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Abstract

We propose deviation-based learning, a new approach to training recommender sys-
tems. In the beginning, the recommender and rational users have different pieces of
knowledge, and the recommender needs to learn the users’ knowledge to make better
recommendations. The recommender learns users’ knowledge by observing whether
each user followed or deviated from her recommendations. We show that learning fre-
quently stalls if the recommender always recommends a choice: users tend to follow the
recommendation blindly, and their choices do not reflect their knowledge. Social wel-
fare and the learning rate are improved drastically if the recommender abstains from
recommending a choice when she predicts that multiple arms will produce a similar
payoff.
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1 Introduction

In every day of our life, our choices rely on recommendations made by others based on their
knowledge and experience. The prosperity of online platforms and artificial intelligence have
enabled us to develop data-based recommendations, and many systems have been imple-
mented in practice. Successful examples include e-commerce (Amazon), movies (Netflix),
music (Spotify), restaurants (Yelp), sightseeing spots (TripAdvisor), hotels (Booking.com),
classes (RateMyProfessors), hospitals (RateMD), and route directions by car navigation apps
(Google Maps). These “recommender systems”1 are helping us to make better decisions.

The advantages of the data-based recommender systems can be classified into two groups.
First, the system can leverage experiences of the most knowledgeable experts. Once the
system learns experts’ behavior using data, the system can report what a user would do if he
had experts’ knowledge. Accordingly, with the help of the recommender system, all users can
optimize their payoffs even when they have no experience with the problem they are facing.
Second, the system can utilize information that an individual cannot access easily or quickly.
For example, restaurant-reservation systems present the list of all available reservation slots
at that moment, and online travel agencies provide the prices and available rooms of hotels.
These conditions change over time; thus, it would be very difficult for an individual user to
keep up to the minute with the latest conditions on their own. Accordingly, even experts
benefit from information provided by recommender systems.

One of the largest challenges in developing a recommender system is to predict users’
payoffs associated with specific alternatives. Real-world recommenders always face the prob-
lem of insufficient initial experimentation (known as the “cold start” problem). Utilization
of feedback provided by users is necessary, but such data are often incomplete and insuffi-
cient. In particular, the system can rarely observe information about users’ payoffs, which is
crucial in many learning methods (e.g., reinforcement learning and the multi-armed bandit
problem). As a proxy for payoffs, many recommender systems already implemented have
adopted rating-based learning, which substitutes the ratings submitted by the users for the
true payoffs of users. Nevertheless, a number of previous studies have reported that user-
generated ratings often involve various types of biases and are not very informative signals of
users’ true payoffs (e.g., Salganik et al., 2006; Muchnik et al., 2013; Luca and Zervas, 2016).

In this paper, we propose deviation-based learning, a new approach for training recom-
1In a narrow sense, a “recommender system” is defined as an algorithm for predicting ratings users

would enter. For example, Adomavicius and Tuzhilin (2005) state “In its most common formulation, the
recommendation problem is reduced to the problem of estimating ratings for the items that have not been
seen by a user” (p. 734). Our system is not a “recommender system” in this narrow sense because we do not
utilize ratings. This paper adopts a broader definition of “recommender system” to denote any mechanism
recommending arms (items or actions) to help users make better decisions
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mender systems. In our model, a recommender (she) faces many rational users (he) sequen-
tially. Neither users’ payoffs nor ratings are available. Instead, we train a recommender
system using data about past recommendations and users’ final decisions. If the recom-
mender has not yet been well-trained, expert users often deviate from her recommendations.
On the flip side of the coin, upon observing expert users’ deviations, the recommender sys-
tem can recognize the fact that it had misestimated the underlying state. Conversely, if a
user follows the recommendation even though the recommender is not completely confident
in her prediction, then she can improve her confidence in the accuracy of her recommenda-
tions. Our deviation-based learning approach accumulates these observations to make better
predictions of users’ payoffs.

An illustrative example is app-based car navigation systems (e.g., Google Maps, or Waze).
In recent years, such navigation apps have become extremely popular.2 Navigation apps
have an immense information advantage over individual drivers; using the app-generated
data, an app can dynamically detect traffic jams and then recommend less congested routes.
Accordingly, the app is useful even for local drivers who have memorized the (static) local
road map and can figure out the shortest route without the recommender’s help.

