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Abstract

This paper presents one-to-one matching and assignment problems with externalities

across pairs such as pairs figure skating competition and joint ventures in oligopolistic mar-

kets. In these models, players care not only about their partners but also which and how

many rival pairs are formed. Thus, it is important for a deviating pair to know which match-

ing will realize after it deviates from a matching (an effectiveness function) in order to define

pairwise stable matching. Using a natural effectiveness function for such environments, we

show that the assortative matching is pairwise stable. We discuss two generalizations of our

model including intrinsic preferences on partners and pair-specific match qualities to see how

our stability concept performs in these generalized models.
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1 Introduction

There is a huge literature on two-sided matching problems in both non transferable and trans-

ferable utility setups. Gale and Shapley (1962) introduced their celebrated marriage and college

admission problems under non transferable utilities (NTU), and showed the nonemptiness of the

set of (pairwise) stable matchings. In their assignment game, which is a transferable utility (TU)

version of the marriage problem, Shapley and Shubik (1972) showed that the core is nonempty,

and analyzed the structure of the core. In these problems, the set of pairwise stable matchings

and the core are equivalent to each other, and thus stable matching and stable assignment became

the central solution concepts.

Although the structure of stable matchings has been analyzed extensively following these two

papers, one simplification assumption has been maintained: players only care about their partners,

and the rest of the matching does not matter. However, it is easy to imagine matching problems

in which the rest of the matching matters for every pair. For example, consider formation of

pairs in sports competition, such as a pairs figure skating competition. Each participant may have

preferences over her partner, but will also care about other pairs that are formed, since those

other pairs represent the competition. For transferable utility problems, consider formation of

a two-member joint ventures (say, between a marketing company and a technology company) in

an industry. Although a joint venture’s profit will be split between the constituent marketing

and technology companies, the other ventures formed also matter as they also affect profits.

Somewhat surprisingly, these problems with externalities have gone relatively unexamined. Hence,

it is meaningful to introduce tractable models of matching with externalities and to provide

reasonable solution concepts that are natural extensions of those used for matching problems

without externalities.

Sasaki and Toda (1996) first introduced a one-to-one matching problem with externalities.

Using a general framework that allows for any kind of externalities, they considered a set of

admissible matchings which can be realized after a deviating pair is formed, and define stable

matching by assuming that players expect the worst possible outcome among the admissible set.

They showed that the admissible set needs to be the set of all matchings to assure the existence

of stable matching, and proved that there always exists a Pareto-efficient stable matching. Hafalir
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(2007) imposed certain additional rationality constraints on players’ expectations of which set of

matchings might be realized by forming a pair, and showed the existence of stable matching under

pessimism as in Sasaki and Toda (1996). Chen (2019) considered a specific example of Cournot

oligopoly game played by joint ventures, and assumed that every potential partner for a company

induces a unique consistent expectation for the realized matching. With this list of expectations

for each possible pair, stable matching is defined as the outcome of this game. Chen identified

conditions under which positively and negatively assortative matchings are stable.

In these papers, each player has expectations on the realization of a matching when she

is partnered with each of the players on the other side of the market, and stable matching is

built on these expectations. In contrast, this paper mirrors the original definition of pairwise

stable matching in matching problems without externalities. Our pairwise stability starts with a

matching and checks whether or not there is a pair of players with a profitable deviation away

from the original matching. There is, however, a subtle issue in the presence of externalities—the

rest of matching matters. Thus, we need to formulate the matching induced by the deviation of

a pair from the original matching. We specify this using an effectiveness function, and consider

two effectiveness functions specifically. The first is that after a deviation by a pair, the dumped

partners stay single and no other player changes their partners. The second is that after a deviation

by a pair, the dumped partners form a pair and all other players remain with their partners. The

former effectiveness function is in the literature of theory of coalition formation, and is adopted to

analyze convergence of a sequence of myopic deviations in a marriage problem by Roth and Vande

Vate (1990).1 The latter effectiveness function was proposed by Knuth (1976) in the context of

the marriage problem in which all players are acceptable to all other players.

To see the difference between these two effectiveness functions, consider the example of a pairs

figure skating competition. Suppose that there are three male and three female skaters, one with

high, medium, and low ability in each gender. Moreover, suppose that there are complementarities

in partners’ abilities. Then, it is natural for them to have a (positively) assortative matching, since

a high ability partner is always desirable. However, this assortative matching may not be pairwise

1Diamantoudi, Miyagawa, and Xue (2004) and Kojima and Unver (2008) also use the Roth-Vande Vate ef-

fectiveness function in the context of matching theory. This effectiveness function is a special case of the most

standard transition functions in the theory of coalition formation (see Hart and Kurz, 1983, Bloch 1997, Yi 1997,

Ray 2008, and Ray and Vohra 2014, among others).
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stable in the Roth-Vande Vate sense. Consider a deviation by the high ability male and the

medium ability female skaters. As a result, the high ability female and the medium ability male

become single, leaving only two pairs left in the competition, improving the probability of winning

for the deviating pair. In the assortative matching, the high and medium ability pairs need to

compete hard, and the deviating pair can benefit by blocking the assortative matching. Thus,

there may not be pairwise stable matching under the Roth-Vande Vate effectiveness function when

pairs are better off by having a smaller number of competing pairs. In contrast, the assortative

matching is pairwise stable under the Knuth effectiveness function, since the above deviation does

not decrease the number of competing pairs, and thus does not benefit the high ability deviator.

We call pairwise stability under the Knuth effectiveness function pairwise stability via swapping,

and employ this solution concept to analyze our matching/assignment problems with externalities.

In this paper, we propose two natural one-to-one matching models in the presence of exter-

nalities with and without transfers between paired players: one is a pairs competition model we

described above without transfers, and the other is an oligopolistic joint ventures between, say,

a marketing company and a technology company with transfers (profits are shared by the com-

panies). In both models, players care about not only who they are matched with but also the

competition of competing pairs. We assume that players are vertically differentiated in their abil-

ities. We analyze the properties of pairwise stable matchings and assignments via swapping, and

show that in these two models, pairwise stability is supported by the assortative matching.

In a companion paper, Imamura and Konishi (2021) analyzed the pairs competition problem by

using Harsanyi’s (1974) indirect dominance with farsighted players. They use the largest consistent

set (LCS) by Chwe (1994) as the solution concept, and show that LCS of the pairs competition

problem can be a large set under the Roth-Vande Vate effectiveness function, while it is a singleton

set of the assortative matching under the Knuth one. That is, under the Knuth effectiveness

function, myopic pairwise stability and farsighted LCS are equivalent, uniquely pointing at the

assortative matching.

The rest of the paper is organized as follows. We first provide a brief literature review. In

Section 2, we introduce a one-to-one matching model with externalities. In Section 3, we introduce

a pairs competition problem, in which after players are matched, the members of each pair choose

effort noncooperatively to win in a Tullock contest. Players differ vertically in their abilities,
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and we show that a (positively) assortative matching is the unique pairwise stable matching via

swapping. In Section 4, we consider an oligopolistic joint ventures problem, which is an assignment

game version of the pairs competition model without endogenous efforts. We show that pairwise

stable assignments can be supported only by the assortative matching, and characterize the one-

side optimal stable assignment. In Section 5, we introduce personalized intrinsic utility from

partners and heterogeneous match qualities of players, and show that pairwise stable assignment

via swapping may not exist. Section 6 concludes.

