings M.

We can prove the following proposition by using almost the same argument as Proposition 3.

Proposition 4. Consider subsets of MF as consistent set candidates. Then, there is a unique

consistent set {µ∗}, which is LCS(MF ).

Second, we have focused on LCS to analyze farsighted agents. However, LCS is not the only

solution concept for farsighted agents. The farsighted stable set—vNM stable set defined by

indirect domination—have been extensively investigated in the recent literature. It is easy to see

that the singleton set of the assortative matching {µ∗} is a farsighted stable set in our problem since

µ∗ indirectly dominates any other matchings. The question is whether or not this is the unique

farsighted stable set in the pairs competition problem. Harsanyi’s (1974) indirect domination

requires every coalition participating in the chain reaction of proposals and counter-proposals to

be better off (relative to their starting points) once the process terminates. If a coalition deviates

from any matching in a consistent set, then there is a matching that indirectly dominates the

matching generated by the deviation, and at least one of the coalition members weakly prefers the

original matching to it. But indirect dominance does not require coalitions to choose their best

moves, and it rules out possibly unwelcome interventions by other coalitions. This is a concern

everywhere along the entire farsighted blocking chain, and Xue (1998), Ray and Vohra (2019), and

Kimya (2020) among others analyzed farsighted stable sets defined various maximality conditions

to restrict chains of coalitional deviations. Dutta and Vohra (2017) and Dutta and Vartiainen

(2020) proposed rational expectations farsighted stable sets by assigning unique deviation move

to each “state” without and with history-dependence, respectively.13 These two papers also refine

their solutions by using the idea of maximality. We leave further investigation of the farsighted

stable sets for future research.

13Dutta and Vohra (2017) is closely related to Konishi and Ray (2003), when coalitional moves are restricted to

deterministic ones, having absorbing states.
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