In the beginning, a navigation app does not have complete information about road char-
acteristics. For example, the app may miss information about hazard conditions associated
with specific roads (e.g., high-crime-rate areas, rock-fall hazard zones, accident blind spots).
Such hazardous roads are often vacant because local drivers avoid them; thus, a naive rec-
ommender might consider such a route desirable and recommend it.3 Drivers who are not
familiar with this hazard information might then follow the recommendation and be exposed
to danger.

The rating-based approach is not suitable for detecting hazards in the car navigation
problem because (i) detailed ratings and reviews are often unavailable, and (ii) the app
should not wait until it observes low payoffs because it means incidents or accidents indeed
occur, and some users suffer from them. Moreover, this problem cannot be solved completely
by inputting the hazard information manually because it is difficult to list all the relevant
hazard conditions in advance.

Our deviation-based learning approach solves this dilemma by taking advantage of the
knowledge of local drivers (the experts). When a hazardous route is recommended, a local
driver ignores the recommendation and chooses a different route. Given that the app has

2According to Khoury (2019), Google Maps became the second app to reach the five-billion-download
mark, after YouTube.

3For example, a blog post by Suro (2018) reports that navigation apps sometimes mistakenly recommend
high-risk routes. To mitigate this problem, in Israel and Brazil, Waze provides the option of alerting about
high-risk routes: https://support.google.com/waze/answer/7077122?hl=en (seen on July 22, 2021).
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an information advantage about road congestion, such events would not occur unless the
app misunderstands something about the static map with which the local driver is very
familiar. Thus, upon observing a deviation, the app can update its knowledge about the
static map. Conversely, if the app recommends a route that involves a potentially hazardous
road but observes that the local driver followed the suggested route, then the app can
conclude that the road is not that dangerous. In this manner, the app can obtain a better
understanding of the static map and improve its recommendations. Note that the deviation-
based learning approach can detect hazardous roads before any additional incident occurs
because the recommender can observe that local drivers avoid such hazardous roads from
the outset.

Formally, we analyze a stylized model in which each user has two arms (actions), as in
seminal papers on information design theory (e.g., Kremer et al. 2014 and Che and Hörner
2017). A user’s payoff from an arm is normalized to zero, and his payoff from another arm
is given by xθ + z. The context x specifies the user’s problem (in the navigation problem,
a context includes such elements as the origin, destination, and means of transportation).
We assume each user is an expert; he knows the parameter θ and can correctly interpret
his context x to predict the first term of his payoff, xθ (i.e., he knows the static map and
find the shortest safe route). The recommender has additional information about the value
of z (e.g., congestion), which is not observed by the user. We assume that local drivers are
more knowledgeable than the recommender about the static map; the recommender does
not at first know the parameter θ and only learns it over time. For each user, the recom-
mender sends a recommendation (message) based on a precommitted information structure.
Upon observing the recommendation, the user forms a belief about the unobservable payoff
component z and selects either one of the two actions.

We demonstrate that the size of the message space is crucial for efficiency. The character-
ization of the tradeoff between the message space and the learning rate is of practical interest
because the recommender often wants to minimize the message space to reduce users’ cogni-
tive costs. We show that by making the message space slightly larger than the action space,
we obtain a large welfare gain. A large message space enables the recommender to send a
signal that indicates the recommender is “on the fence” — i.e., the payoffs associated with
two distinct actions are predicted to be similar. The availability of such messaging improves
the learning rate exponentially without sacrificing the utilization of current knowledge.

We first prove that when the message space is binary (i.e., the message space and ac-
tion space have the same size), then learning is very slow. In this case, the recommender
recommends the better arm based on her latest information. Since the recommender has
an information advantage, users often want to follow the recommendation blindly even if
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it is imperfect. Here, the recommender knows that no deviation will occur, and therefore,
she learns nothing from the users’ behaviors. Formally, we prove that the expected number
of users required to improve the recommendations increases exponentially to the quality of
recommendations. This effect slows down learning severely and causes a large welfare cost:
while the per-round welfare loss in this situation is relatively small (since most users want
to obey the recommendation blindly), the loss adds up to a large amount in the long run.