1.1 A Brief Literature Review

There are three branches of literature that are related to the current paper. The first branch

is the one of matching with externalities. Recently, a number of papers have been written in

this field in addition to Sasaki and Toda (1996), Hafalir (2008), and Chen (2019). Mumcu and

Saglam (2010), Fisher and Hafalir (2016), and Chade and Eeckout (2020) all dealt with one-to-one

matching problems with externalities in different ways. Mumcu and Saglam (2010) introduced

outside options, and Fisher and Hafalir (2016) and Chade and Eeckhout (2020) removed the

impacts of pairwise deviations through externalities by imposing a behavioral assumption and by

considering a continuum of atomless agents, respectively. Bando (2012, 2014), and Pycia and

Yenmez (2015) considered one-to-many and many-to-many matchings, and analyzed the standard

stability concept and its existence by imposing assumptions on agents’ preferences.

Second, our paper belongs to the literature of the assortative matching. Becker (1973) in-

troduced an assortative model of marriages. Banerjee, Konishi, and Sonmez (2001) extended

Becker’s assortative matching problem to hedonic coalition formation problems without externali-

ties by defining a top coalition property, and proved the nonemptiness and uniqueness of the core.2

Diamantoudi and Xue (2003) proved that under the top-coalition property, the largest consistent

set coincides with a singleton core under the standard effectiveness function in the literature of

coalition formation. Mauleon, Vannetelbosch, and Vergote (2011) derived the same result in the

context of one-to-one matching under the Roth Vande Vate effectiveness function. Although our

model has the same assortative structure, the results in the current paper and Imamura and

Konishi (2021) differ substantially from the literature due to the externality.

2See Bogomolnaia and Jackson (2002) and Leo et al. (2021) as well.
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Third, our pairs competition model is a special case of the literature of group contests. Nitzan

(1991) and Esteban and Ray (2001) established contest models played by groups in which players

choose their efforts noncooperatively, making players’ efforts subject to free-riding incentives.

Kolmar and Rommeswinkel (2013) introduce the use of CES effort aggregation functions for teams’

production function to capture effort complementarity. Konishi and Pan (2020, 2021) consider

a group formation game of such a group contest assuming homogeneous players.3 Kobayashi,

Konishi, and Ueda (2021) and Konishi, Pan, and Simeonov (2021) introduce heterogenous players

and heterogenous award-distribution rules to the CES group contest. Our pairs competition

model belongs to this line of research, providing a convenient and tractable payoff structure in

this matching problem with externalities.

2 One-to-One Matching Models with Externalities

Consider a contest played by pairs of male and female players. Let M = {m1, ...,mn} and W =

{w1, ..., wn} be the sets of male and female players with |M | = |W | = n. Let µ : M ∪W → M ∪W

be a one-to-one matching of players: µ(µ(x)) = x for all x ∈ M ∪W such that if µ(m) ̸= m then

µ(m) ∈ W , and if µ(w) ̸= w then µ(w) ∈ M . The set of all possible matchings is denoted by M.

A matching µ is fully matched if µ(x) ̸= x for all x ∈ M ∪ W . The set of all fully matched

matchings is denoted by MF . Each player x ∈ M ∪W has preference over matchings, which is

denoted by a binary relation Rx on M: player x weakly prefers µ′ to µ if and only if µ′Rxµ for

any distinct matchings µ, µ′ ∈ M. Strict preference relation Px is defined by: µ′Pxµ if and only if

µ′Rxµ and ¬µRxµ
′. We assume that having no partner is the worst outcome: for any µ, µ′ ∈ M

and x ∈ M ∪W , µ(x) = x and µ′(x) ̸= x imply µ′Pxµ.

We add more structure to the model by assuming that agents mi and wi are endowed with

abilities ami
or awi

for all i = 1, ..., n. We assume strict ordering over abilities: am1 > am2 > ... >

amn and aw1 > aw2 > ... > awn .

We will consider two effectiveness functions, →S and ⇒S (Rosenthal 1972).4 A matching µ′

is induced from µ by a pairwise deviation (m,w) ∈ M × W if and only if (i) µ(m) ̸= w

3Bloch, Sanchez-Pages, and Soubeyran (2006) and Sanchez-Pages (2007a,b) are the first papers that considered

group formation in contests.
4More specifically, these are single-valued effectiveness relations in Rosenthal (1972).
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and µ′(m) = w; (ii) if m is paired under µ (µ(m) ̸= m) then m’s partner µ(m) is single under µ′

(µ′(µ(m)) = µ(m)), and if w is paired under µ (µ(w) ̸= w) then w’s partner µ(w) is single under

µ′ (µ′(µ(w)) = µ(w)); and (iii) for all x ∈ M ∪ W \ {m,w, µ(m), µ(w)}, µ(x) = µ′(x). This is

denoted µ →(m,w) µ
′. For completeness, we also define a player’s deviation by terminating a pair,

although being single is the worst outcome for any player. A matching µ′ is induced from µ

by a single player deviation x ∈ M ∪ W if and only if (i) µ′(µ(x)) = µ(x); and (ii) for all

y ∈ M ∪W \ {x, µ(x)}, µ(y) = µ′(y). This is denoted µ →x µ′.

Since we assume that having no partner is always the worst possible outcome independent of

how other players are matched, it may not make sense to expect a matching µ to include any

singles as a result of a (pairwise) deviation. Thus, we assume that these two abandoned players

form a pair—this is the most myopic response from the leftover players who do not want to

be left alone (Knuth 1976). Assuming this reaction by the leftover players, a pairwise blocking

generates swapping of their partners among the relevant four players. Suppose that µ ∈ MF . A

matching µ′ is induced from µ by a pairwise deviation (m,w) ∈ M×W via swapping iff (i)

µ(m) ̸= w; (ii) µ′(m) = w and µ′(µ(m)) = µ(w); and (iii) for all x ∈ M ∪W \ {m,w, µ(m), µ(w)},

µ(x) = µ′(x). This effectiveness function is denoted µ ⇒(m,w) µ
′. Since a single player deviation

from µ ∈ MF reverts to µ by matching up two singles induced by the deviation, we do not need

to consider this case.

If there are no externalities the choice of effectiveness function does not make a difference.

However, with externalities, their impacts are quite pronounced, which is shown in the next

section.

3 Stable Matching in Pairs Competition

Imagine a figure skating pairs competition. We formulate a pairs competition as a team contest.

Given a matching µ ∈ M, the pairs compete with each other as a team for a single prize: the

players of the winning pair get payoff V > 0 each. Unmatched players cannot participate in

the contest, obtaining a zero payoff. Thus, there are n potential teams, and for simplicity, we

denote each team by its male player’s number i = 1, ..., n. In this contest, each player x of a pair

chooses his/her effort level ex simultaneously and non-cooperatively. The ability parameters ami
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and awi
describe the efficiency of their efforts in the pairs competition. If mi is matched under µ

(µ(mi) ∈ W ), team i’s members’ efforts are aggregated by a CES function

Yi = (aσmi
eσmi

+ aσµ(mi)
eσµ(mi)

)
1
σ , (1)

where 0 < σ ≤ 1.5 This CES aggregator function becomes a linear function (perfect substitutes)

when σ = 1, and becomes a Cobb-Douglas function when σ = 0 in the limit. If mi is unmatched

(µ(mi) = mi), then Yi = 0. Teams’ aggregate effort vector (Y1, ..., Yn) determines each team’s

winning probability. The winning probabilities of teams are determined by a Tullock-style contest:

team i’s winning probability is given by

πi =
Yi∑n
k=1 Yk

. (2)

The effort cost function is common and linear for every player x: cx(ex) = ex. Therefore, the

expected payoffs of player x in team i is

Ux = πiV − ex.