The learning rate is improved drastically when a ternary message space is allowed. We
focus on a simple policy that recommends a particular arm only if the recommender is
confident in her prediction. Otherwise, the recommender honestly discloses the fact that
the two actions are predicted to produce similar payoffs according to the recommender’s
current information. When the recommender is confident about her prediction (which is
almost always the case after the quality of her recommendation has become high), the user
also confidently follows the recommendation, which maximizes the true payoff with high
probability. Furthermore, when the recommender admits that she is on the fence, the user’s
choice is very useful in updating the recommender’s belief. With the ternary message space,
the total welfare loss is bounded by a constant (independent of the number of users).

2 Related Literature

Information Design This paper elucidates how the recommender learns about experts’
knowledge through users’ actions. This contrasts with previous studies on information de-
sign (e.g., Kamenica and Gentzkow, 2011; Bergemann and Morris, 2016a,b) and strategic
experimentation (e.g., Kremer et al., 2014; Che and Hörner, 2017) that have explored how
to incentivize agents to obey recommendations. Indeed, when either (i) the recommender
(sender) has complete information about the underlying parameter (as in information design
models) or (ii) payoffs (or signals about them) are observable (as in strategic experimenta-
tion models), a version of the “revelation principle” (originally introduced by Myerson, 1982)
holds. In these cases, without loss of generality, we can focus on policies that always recom-
mend actions from which no user has an incentive to deviate. In contrast, we demonstrate
that when the recommender learns about underlying parameters by observing what users
will do after knowing her recommendation, recommending just one arm is often inefficient.

Recommender System While the recommender system has mostly focused on predicting
ratings, the vulnerability of rating-based learning has been widely recognized. Salganik et al.
(2006) and Muchnik et al. (2013) show that prior ratings bias the evaluations of subsequent
reviewers. Marlin and Zemel (2009) show that the rating often involves nonrandom missing

5



data because users choose which item to rate. Mayzlin et al. (2014) and Luca and Zervas
(2016) report that firms attempt to manipulate their online reputations strategically. While
the literature has proposed several methods to address these issues (for example, Sinha et al.
(2016) propose a way to correct bias by formulating recommendations as a control problem),
the solutions proposed thus far are somewhat heuristic in the sense that their authors have
not identified the fundamental source of the biases in rating systems using a model with
rational agents.4 In contrast, our deviation-based approach does not suffer from these biases
because our approach does not rely on ratings.

Learning from Observed Behaviors In the literature of economic theory, inferring a
rational agent’s preferences given their observed choices is rather a classic question (revealed
preference theory, pioneered by Samuelson, 1938). Furthermore, recent studies on machine
learning and operations research, such as inverse reinforcement learning (Ng and Russell,
2000) and contextual inverse optimization (Ahuja and Orlin, 2001; Besbes et al., 2021) have
also proposed learning methods to recover a decision-maker’s objective function from his
behavior.5 These methods are useful for extracting experts’ knowledge to make a better
prediction about users’ payoffs.

Our contribution to this literature can be summarized as follows. First, we elucidate
the effect of the recommender’s information advantage. In many real-world problems (e.g.,
navigation), the recommender is not informationally dominated by expert users; thus, deci-
sions made by experts who are not informed of the recommender’s information are typically
suboptimal. This paper proposes a method to efficiently extract experts’ knowledge and
combine it with the recommender’s own information. Second, we articulate the role of users’
beliefs about the accuracy of the recommender’s predictions. When the recommendation is
accurate, users tend to follow recommendations blindly, and therefore, learning stalls under
a naive policy (the binary recommendation policy). The extant studies have overlooked this
effect because their learning models do not take into account interactions between the learner
(the recommender) and the decision-maker (the users). Third, we demonstrate that the rec-
ommender can improve her learning rate significantly by intervening in the data generation
process through information design. In our environment, learning under the ternary rec-
ommendation policy is exponentially faster than learning under the binary recommendation
policy. The difference in social welfare achieved is also large.

In the marketing science literature, adaptive conjoint analysis has been proposed as a
4See the survey of the biases in rating systems by Chen et al. (2020).
5Classical learning methods, such as reinforcement learning (Sutton and Barto 2018, a standard textbook

on this subject) and multi-armed bandit learning (Thompson, 1933; Lai and Robbins, 1985), assume that
the learner can directly observe realized payoffs.
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method to pose questions to estimate users’ preference parameters in an adaptive manner.
Several studies, such as Toubia et al. (2007) and Sauré and Vielma (2019), have considered
adaptive choice-based conjoint analysis, which regards choice sets as questions and actual
choices as answers for them. This strand of the literature has also developed efficient methods
for intervening in the data generation process to extract users’ knowledge. However, in the
recommender problem, the recommender is not allowed to select users’ choice sets to elicit
their preferences. Instead, the recommender needs to design information.

3 Model

We consider a sequential game that involves a long-lived recommender and T short-lived
users. At the beginning of the game, the state of the world θ ∼ Unif[−1, 1] is drawn. We
assume that all the users are experts and more knowledgeable than the recommender is
about the state θ initially.6 Formally, we assume that while users know the realization of
θ, the recommender knows only the distribution of θ. Accordingly, the recommender learns
about θ through the data obtained in the game.

Users arrive sequentially. At the beginning of round t ∈ [T ] := {1, . . . , T}, user t arrives
with the shared context xt ∼ N , where N is the standard (i.e., with a zero mean and
unit variance) normal distribution. The context xt is public information and observed by
both user t and the recommender. The recommender also observes her private information
zt ∼ N , whose realization is not disclosed to user t. Each user has binary actions: arm −1

and arm 1.7 Without loss of generality, the user’s payoff from choosing arm −1 is normalized
to zero: rt(−1) = 0. The payoff from choosing arm 1 is given by

rt(1) = xtθ + zt.

We refer to xtθ as the static payoff and to zt as the dynamic payoff. These names come from
the navigation problem presented as an illustrative example, in which users are assumed to
be familiar with the static road map but do not observe dynamic congestion information
until they actually select the route.

In round t, the recommender first selects a recommendation at ∈ A, where A is the
message space. For example, if the recommender just wants to recommends an arm, then

6As long as the recommender can identify the set of expert users, she can exclude nonexpert users from
the model. In the navigation app example, it should not be difficult for the app to identify the set of local
residents who drive cars frequently. Once the recommender trains the system using the data of the experts’
decisions, then she can use it to make recommendations to nonexpert users.

7Alternatively, we can assume that each user has many actions but all but two are obviously undesirable
in each round. We assign ±1 to index the arms for the sake of mathematical clarity.
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the message space is equal to the action space: A = {−1, 1}. Observing the recommendation
at, user t chooses an action bt ∈ B = {−1, 1}. User t receives a payoff of rt(bt) and leaves
the market. The recommender cannot observe users’ payoffs.

As in the literature of information design, we assume that the recommender commits
to an information structure that mechanically decides which message to submit. When the
recommender makes her round-t recommendation, she can observe the sequences of all past
recommendations, (as)

t−1
s=1, and all past actions that users took, (bs)

t−1
s=1. Using these pieces of

information, the recommender computes her belief about parameter θ using Bayes’ rule. The
recommender’s belief at the beginning of round 1 is the same as the prior belief: Unif[−1, 1].
Due to the property of uniform distributions, the posterior distribution of θ always belongs
to the class of uniform distributions. The posterior distribution at the beginning of round
t is specified by Unif[lt, ut], where lt and ut are the lower and upper bounds, respectively,
of the confidence region in the beginning of round t. Note that the confidence region [lt, ut]

shrinks over time:

−1 =: l1 ≤ l2 ≤ · · · ≤ lT−1 ≤ lT ≤ θ ≤ uT ≤ uT−1 ≤ · · · ≤ u2 ≤ u1 := 1,

and thus the width of the confidence region wt := ut − lt is monotonically decreasing. We
assume users are informed of the recommender’s current confidence region [lt, ut]. From the
perspective of the recommender in round t, the predicted payoff from arm 1 is

r̂t(1) := Eθ̂t∼Unif[lt,ut]
[xtθ̂t] + zt = xtmt + zt,

where mt := (lt + ut)/2 = Eθ̂t∼Unif[lt,ut]
[θ̂t].