Each member in a team decides his/her effort level to maximize his/her expected payoff indepen-

dently and simultaneously. Thus, there are free-riding incentives in a team. We assume that team

i members regard the other groups’ aggregate effort Y−i =
∑

j ̸=i Yj as given, and consider a Nash

equilibrium of team i’s effort contribution game as the best response of team i to the other teams’

aggregate effort Y−i.

For the time being, let’s assume that all teams and all players make positive efforts. If so, the

first-order condition of player x in team i (x ∈ {mi, µ(mi)}) is

∂Ux

∂ex
=

(aσxe
σ
x + aσµ(x)e

σ
µ(x))

1
σ
−1aσxe

σ−1
x Y−i((

aσxe
σ
x + aσµ(x)e

σ
µ(x)

) 1
σ
+ Y−i

)2 V − 1 = 0.

By using Y 1−σ
i =

(
aσxe

σ
x + aσµ(x)e

σ
µ(x)

) 1
σ
−1

, this can be rewritten as

(1− πi)
1

Y
Y 1−σ
i aσxe

σ−1
x V − 1 = 0,

5Kolmar and Rommeswinkel (2013) call this CES function a group impact function.
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since Y−i

Y
= 1− πi. From this expression, we have

e1−σ
x = Y 1−σ

i

[
(1− πi)

1

Y

]
aσxV

and player x’s equilibrium effort given Yi and Y can be written as

ex = Yi

[
(1− πi)

1

Y

] 1
1−σ

a
σ

1−σ
x V

1
1−σ . (3)

Raising this to the power of σ and then multiply it by aσx,

aσxe
σ
x = Y σ

i

[
(1− πi)

1

Y

] σ
1−σ

a
σ

1−σ
x V

σ
1−σ

is obtained (the power of ax is calculated by σ2

1−σ
+ σ = σ

1−σ
). Substituting this back to (1), we

obtain

Yi = Yi

[
(1− πi)

1

Y

] 1
1−σ (

a
σ

1−σ
x + a

σ
1−σ

µ(x)

) 1
σ

V
1

1−σ

or
1

Ai(µ)
=

Y−i

Y 2
V, (4)

where Ai(µ) =
(
a

σ
1−σ
mi + a

σ
1−σ

µ(mi)

) 1−σ
σ

stands for the productivity of team i. Let Aj(µ) = 0 when

µ(mj) = mj. Summing the above up over all active teams, we have

n∑
j=1

1

Aj(µ)
=

n(µ)− 1

Y
V

or

Y =
n(µ)− 1∑n
j=1

1
Aj(µ)

V,

where n(µ) is the number of pairs under matching µ.

Let µ∗ be a (positively) assortative matching: i.e., µ∗(mi) = wi for all i = 1, ..., n. We will

impose the following assumption, which assures that all pairs will be active in making effort under

any µ ∈ M.

Regularity Condition 1. Under the assortative matching µ∗, the following inequality holds:

n− 1

An(µ∗)
≤

n∑
i=1

1

Ai(µ∗)
.

9



Under the Regularity Condition 1, we have the following proposition.6

Proposition 1. For any µ ∈ M, there exists a unique equilibrium in the pairs competition model

under the regularity condition 1. Team i’s winning probability is

πi(µ) = 1−
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

,

agent x ∈ {mi, µ(mi)} of team i = 1, ..., n obtains payoff

Ux =


[
1−

(n(µ)−1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

] [
1−

(n(µ)−1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

(
ax

Ai(µ)

) σ
1−σ

]
V if x ̸= µ(x)

0 if x = µ(x)

,

by exerting effort

ex =


[
1−

(n(µ)−1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

] [
(n(µ)−1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

](
ax

Ai(µ)

) σ
1−σ

V if x ̸= µ(x)

0 if x = µ(x)

.

Moreover, the equilibrium total efforts are

Y =
n(µ)− 1∑n
j=1

1
Aj(µ)

V,

and

(n(µ)− 1)
1

Ai(µ)
<

n∑
j=1

1

Aj(µ)

holds for all i = 1, ..., n.

Remark 1. We can interpret the formula for Ux in the following way:

Ux =

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

]
︸ ︷︷ ︸

winning probability

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

(
ax

Ai(µ)

) σ
1−σ

]
︸ ︷︷ ︸
net benefits by taking effort disutility into account

V

Note that ax
Ai(µ)

denotes player x’s contribution to pair i by his/her ability, and the contents of

the second bracket indicates that a higher ability player needs to suffer from a higher disutlity

6This regularity condition is imposed for simplicity of the analysis. Konishi, Pan, and Simeonov (2021) considers

a general team-size contest with flexible prize sharing rules, and allows for inactive teams (zero-effort and zero-

winning probability teams by using a share-function approach by Cornes and Hartley, 2005).
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by exerting more effort than his/her lower ability partner. This can be regarded as a free-riding

problem of the pairs competition problem.

We first consider a pairwise stability concept using the Roth-Vande Vate effectiveness function

→S, which is commonly used in the literature of coalition formation. A matching µ is pairwise

stable if and only if (i) µRmµ
′ or µRwµ

′ for any pairwise deviations (m,w) ∈ M × W with

µ →(m,w) µ′, and (ii) µRxµ
′ for any single player deviation x ∈ M ∪ W with µ →x µ′. The

following example shows that there may not be a pairwise stable matching.

Example 1. Consider a figure skating contest with M = {m1,m2,m3} and W = {w1, w2, w3}.

Let σ = 1
2
, am1 = aw1 = 1, am2 = aw2 = 0.9, and am3 = aw3 = 0.7. We calculate m1’s payoffs

under the assortative matching and the one after he deviates with w2:

(i) µ∗ = {(m1, w1), (m2, w2), (m3, w3)}:

Um1(µ
∗) =

(
1−

2× 1
2

1
2
+ 1

1.8
+ 1

1.4

)(
1−

2× 1
2

1
2
+ 1

1.8
+ 1

1.4

× 1

2

)
= 0.31209

(ii) µ′ {(m1, w2), (m3, w3)}:

Um1(µ
′) =

(
1−

1
1.9

1
1.9

+ 1
1.4

)(
1−

1
1.9

1
1.9

+ 1
1.4

× 1

1.9

)
= 0.44720

Thus, agent m1 is better off by dumping his higher ability partner for an inferior partner. A

similar deviation blocks any other fully matched matching, and if agents are not fully matched in

matching µ, then µ is blocked by an unmatched pair. Thus, there is no pairwise stable matching

in this example.□

The problem underlying this example is that players prefer to have a smaller number of rival

pairs, and the best player would rather have a weaker partner if the number of rival pairs goes

down. However, since single players cannot participate in the competition, resulting in receiving

the lowest payoffs, it does not make sense to expect that they will stay singles. If the single

players becomes a pair, the number of rivals do not change, undermining the motivation for the

best player to seek a lower ability partner. Using the second effectiveness function ⇒S allows

us to define the following alternative stability concept. A matching µ is pairwise stable via

swapping if and only if (i) µRmµ
′ or µRwµ

′ for any pairwise deviations (m,w) ∈ M ×W with

11



µ ⇒(m,w) µ
′. In the following, we will show that the assortative matching µ∗ is uniquely stable

in the above sense. We first prove the following lemma, which demonstrates that an assortative

swapping improves higher ability players’ payoffs.