Upon observing recommendation at, user t updates his belief about the dynamic payoff
zt. User t computes the conditional expected payoff from choosing arm 1, E[rt(1)|mt, at].
Then, user t selects an arm bt ∈ B := {−1, 1} that provides a larger payoff in expectation:
bt = 1 if E[rt(1)|mt, at] > 0 and bt = −1 otherwise. Note that this is the strategy users would
take in a perfect Bayesian equilibrium of this sequential game.

After observing user t’s choice bt, the recommender updates the posterior distribution
about θ, characterized by (lt, ut), according to Bayes’ rule. The choice bt and the update rule
of (lt, ut) will be explained in detail in Section 4. The (utilitarian) social welfare is defined
as the sum of all users’ payoffs:

∑T
t=1 rt(bt). We quantify the welfare loss compared to the

first-best scenario using regret. Regret is defined as follows:

reg(t) := rt(b
∗
t )− rt(bt);
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Reg(T ) :=
T∑
t=1

reg(t),

where b∗t := maxb∈{−1,1} rt(b) is the superior arm with respect to true payoffs. The value
reg(t) indicates the loss of welfare caused by the suboptimal decision-making in round t;
thus, the maximization of the social welfare is equivalent to the minimization of the regret.
If the recommender already knows (or has learned accurately) the state θ, then the recom-
mender would always inform user t of the superior arm, and the user would always obey
the recommendation. Therefore, bt = b∗t and reg(t) = 0 would be achieved. Conversely, if
the recommender’s belief about the state θ is not accurate, then users cannot always select
the superior arm. Therefore, the regret also measures the progress of the recommender’s
learning of θ.

In this paper, we characterize the relationship between the size of the message space |A|
and the order of regret Reg(T ). It is easy to observe that the regret achievable is closely
related to the size of the message space. When the message space is a singleton (i.e., |A| = 1),
the recommender can convey no information about the dynamic payoff component zt. As
a result, users suffer from constant welfare loss for each round; therefore, the regret grows
linearly in T : Reg(T ) = Θ(T ). In contrast, if the message space is a continuum (i.e., A = R),
the recommender can inform each user t of the “raw data” about the dynamic payoff zt, i.e.,
she can send at = zt as a message. In this case, users can recover true payoffs rt(1) and select
the superior arms for every round. There is no need for the recommender to learn, and the
regret of exactly zero is achieved: Reg(T ) = 0 for all T . Nevertheless, an infinite message
space incurs a large cognitive cost, and is therefore inconvenient. Indeed, it is infeasible for
real-world recommender systems to disclose all the information about current congestion. In
the following, we evaluate the regret incurred with small finite message spaces, namely, the
case of binary and ternary message spaces (|A| = 2, 3).

4 Binary Recommendations

4.1 Policy and Belief Updates

First, we consider the case of the binary message space, i.e., A = {−1, 1} = B. We consider
a natural recommendation policy that simply discloses an arm predicted to be superior; it
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Figure 1: Region of possible zt for at = −1 (left) and at = 1 (right) when xtmt > 0. The
quantity Zt is the expected value of the gray region.

recommends arm 1 if and only if r̂t(1) = xtmt + zt > 0 = r̂t(0).8 That is,

at =

{
1 if xtmt + zt > 0;

−1 otherwise.

Since user t observes the quality of the recommender [lt, ut], he also knows the value of
mt := (lt + ut)/2. In addition, he observes the recommendation at before choosing an arm.
User t’s conditional expected payoff from choosing arm 1 is given by

E[rt(1)|mt, at] = xtθ + Zt,

where Zt := E[zt|mt, at].
We evaluate Zt to identify the user’s equilibrium behavior. The prior distribution of zt

is the standard normal distribution, N . In addition, at = 1 implies zt > −xtmt, whereas
at = −1 implies zt < −xtmt. Accordingly, the posterior distribution of zt is always a
truncated standard normal distribution. Let N tr(α, β) be the truncated standard normal
distribution with support (α, β). Then, the posterior distribution of zt after at = 1 and
at = −1 are N tr(−xtmt,∞) and N tr(−∞,−xtmt), respectively. These distributions are
illustrated as Figure 1. To summarize, we have

Zt := E[zt|mt, at] =

{
Ez∼N tr(−∞,−xtmt)[z] if at = −1;

Ez∼N tr(−xtmt,∞)[z] if at = 1.

The arm that user t will choose is as follows:

bt =

{
1 if xtθ + Zt > 0;

−1 otherwise.
(1)

8We ignore equalities of continuous variables that are of measure zero, such as r̂t(1) = 0.
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Upon observing the user’s decision bt, the recommender updates her confidence region,
[lt, ut]. When the user chooses bt = 1, the recommender can recognize that xtθ + Zt > 0. If
xt > 0, this is equivalent to θ > −Zt/xt; and if xt < 0, this is equivalent to θ < −Zt/xt.
Using this information, the recommender may be able to shrink the support of the posterior
distribution about θ. We can analyze the case of bt = −1 in a similar manner. The belief
update rule is as follows:

lt+1 =

{
lt if bt · sgn(xt) < 0;

max{lt,−Zt/xt} if bt · sgn(xt) > 0,
(2)

ut+1 =

{
min{ut,−Zt/xt} if bt · sgn(xt) < 0;

ut if bt · sgn(xt) > 0,
(3)

where sgn is the following signum function:9

sgn(x) :=

{
1 if x > 0;

−1 if x < 0.

4.2 Informativeness of Deviations

First, we present a fundamental theorem that constitutes the basis for the concept of
deviation-based learning.

Theorem 1 (Informativeness). If at 6= bt, then

wt+1 <
1

2
wt. (4)

Conversely, if at = bt, then
wt+1 >

1

2
wt. (5)

All the formal proofs are relegated to the appendix.
Theorem 1 elucidates the informativeness of deviations. When a user deviates from the

recommendation (i.e., when at 6= bt), the width of the recommender’s confidence region will
be at least halved. Since the recommender has an information advantage about zt, a devia-
tion occurs only if the recommender significantly misestimates the static payoff component.
Accordingly, upon observing a deviation, the recommender can update her belief about θ by
a large amount. In contrast, when a user obeys the recommendation (i.e., when at = bt), the
decrease of wt is bounded. Note that, when users are obedient, it is frequently the case that

9xt = 0 occurs with a probability of zero, and so we ignore such a realization.
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no update occurs and so wt+1 = wt. This is the case if the recommender’s error |xt(θ−mt)|
is small, and therefore, the user follows the recommendation blindly, given any θ ∈ [lt, ut].

4.3 Failure of Binary Recommendations

We present our first main theorem, which evaluates the order of total regret under the binary
recommendation policy.

Theorem 2 (Regret Bound of Binary Recommendation). There exists a Θ̃(1) (polyloga-
rithmic) function10 f(T ) of T such that

E[Reg(T )] ≥ T/f(T ).

Theorem 2 shows that the total regret is Ω̃(T ), which implies that users suffer from a
large per-round regret even in the long run.

While each user precisely knows his static payoff xtθ, he has access to the dynamic payoff
zt only via recommendation. To help the user make the best decision, the recommender
must identify which arm is better as a whole. The recommender must therefore learn about
the state θ in order to figure out the value of rt(1) = xtθ + zt through the users’ feedback
bt. The more the recommender learns about θ, the less informative is the users’ feedback:
rational users hardly deviate from (moderately) accurate recommendations because the rec-
ommender’s information advantage (in terms of information about the dynamic payoff term)
tends to dominate the estimation error. Consequently, when recommendations are accurate,
deviations are rarely observed, and the recommender has few opportunities to improve her
estimator θ̂.

In the following, we provide two lemmas that characterize the problem and then discuss
how we derive Theorem 2 from these lemmas.

Lemma 3 (Lower Bound on Regret per Round). The following inequality holds:

E[reg(t)] ≥ Creg|θ −mt|2,

where Creg > 0 is a universal constant.11

Since the recommender does not know θ, she substitutes mt for θ to determine her
recommendation. The probability that the recommender fails to recommend the superior

10Õ, Ω̃, and Θ̃ are Landau notations that ignore polylogarithmic factors. We often treat these factors as
if they were constant because polylogarithmic factors grow very slowly (o(N ε) for any exponent ε > 0).