Lemma 1. Let µ, mℓ,mk ∈ M with ℓ < k (thus amℓ
> amk

), and µ(mℓ), µ(mk) ∈ W with

aµ(mℓ) < aµ(mk). Let µ′ be such that µ′(mℓ) = µ(mk) and µ′(mk) = µ(mℓ) with µ′(x) = µ(x) for

all other x by swapping the partners among these two pairs. Then, we have (i)
∑n

j=1
1

Aj(µ′)
>∑n

j=1
1

Aj(µ)
, and (ii) µ′Pmℓ

µ and µ′Pµ′(mℓ)µ.

This lemma implies that under any matching µ ∈MF with µ(m1) ̸= w1, the highest ability

pair (m1, w1) is better off by deviating from µ via swapping. Similarly, under any matching

µ ∈MF with µ(m1) = w1 and µ(m2) ̸= w2, the next highest ability pair (m2, w2) is better off

by deviating from µ via swapping, and so on. If a matching µ ̸∈MF , then any unpaired players

deviate from µ by becoming a pair. Thus, the following proposition is a trivial consequence in the

pairs competition model.

Proposition 2. In the pairs competition model, the assortative matching µ∗ is unique pairwise

stable matching via swapping.

4 Stable Assignments in Oligopolistic Joint Ventures

Here, we provide another matching model with externalities. Consider one-to-one joint ventures

between marketing companies mi ∈ M and technology companies wj ∈ W . Given a matching µ ∈

M, the pairs of companies form joint ventures, which we call firms, competing in a differentiated-

good oligopoly market. Each firm i (similar to the pairs competition, we index firms by the

associated marketing company’s identity): firm i is (mi, µ(mi))) develops its product i by using

the two companies’ input. We assume that the marginal cost of production by joint venture

(mi, wj) is a function of the member companies’ abilities:

ci ≡ c(mi, wj) = f(ami
, awj

),
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where ∂f
∂am

< 0, ∂f
∂aw

< 0, and ∂2f
∂am∂aw

≤ 0 (submodularity in marginal cost or complementary in

ability).

Now, we borrow the model from Shubik (1984) to describe our oligopolistic market.7 Suppose

that there are n products produced by n active joint ventures together with a numeraire commodity

(the 0th commodity). There is unit mass of identical consumers, each with a quadratic utility

function:

u = α

n∑
i=1

xi −
1

2

n∑
i=1

x2
i −

δ

2

n∑
j=1

n∑
k=1

xkxj + x0, (5)

where δ ∈ [0, 1) is a substitution parameter between products. As δ increases, substitutability

increases, and in the limit (δ = 1), the model converges to a homogenous good model. Consumers

have income I with numeraire (commodity 0), and let us assume p0 = 1 for simplicity. The budget

constraint is:
n∑

i=1

pixi + x0 = I.

With this utility function, we have the following linear demand function.

Lemma 2. With quadratic utility function (5), the market demand function for good i is:

xi(pi, P ) =
α

1 + nδ
+

δ

1 + nδ
P − pi,

where P =
∑n

j=1 pj.

Note that if δ = 0, then demand function is not affected by other firms’ prices. Also note that

firm i is only competing against the average price (or the prevailing market price), making our

analysis much simpler.

Letting joint venture firm i’s marginal cost be ci > 0, firm i’s profit function is written as:

yi(pi, P ) = (pi − ci)xi(pi, P ).

We can calculate the oligopolistic market equilibrium as follows. Here, we assume µ ∈ MF for

simplicity, but even if there are unmatched companies, the results continue to hold by replacing

n by n(µ). We can assure that a joint venture always earns a positive profit by assuming the

following regularity condition.

7Chen (2019) considered oligopolistic joint ventures with Cournot competition. Here we use Shubik’s quadratic

utility model since we can parametrize the interdependence of demand of each good by d ≥ 0.
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Regularity Condition 2. Under the assortative matching µ∗, joint venture (mn, wn) obtains a

positive profit: i.e.,

α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
i=1

c(mi, wi)−
1 + nδ

2 + (2n− 1) δ
c(mn, wn) > 0.

Proposition 3. Suppose that Regularity Condition 2 holds. For any µ ∈ MF , there exists a

unique equilibrium in the oligopolistic joint ventures. Firm i’s profit is

yi(µ) =
1 + (n− 1) δ

1 + nδ

(
α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
i′=1

ci′ −
1 + nδ

2 + (2n− 1) δ
ci

)2

.

Moreover, the average equilibrium price is

P

n
=

α

2 + (n− 1) δ
+

1 + (n− 1) δ

2 + (n− 1) δ
×
∑n

i′=1 ci′

n
.

Shapley and Shubik (1972) considered a TU characteristic function form game based on an

n × n value matrix for every possible pair. Here, although a joint venture’s profit will be split

between the constituent marketing and technology companies, the other ventures formed also

matter as they also affect profits. Let µ ∈ MF , and let v(m,w;µ) ∈ R+ be

v(m,w;µ) =


1+(n−1)δ

1+nδ
×
(

α
2+(n−1)δ

+ δ(1+(n−1)δ)
(2+(2n−1)δ)(2+(n−1)δ)

∑n
i=1 c(mi, µ(mi))− 1+nδ

2+(2n−1)δ
c(m,w)

)2
, if µ(m) = w

0, otherwise.

We extend Shapley and Shubik’s (1972) pairwise stable assignment to our model with externalities.

Let a feasible allocation (µ, r, s) [Notation updated!] be a triple of a matching, payoff vectors

r = (r1, ..., rm) ∈ Rm
+ and s = (s1, ..., sn) ∈ Rn

+ for (m1, ...,mn) and (w1, ..., wn), respectively, such

that v(mi, wj, µ) = ri + sj for all i, j = 1, ..., n with µ(mi) = wj, and ri = 0 and sj = 0 for all

mi = µ(mi) and wj = µ(wj). A feasible allocation of an assignment problem is pairwise stable

assignment via swapping if for any mk ∈ M and for any wℓ ∈ W , rk + sℓ ≥ v(mk, wℓ, µ
′) holds

for µ′ induced by a pairwise deviation via swapping. If an assignment (µ, r∗, s∗) is pairwise stable
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via swapping and if s∗ ≤ s′ holds for any pairwise stable outcome via swapping (µ, r, s), then

(µ, r∗, s∗) is said the M-optimal pairwise stable assignment. Similarly, we can define the

W -optimal pairwise stable assignment. The next lemma is a trivial consequence of submodularity

of marginal cost function f(am, aw).

Lemma 3 (strict supermodularity of v). In the oligopolistic joint ventures model, let m,m′, w,

and w′ be such that am > am′ and aw > aw′, and let matchings µ and µ′ be µ(m) = w′, µ(m′) = w,

µ′(m) = w, µ′(m′) = w′, and µ(x) = µ′(x) for all x ̸= m,m′, w, w′: i.e., µ′ is a matching obtained

as µ ⇒(m,w) µ
′. Then, we have v(m,w;µ′) + v(m′, w′;µ′) > v(m,w′;µ) + v(m′, w;µ).

This supermodularity of v has a simple but important implication—if there is a pairwise stable

assignment, its matching must be the assortative µ∗.

Proposition 4. In an oligopolistic joint venture model, suppose that (µ, π, s) is a pairwise stable

assignment via swapping. Then, µ = µ∗.

A stable assignment in the oligopolistic joint venture assignment problem can be described by

using an output matrix as in Shapley and Shubik (1972). The output for all pairwise deviations

from the complete assortative matching µ∗ are described in the following n×n local output matrix

around µ∗:

X(µ∗) =


X11 X12 · · · X1n

X21 X22 · · · X2n

...
...

. . .
...

Xn1 Xn2 · · · Xnn

 =


v(m1, w1;µ

∗) v(m1, w2;µ12) · · · v(m1, wn;µ1n)

v(m2, w1;µ21) v(m2, w2;µ
∗) · · · v(m2, wn;µ2n)

...
...