11A universal constant is a value that does not depend on any model parameters.
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arm is proportional to |θ − mt|, and the loss from such an event is also proportional to
|θ −mt|. Accordingly, the per-round expected regret is at the rate of O(|θ −mt|2).

Lemma 4 (Upper Bound on Probability of Update). There exists a universal constant
Cupdate > 0 such that, for all wt ≤ Cupdate,

P[(at+1, bt+1) 6= (at, bt)] ≤ exp

(
−Cupdate

wt

)
.

User t compares two factors for making his decision: (i) the recommender’s estimation
error of the static payoff term |xt(θ−mt)| and (ii) the recommender’s information advantage
about the dynamic payoff term zt. When the former factor is small, the user blindly obeys
the recommendation, and the user’s decision does not provide additional information. Since
wt > |θ−mt|, the former factor is bounded by xtwt. For a user’s decision to be informative, xt
must be Ω(1/wt) (so that |xt(θ−mt)| becomes larger than a threshold value). Since xt follows
a normal distribution, the probability that such a context arrives decreases exponentially in
1/wt.12

Lemma 4 states that the recommender’s learning stalls when wt is moderately small. In
particular, if wt = 2Cupdate/(log T ) = Θ(1/(log T )), then the probability of her belief update
is 1/T 2. This implies that no update occurs in the next T rounds with a probability at least
1− 1/T .

We use these lemmas to obtain the total regret bound presented in Theorem 2. First,
Lemma 4 implies the update of θ is likely to stall when it reaches wt = |θ − mt| =

Θ(1/(log T )). Given |θ − mt| = Θ(1/(log T )), Lemma 3 implies the per-round (expected)
regret is Θ(1/(log T )2). Consequently, the order of total regret is Ω(T/(log T )2) = Ω̃(T ),
implying that users suffer from large per-round regrets even in the long run. This is how we
obtained the regret bound presented as Theorem 2.

5 Ternary Recommendations

5.1 Policy

Section 4 considered a binary message space, A = {−1, 1} = B. We have shown that the
recommender fails to learn θ with the binary message space. In this section, we consider an
alternative recommender system with a ternary message space, A = {−1, 0, 1} = B ∪ {0}.

12A similar result holds whenever xt follows a sub-Gaussian distribution, where the probability of observing
xt decays at an exponential rate with respect to |xt|. Conversely, when the distribution of xt is heavy-tailed,
the conclusion of Lemma 4 may not hold.
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This ternary message space allows the recommender to inform users that she is “on the fence.”
When the recommender is confident in her recommendation, she sends either at = −1 or
at = 1. If the recommender predicts that the user should be approximately indifferent
between two arms, then she sends at = 0 instead.

Specifically, we focus on the following recommendation policy. We introduce a sequence
of parameters (εt)

T
t=1, where εt > 0 for all t ∈ [T ], that determines whether the recommender

is confident in her prediction. If r̂t(1) > εt, then the recommender is confident about the
superiority of arm 1, and therefore recommends arm 1: at = 1. Conversely, if r̂t(1) <

−εt, then the recommender is confident about the superiority of arm −1, and therefore
recommends arm −1: at = −1. In the third case, i.e., −εt < r̂t(1) < εt, the recommender
honestly states that she is on the fence; she sends the message at = 0, implying that she
predicts that the payoffs associated with arms 1 and−1 will be similar. This recommendation
policy is summarized as follows:

at =


1 if xtmt + zt > εt;

0 if εt > xtmt + zt > −εt;
−1 if xtmt + zt < −εt.

User t’s posterior belief about zt is given by (i) zt ∼ N tr(−∞,−xtmt− εt) given at = −1;
(ii) zt ∼ N tr(−xtmt − εt,−xtmt + εt) given at = 0; and (iii) zt ∼ N tr(−xtmt + εt,∞)

given at = 1. Accordingly, the conditional expectation of zt with respect to the posterior
distribution is as follows.