. . .
...

v(mn, w1;µn1) v(mn, w2;µn2) · · · v(mn, wn;µ
∗)

 ,

where µij ∈ MF denotes a matching induced by swapping mi,mj, wi, wj from µ∗. Note that

µij = µji hold for all i, j = 1, ..., n. In this output matrix, the sum of outputs over matched pairs

under µ,
∑n

i=1Xiµ(i), is maximized at µ = µ∗. This is consistent with the analysis of Shapley

and Shubik (1972). We show a useful lemma for characterizing the extreme points of the set of

pairwise stable matchings via swapping.
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Lemma 4 (strict increasingness). Xij > Xij+1 for all i, j = 1, ..., n with j ≥ i, and Xij >

Xi+1j for all i, j = 1, ..., n with i ≥ j.

By Lemmas 3 and 4, we know that X is strictly supermodular and strictly increasing. The

following proposition shows that there are pairwise stable assignments, and characterizes the M -

optimal pairwise stable matching by using the above output matrix X.8

Proposition 5. In an oligopolistic joint venture model, there exist pairwise stable assignments.

Under the M-optimal pairwise stable assignment, the pairwise stable payoff vector for W is min-

imized at s∗ = (s∗1, ..., s
∗
n) where s∗j =

∑n−1
j′=j(Xj′+1j′ − Xj′+1j′+1) for any j ≤ n − 1 and s∗n = 0,

and the stable payoff vector for M is calculated by r∗j = Xjj − s∗j .

Bulow and Levin (2006) derived the above simple ”minimum competitive salary” formula in

the context of firm-worker matching problem with output function Xij = ai × aj (thus with

no externalities). Proposition 5 shows that their result can be extended to the problem with

externalities as long as supermodularity and increasingness are satisfied.9

5 Extentions

Thus far, we have been focusing on cases where heterogeneous ability agents care about either

winning probability of their team or monetary payoffs only, and found that our pairwise stability

notions have intuitive appeal and nice properties. Here, we provide slight generalizations of the

NTU and TU problems.

5.1 Intrinsic Preferences

First, in the pairs competition problem, suppose all x ∈ M ∪W have the following payoff function:

for all i = 1, ..., n with µ(mi) ̸= mi, and all x ∈ {mi, wµ(mi)},

Ũx = ϵbx(µ(x)) + (1− ϵ) (πiV − ex) ,

8The existence of pairwise stable assignment is shown by constructing theM -optimal pairwise stable assignment.

We can characterize the W -optimal pairwise stable matching symmetrically.
9See Konishi and Sapozhnikov (2005) for the same result without externalities.
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where ϵ ∈ [0, 1], and for all x ∈ M ∪W with µ(x) = x,

Ũx = 0.

This payoff function is composed of two parts: bx(µ(x)) incorporates agent x’s intrinsic payoff

from being matched with µ(x) independent of externalities or competition outcome. As before,

we assume that players decide how much effort to make after a matching µ has been determined.

Since the first term enters additively, players’ effort decisions depend only on the latter part of

Ũx. Thus, for all µ ∈ MF , equilibrium payoff is

Ũx(µ) = ϵbx(µ(x)) + (1− ϵ)Ux(µ),

where Ux(µ) is the same as in Section 3:

Ux(µ) =

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

(
ax

Ai(µ)

) σ
1−σ

]
V.

Clearly, when ϵ = 0, this problem degenerates to the pairs competition problem, and to the

standard one-to-one matching problem without externalities when ϵ = 1. In the neighborhoods of

ϵ = 1 or ϵ = 0, pairwise stable matching via swapping obviously exists. But does this hold when

ϵ is significantly far from the end points? Unfortunately, in general, pairwise stable matching via

swapping may not exist as we can see from the following example.

Example 2. Consider a figure skating contest with M = {m1,m2,m3} and W = {w1, w2, w3}.

Let σ = 1
2
, am1 = aw1 = 0.5, am2 = aw2 = 0.4, and am3 = aw3 = 0.25. Personal intrinsic payoffs

from the partners are described by the following matrices:
bm1(w1) bm1(w2) bm1(w3)

bm2(w1) bm2(w2) bm2(w3)

bm3(w1) bm3(w2) bm3(w3)

 =


1 1 2

1 1 1

0 1 1.14




bw1(m1) bw1(m2) bw1(m3)

bw2(m1) bw2(m2) bw2(m3)

bw3(m1) bw3(m2) bw3(m3)

 =


1 1 1

1 1 1.17

1 1 2


Set weight ϵ = 1

2
. We calculate each player’s payoffs from pairs competition under the relevant

four matchings:
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(i) µ1 = {(m1, w1), (m2, w2), (m3, w3)}: Um1(µ
1) = Uw1(µ

1) = 0.405; Um2(µ
1) = Uw2(µ

1) =

0.291; Um3(µ
1) = Uw3(µ

1) = 0.031.

(ii) µ2 = {(m1, w1), (m2, w3), (m3, w2)}: Um1(µ
2) = Uw1(µ

2) = 0.384; Um2(µ
2) = Uw2(µ

2) =

0.131; Um3(µ
2) = Uw3(µ

2) = 0.174.

(iii) µ3 = {(m1, w3), (m2, w1), (m3, w2)}: Um1(µ
3) = 0.183; Um2(µ

3) = 0.332; Um3(µ
3) = 0.160;

Uw1(µ
3) = 0.305; Uw2(µ

3) = 0.119; Uw3(µ
3) = 0.257.

(iv) µ4 = {(m1, w2), (m2, w1), (m3, w3)}: Um1(µ
4) = Uw1(µ

4) = 0.332; Um2(µ
4) = Uw2(µ

4) =

0.363; Um3(µ
4) = Uw3(µ

4) = 0.277.

With these numbers, we can show that there is no pairwise stable matching in this example.

• Consider µ1 and a deviation (m3, w2) which leads µ1 to µ2 via swapping. We have Ũm3(µ
1) =

1
2
(1.14 + 0.031), Ũm3(µ

2) = 1
2
(1 + 0.174), Ũw2(µ

1) = 1
2
(1 + 0.291), and Ũw2(µ

2) = 1
2
(1.17 + 0.131).

This is a profitable deviation for the deviating pair.

• Consider µ2 and a deviation (m1, w3) which leads µ2 to µ3 via swapping. Agent m1 wants

w3 as long as she is available, and w3 is happy with m1 given that m3 is not available. This

is a profitable deviation for the deviating pair.

• Consider µ3 and a deviation (m3, w3) which leads µ3 to µ4 via swapping. We have Ũm3(µ
3) =

1
2
(1 + 0.160), and Ũm3(µ

4) = 1
2
(1.14 + 0.277), and w3 is happy to be matched with m3

whenever possible. This is a profitable deviation for the deviating pair.

• Consider µ4 and a deviation (m1, w1) which leads µ4 to µ1 via swapping. This is an assorta-

tive swapping, and for the relevant agents intrinsic payoffs from the partners are the same.

This is a profitable deviation for the deviating pair.

• Consider any matching with (m3, w1). It is easy to see that (m3, w3) can deviate from it,

since w3 is always available for m3.

Thus, there is no pairwise stable matching via swapping in this example.□

Notice that in the above example, all male agents agree that they intrinsically weakly prefer

w3 to w2, and w2 to w1, and all female agents agree that they intrinsically weakly prefer m3 to
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m2, and m2 to m1.
10 Therefore, it is not easy to assure the existence of pairwise stable matching

via swapping. If, however, ability ranking agrees with intrinsic preference ranking for all agents,

then we have the following result.

Proposition 6. Suppose that bmi
(w1) ≥ bmi

(w2) ≥ ... ≥ bmi
(wn) for all mi ∈ M and bwi

(m1) ≥

bwi
(m2) ≥ ... ≥ bwi

(mn) for all wi ∈ W . Then, µ∗ is the unique pairwise stable matching via

swapping.

5.2 Match Qualities

Here, we introduce match qualities of pairs, and we introduce match qualities in the oligopolistic

joint venture problem. Let a match quality matrix Q be

Q =



q11 · · · q1j · · · q1n
...

. . .
...

...

qi1 · · · qij · · · qin
...

...
. . .

...

qn1 · · · qnj · · · qnn


,

where qij ∈ (0, 1] which captures how good a match between mi and wj is. Effectively, this

describes how well mi and wj can work together.

We incorporate match quality into the oligopolistic joint venture model, assuming that the

marginal cost of production for joint venture (mi, wj) is

c(mi, wj) =
1

qij
f(ami

, awj
).

Note that this setup means that if the quality of matches are the same, a high ability pair will

have a very efficient production technology. If, however, their match quality qij is low, production

technology can be inefficient (marginal cost is high) even if both mi and wj have high abilities.

We can define v(mi, wj, µ) in the exactly the same way as above. Matrix Q can take any form

based on the match quality of every pair.

10In either matrix, payoffs are weakly increasing on every row. It is easy to see that we can modify the example

to get the same result with strict preferences.
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In this case, the structure of the problem are the same as the original oligopolistic joint ventures,

so our solution concept, the pairwise stable assignment via swapping, is well defined. However,

with an arbitrary match quality matrix Q, a pairwise stable assignment via swapping may not

exist. This is because we can create an arbitrary matrix of the marginal cost of each joint venture,

C = (c(mi, wj))i,j=1,...,n by freely choosing Q. The following example demonstrates this result.

Example 3. Let M = {m1,m2,m3} and W = {w1, w2, w3} with

C =


0.1 0.11 0.3

0.3 0.1 0.3

0.3 0.3 0.3

 .

There are six full matchings:

(i) µ1(m1) = w1, µ1(m2) = w2, µ1(m3) = w3; (m1, w2) deviates to create µ2.

(ii) µ2(m1) = w2, µ2(m2) = w1, µ1(m3) = w3; (m2, w3) deviates to create µ3.

(iii) µ3(m1) = w2, µ3(m2) = w3, µ3(m3) = w1; (m1, w1) deviates to create µ4.

(iv) µ4(m1) = w1, µ4(m2) = w3, µ4(m3) = w2; (m2, w2) deviates to create µ1.

(v) µ5(m1) = w3, µ5(m2) = w1, µ5(m3) = w2; (m1, w1) deviates to create µ4.

(vi) µ6(m1) = w3, µ6(m2) = w2, µ6(m3) = w1; (m1, w1) deviates to create µ1.

Matching µ1 is a positively assortative matching, but it is not pairwise stable with swapping

due to strong externalities: the deviating pair (m1, w2)’s marginal cost slightly increases to 0.11,

but the pair (m2, w1) has a really high marginal cost 0.3 due to very low quality of match, and

the deviators (m1, w2) is better off unless δ is very small.

However, if markets are not inter-related (δ = 0), then the problem obviously degenerates to a

standard one-to-one matching problem without externalities. Since our pairwise stable matching

via swapping also degenerates to the standard pairwise stable matching without externalities, we

can ensure a pairwise stable matching by defining preferences with yRxy
′ ⇔ c(x, y) ≤ c(x, y′).

The following proposition is a corollary of Shapley and Shubik (1972).
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Proposition 7. In the oligopolistic competition by joint ventures model, there exists a pairwise

stable matching via swapping if δ = 0 (no externalities: local monopoly).

6 Concluding Remarks

This paper considers stability concepts in one-to-one matching/assignment problems with exter-

nalities. We found that the choice of effectiveness functions plays a crucial role in extending the

celebrated concept of pairwise stable matching to the environment with externalities. We propose

to use pairwise stability with swapping in one-to-one matching problems with externalities. Our

extension section shows that it may not easy to assure the existence of pairwise stable matching

via swapping, but at least in a conceptual level, our stability notion is a reasonable extension of

pairwise stability in matching problems without externalities.

Although our focus on this paper is to seek a reasonable adjustment of pairwise stability that

is widely used in the matching literature without externalities, there are other solution concepts

that may be useful in these matching/assignment models with externalities. Bloch (1996), Ray

and Vohra (1999), and Ray (2008) considered dynamic coalition bargaining of partition function

form games without and with transfers. They use stationary Markov perfect equilibrium to predict

the resulting coalition structure in their noncoopeative coalition formation games. This approach

may be worth investigating especially when the problem does not have pairwise stable matching

via swapping (such as Examples 2 and 3), since the game’s rules require that once a coalition is

formed, the members need to commit to it.

Appendix

We collect all proofs here.

Proof of Proposition 1. Substituting this back into (4), recalling Y−i

Y
= 1− πi, we obtain

πi = 1−
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

.
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This implies that Yi is

Yi = πiY =

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
(n(µ)− 1)∑n

j=1
1

Aj(µ)

]
V

These results lead to the following formulas that are essential for the analysis of stability of

team structure. Recalling (3), we obtain

ex = Yi

[
(1− πi)

1

Y

] 1
1−σ

a
σ

1−σ
x V

1
1−σ

=

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
(n(µ)− 1)V∑n

j=1
1

Aj(µ)

][
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

×
∑n

j=1
1

Aj(µ)

(n(µ)− 1)V

] 1
1−σ

a
σ

1−σ
x V

1
1−σ

=

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

](
ax

Ai(µ)

) σ
1−σ

V

This implies that agent i’s payoff is written as

Ux = πiV − ex

=

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

]
V −

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
(n(µ)− 1) 1

Ai(µ)∑n
j=1

1
Aj(µ)

](
ax

Ai(µ)

) σ
1−σ

V

=

[
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

][
1−

(n(µ)− 1) 1
Ai(µ)∑n

j=1
1

Aj(µ)

(
ax

Ai(µ)

) σ
1−σ

]
V.

In order to show that Regularity Condition 1 assures πi > 0 for all i = 1, ..., n, we use Lemma 1

(i) below. Repeatedly applying Lemma 1 (i), it is easy to see
∑n

j=1
1

Aj(µ∗)
≥
∑n

j=1
1

Aj(µ)
for all µ.

Moreover, An(µ
∗) ≤ Ai(µ) for all µ. Thus, if the Regularity condition is satisfied, then πi(µ) > 0

for all µ and all i = 1, ..., n. We have completed the proof.□

Proof of Lemma 1. Let Aj(µ) ≡
(
a(mj)

σ
1−σ + a(µ(mj))

σ
1−σ

) 1−σ
σ

and Ãj(µ) ≡ a(mj)
σ

1−σ +

a(µ(mj))
σ

1−σ . Clearly, Ãℓ(µ
′) > Ãℓ (µ) > Ãk (µ

′) , and Ãℓ(µ
′) > Ãk (µ) > Ãk (µ

′), which implies

Aℓ(µ
′) > Aℓ (µ) > Ak (µ

′) and Aℓ(µ
′) > Ak (µ) > Ak (µ

′). Let ∆̃ = a(mℓ)
σ

1−σ − a(mk)
σ

1−σ > 0.

Note that

1

Aℓ(µ′)
+

1

Ak (µ′)
=

1(
a(mℓ)

σ
1−σ + a(µ(mk))

σ
1−σ

) 1−σ
σ

+
1(

a(mk)
σ

1−σ + a(µ(mℓ))
σ

1−σ

) 1−σ
σ

=
1(

Ãℓ(µ) + ∆̃
) 1−σ

σ

+
1(

Ãk(µ)− ∆̃
) 1−σ

σ

,

22



Thus,

1(
Ãℓ(µ) + ∆̃

) 1−σ
σ

+
1(

Ãk(µ)− ∆̃
) 1−σ

σ

− 1

Aℓ(µ)
− 1

Ak (µ)

=
(
Ãℓ(µ) + ∆̃

)− 1−σ
σ − Aℓ(µ)

− 1−σ
σ +

(
Ãk(µ)− ∆̃

)− 1−σ
σ − Ãk(µ)

− 1−σ
σ > 0,

since f(x) = x− 1−σ
σ is a strictly convex function. This implies

1

Aℓ(µ′)
+

1

Ak (µ′)
>

1

Aℓ(µ)
+

1

Ak (µ)
,

and
n∑

j=1

1

Aj(µ′)
>

n∑
j=1

1

Aj(µ)
.

Combining the last inequality with Aℓ(µ
′) > Aℓ(µ) and Aℓ(µ

′) > Ak(µ), we have

Ux(µ
′) =

[
1−

(n(µ′)− 1) 1
Aℓ(µ′)∑n

j=1
1

Aj(µ′)

][
1−

(n(µ′)− 1) 1
Aℓ(µ′)∑n

j=1
1

Aj(µ′)

(
aσx

Aℓ(µ′)

) 1
1−σ

]
V.

for x = mℓ and x = µ′(mℓ) since n(µ′) = n(µ). Therefore, it is shown that mℓ and µ′(mℓ) are

better off under µ′.■

Proof of Proposition 2. We first show that any matching that is not positively assortative is

not pairwise stable via swapping. Suppose that µ ∈ MF and µ ̸= µ∗. Then, there is at least one

ℓ such that µ(mℓ) ̸= wℓ. Find the smallest of such ℓs and name it k. Then, µ(mj) = wj holds

for all j = 1, ..., k − 1, and aµ(mk) < awk
and aµ(wk) < amk

. Consider a deviation by assortative

swapping µ ⇒(mk,wk) µ
′. Since µ ∈ MF , µ′ ∈ MF holds. By Lemma 1, µ′Pmk

µ and µ′Pwk
µ hold,

and µ is not pairwise stable via swapping as a result. Next, we show that µ∗ is pairwise stable

via swapping. Suppose not, then there exists a blocking pair (mj, wℓ) and a matching µ′ with

µ∗ ⇒(mj ,wℓ) µ
′. Suppose that ℓ > j. However, from Lemma 1, we have Umj

(µ∗) > Umj
(µ′). which

contradicts to the assumption that (mj, wℓ) is a blocking pair. The argument for ℓ < j is similar.

Therefore, µ∗ is the unique stable matching via swapping. ■

Proof of Lemma 2. Since λ = 1 in this case, the f.o.c.s are (we assume that consumers have

enough income so that x0 > 0):

α− xi − δ

n∑
j=1

xj = pi.
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Summing up over commodities produces:

nα−
n∑

j=1

xj − nδ

n∑
j=1

xj =
n∑

j=1

pj,

or
n∑

j=1

xj =
1

1 + nδ
(nα− P ),

where P =
∑n

j=1 pj. Substituting this back to the f.o.c., we obtain:

α− xi −
δ

1 + nδ
(nα− P ) = pi,

or

xi = xi(pi, P ) = α− pi −
δ

1 + nδ
(nα− P ).

Thus, the market demand function for good i is:

xi(pi, P ) =
α

1 + nδ
+

δ

1 + nδ
P − pi.

We have completed the proof.■

Proof of Proposition 3. The firm i’s f.o.c. with respect to pi is:(
α

1 + nδ
+

δ

1 + nδ
P − pi

)
+ (pi − ci)

(
δ

1 + nδ
− 1

)
= 0,

or (
1 +

1 + (n− 1) δ

1 + nδ

)
pi =

α

1 + nδ
+

δ

1 + nδ
P +

1 + (n− 1) δ

1 + nδ
ci

or
2 + (2n− 1) δ

1 + nδ
pi =

α

1 + nδ
+

δ

1 + nδ
P +

1 + (n− 1) δ

1 + nδ
ci

pi =
α

2 + (2n− 1) δ
+

δ

2 + (2n− 1) δ
P +

1 + (n− 1) δ

2 + (2n− 1) δ
ci

Summing them up, we have

P =
αn

2 + (2n− 1) δ
+

nδ

2 + (2n− 1) δ
P +

1 + (n− 1) δ

2 + (2n− 1) δ

n∑
j=1

cj.

Thus,
2 + (n− 1) δ

2 + (2n− 1) δ
P =

αn

2 + (2n− 1) δ
+

1 + (n− 1) δ

2 + (2n− 1) δ

n∑
i=1

ci,
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or

P =
αn

2 + (n− 1) δ
+

1 + (n− 1) δ

2 + (n− 1) δ

n∑
j=1

cj.

Substituting this into the formula for pi, we obtain

pi =
α

2 + (2n− 1) δ
+

δ

2 + (2n− 1) δ

(
αn

2 + (n− 1) δ
+

1 + (n− 1) δ

2 + (n− 1) δ

n∑
j=1

cj

)
+

1 + (n− 1) δ

2 + (2n− 1) δ
ci

=
α

2 + (2n− 1) δ

(
1 +

nδ

2 + (n− 1) δ

)
+

δ

2 + (2n− 1) δ
× 1 + (n− 1) δ

2 + (n− 1) δ

n∑
j=1

cj +
1 + (n− 1) δ

2 + (2n− 1) δ
ci

=
α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
j=1

cj +
1 + (n− 1) δ

2 + (2n− 1) δ
ci

Thus, in equilibrium, xi is

xi =
α

1 + nδ
+

δ

1 + nδ
P − pi

=
α

1 + nδ
+

δ

1 + nδ

(
αn

2 + (n− 1) δ
+

1 + (n− 1) δ

2 + (n− 1) δ

n∑
j=1

cj

)

−

(
α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
j=1

cj +
1 + (n− 1) δ

2 + (2n− 1) δ
ci

)

=
α {2 + (n− 1) δ + nδ − (1 + nδ)}

(1 + nδ) (2 + (n− 1) δ)

+
δ {(2 + (2n− 1) δ) (1 + (n− 1) δ)− (1 + nδ) (1 + (n− 1) δ)}

(1 + nδ) (2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
j=1

cj −
1 + (n− 1) δ

2 + (2n− 1) δ
ci

=
1 + (n− 1) δ

1 + nδ

{
α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
j=1

cj −
1 + nδ

2 + (2n− 1) δ
ci

}
.

Then, firm i’s equilibrium profit is

yi(µ) =
1 + (n− 1) δ

1 + nδ

(
α

2 + (n− 1) δ
+

δ (1 + (n− 1) δ)

(2 + (2n− 1) δ) (2 + (n− 1) δ)

n∑
j=1

cj −
1 + nδ

2 + (2n− 1) δ
ci

)2

.

From the submodularity of f(am, aw),
∑n

i=1 c(mi, wi) = minµ∈MF

∑n
i=1 c(mi, µ(mi)) holds. Thus,

Regularity Condition 2 assures that the contents of the parenthesis is positive and xi > 0 holds

for all i = 1, ..., n.■

Proof of Lemma 3. It is easy to see f(αm, aw)−f(am′ , aw) ≤ f(am, aw′)−f(am′ , aw′) < 0, since

am > am′ and aw > aw′ , and ∂f
∂am

< 0, ∂f
∂aw

< 0, and ∂2f
∂am∂aw

≤ 0. Thus, c(m,w) + c(m′, w′) ≤
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c(m,w′) + c(m′, w) holds. By letting ∆w ≡ c(m′, w) − c(m,w) > 0 and ∆w′ ≡ c(m′, w′) −

c(m,w′) > 0, we have ∆w − ∆w′ ≥ 0. Let v(m,w;µ) = B (D + FC(µ)−Gc(m,w))2, where

B = 1+(n(µ)−1)δ
1+n(µ)δ

, D = α
2+(n(µ)−1)δ

, F = δ(1+(n(µ)−1)δ)
(2+(2n(µ)−1)δ)(2+(n(µ)−1)δ)

, and G = 1+n(µ)δ
2+(2n(µ)−1)δ

. We can

rewrite v(m,w;µ)− v(m′, w;µ′) + v(m′, w′;µ)− v(m,w′;µ′) in the following:

B (D + F (C(µ′)−∆w +∆w′)−G (c(m′, w)−∆w))
2 −B (D + FC(µ′)−Gc(m′, w))

2

+B (D + F (C(µ′)−∆w +∆w′)−G (c(m,w′) + ∆w′))
2 −B (D + FC(µ′)−Gc(m,w′))

2

= B (2D + F (2C(µ′)−∆w +∆w′)−G (2c(m′, w)−∆w)) (F (−∆w +∆w′) +G∆w)

+B (2D + F (2C(µ′)−∆w +∆w′)−G (2c(m,w′) + ∆w′)) (F (−∆w +∆w′)−G∆w′)

= B (2D + F (2C(µ′)−∆w +∆w′)−G (c(m′, w) + c(m,w))) (F (−∆w +∆w′) +G∆w)

+B (2D + F (2C(µ′)−∆w +∆w′)−G (c(m′, w′) + c(m,w′))) (F (−∆w +∆w′)−G∆w′)

= B (2D + F (2C(µ′)−∆w +∆w′)−G (c(m′, w′) + c(m,w′))) (F (−∆w +∆w′) +G (∆w −∆w′))

+BG (∆m′ +∆m) (F (−∆w +∆w′) +G∆w)

= B (2D + F (2C(µ′)−∆w +∆w′)−G (c(m′, w′) + c(m,w′))) (G− F ) (∆w −∆w′)

+BG (∆m′ +∆m) (F∆m + (G− F )∆w)

> 0,

where ∆m = c(m,w′) − c(m,w) and ∆m′ = c(m′, w′) − c(m′, w). The last inequality holds since

(1) 2D + F (2C(µ′)−∆w +∆w′) − G (c(m′, w′) + c(m,w′)) > 0 by regularity condition, and (2)

F < δ
2+(2n(µ)−1)δ

G < 1
2
G and thus F < G. We completed the proof.■

Proof of Proposition 4. Pick an arbitrary matching µ ̸= µ∗. Then, there is at least one

assortative swapping with m,m′, w, w′ from µ such that am > am′ and aw > aw′ , and µ(m) = w′

and µ(w) = m′. By feasibility, πm + sw′ = v(m,w′;µ) and πm′ + sw = v(m′, w;µ) hold, but by

Lemma 5, we know v(m,w;µ′) + v(m′, w′;µ′) > v(m,w′;µ) + v(m′, w;µ) where µ′ is obtained by

swapping with m,m′, w, w′. Thus, there is at least one improving deviation either by (m,w) or

(m′, w′) from (µ, π, s), and no matching other than µ∗ can be pairwise stable.□

Proof of Lemma 4. We compare Xij = v(mi, wj;µij) and Xij+1 = v(mi, wj+1;µij+1). Since

C(µij) = C(µ∗)− c(mi, wi)− c(mj, wj)+ c(mi, wj)+ c(mj, wi) and C(µij+1) = C(µ∗)− c(mi, wi)−
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c(mj+1, wj+1) + c(mi, wj+1) + c(mj+1, wi), we have

v(mi, wj;µij) = B [D + F (C(µ∗)− c(mi, wi)− c(mj, wj) + c(mi, wj) + c(mj, wi))−Gc(mi, wj)]
2

and

v(mi, wj+1;µij+1).

= B [D + F (C(µ∗)− c(mi, wi)− c(mj+1, wj+1) + c(mi, wj+1) + c(mj+1, wi))−Gc(mi, wj+1)]
2

Since the contents of the brackets are positive, v(mi, wj;µij) > v(mi, wj+1;µij+1) holds if and only

if

F (−c(mj, wj) + c(mj, wi))−(G− F ) c(mi, wj) > F (−c(mj+1, wj+1) + c(mj+1, wi))−(G− F ) c(mi, wj+1).

We will prove the above inequality. Subtracting the RHS from the LHS, we have

F (−c(mj, wj) + c(mj, wi))− (G− F ) c(mi, wj)− F (−c(mj+1, wj+1) + c(mj+1, wi) + (G− F ) c(mi, wj+1))

= (G− F ) (c(mi, wj+1)− c(mi, wj)) + F [(c(mj+1, wj+1)− c(mj+1, wi))− (c(mj, wj)− c(mj, wi))]

> (G− F ) (c(mi, wj+1)− c(mi, wj)) + F [(c(mj+1, wj)− c(mj+1, wi))− (c(mj, wj)− c(mj, wi))]

≥0.

We have completed the proof.■

Proof of Proposition 5. Shapley and Shubik (1974) showed that if an outcome of an assignment

problem is stable then the assignment matrix associated with it is an optimal assignment. Under

strict supermodularity and strict increasingness, the unique optimal assignment of the output

matrix X is an assortative matching µ∗. Thus, what is left to show is that the minimum stable

payoff vector for W that supports this assignment is s∗ where s∗j =
∑n−1

j′=j
(Xj′+1j′ −Xj′+1j′+1) for

any j ≤ n− 1 and s∗n = 0.

Suppose not. Then there is a pairwise stable assignment that leaves payoff vector s′ for W with

s′j < s∗j for some j ≤ m. Obviously, such j must belong to {1, ...n− 1}, suppose that s′n−1 < s∗n−1,

thus s′n−1 < Xnn−1 − Xnn. Consider a deviation by a pair (fn, an−1). Since s′n ≥ s∗n = 0,

r′n ≤ Xnn. Now, s′n−1 + r′n < Xnn−1 − Xnn + Xnn = Xnn−1. This violates the stability, and

contradicts with s′ being a competitive salary. Thus s′n−1 ≥ s∗n−1. Suppose that s
′
n−2 < s∗n−2, thus
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s′n−2 < Xn−1n−2− (Xn−1n−1− (Xnn−1−Xnn)). From the previous step, we know s′n−1 ≥ s∗n−1, and

thus π′
n−1 ≤ Xn−1n−1 − s∗n−1 = Xn−1n−1 − (Xnn−1 −Xnn). Thus, we have

s′n−2 + r′n−1 < Xn−1n−2 − (Xn−1n−1 − (Xnn−1 −Xnn)) +Xn−1n−1 − (Xnn−1 −Xnn)

= Xn−1n−2.

This violates the stability, and contradicts with s′ being a competitive salary. Thus s′n−2 ≥ s∗n−2.

Repeated applications of the same logic conclude that any competitive salary vector s′ satisfies

s′ ≥ s∗. ■
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