Zt := E[zt|mt, at] =


Ez∼N tr(−∞,−xtmt−εt)[z] if at = −1;

Ez∼N tr(−xtmt−εt,−xtmt+εt)[z] if at = 0;

Ez∼N tr(−xtmt+εt,∞)[z] if at = 1,

which is illustrated in Figure 2. Given the new specifications of at and Zt, the user’s decision
rule for choosing bt (given in Eq. (1)) and the belief update rule for deciding (lt+1, ut+1)

(given in Eq. (2) and (3)) are unchanged.

5.2 Success of Ternary Recommendations

The following theorem characterizes the total regret achieved by the ternary recommendation
policy.

Theorem 5 (Regret Bound of Ternary Recommendation). Let εt = (3/4)wt. Then, the
regret is bounded as:

E[Reg(T )] ≤ Cter,

14



Figure 2: Region of possible zt for at = −1 (left), at = 0 (middle), and at = 1 (right) when
xtmt > 0. The quantity Zt is the expected value of the gray region.

where Cter > 0 is a universal constant.

This result contrasts with Theorem 2, which shows that the binary recommendation
policy suffers from Ω̃(T ) regret. Theorem 5 implies that a slight expansion of the message
space drastically improves the efficiency of the recommendation policy.

When the message space is binary, the recommender can inform user t only of whether
or not xtmt + zt > 0; thus, user t cannot figure out how large |xtmt + zt| is. However,
the value of |xtmt + zt| is indeed crucial to know for whether the user should deviate from
the recommendation. If the user were to know that |xtmt + zt| is close to zero, then he
would have a stronger motivation to defy the recommendation because the estimation error
|xt(θ −mt)| matters. Accordingly, by informing users of the magnitude of |xtmt + zt|, the
recommender could “encourage” users to deviate from her recommendation so as to exploit
the users’ knowledge more efficiently.

Our ternary recommendation policy effectively achieves the scenario described above.
When |xtmt + zt| is smaller than the threshold value εt, the recommender informs the agent
this fact by submitting message at = 0. The user’s choice after observing at = 0 is useful for
making a better estimate of θ. The more accurate estimate on θ the recommender makes,
the smaller the value of εt she chooses; this in turn leads to her sending at = 0 less often. In
the end, she is able to recommend a truly superior arm for every user.

The following lemmas characterize the key properties that we use in Theorem 5. The
first lemma, Lemma 6, computes the probability that at = 0 is sent.

Lemma 6 (Probability of at = 0). The following equality holds:

P[at = 0] = COtFεt,

where COtF > 0 is a universal constant.
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Lemma 6 states that the probability that at = 0 is recommended is linear in εt. This
result immediately follows from the fact that (i) zt follows a standard normal distribution,
and (ii) at = 0 is sent when zt ∈ (−xtmt − εt,−xtmt + εt).

The second lemma, Lemma 7, bounds the per-round regret, reg(t), using a quadratic
function of the policy parameter, εt, and the width of the confidence region, wt.

Lemma 7 (Upper Bound on Regret per Round). The following inequality holds:

E[reg(t)] ≤ Cregt(max(εt, wt))
2,

where Cregt > 0 is a universal constant.

When an arm is recommended (i.e., when at 6= 0), then we can apply the analysis for
binary recommendations to derive the per-round expected regret of O(w2

t ). The message
at = 0 is sent with probability Θ(εt) (by Lemma 6). Since at = 0 is sent only when the
utility is (approximately) indifferent between two arms, the per-round regret is bounded by
εt + wt in this case. Hence, the per-round expected regret for this case is O(max(εt, wt)

2).
Finally, the third lemma, Lemma 8, guarantees that when εt is selected appropriately,

then for every time that at = 0 is selected, the confidence region shrinks geometrically.

Lemma 8 (Geometric Update). Let εt = (3/4)wt. Then, the following inequality holds:

P[wt+1 ≤ Cw,1wt | at = 0] ≥ Cw,2,

where
(Cw,1, Cw,2) =

(
7

8
,
3

4

e−2√
2π

)
.

The intuition for the geometric gain after at = 0 is as follows. When εt ≈ 0, then, the
user, upon observing at = 0 (i.e., xtmt + zt is very close to zero), can accurately figure out
the realization of the dynamic payoff term: zt ≈ −xtmt. Given this, the user chooses bt = 1

if xtθ + zt ≈ xt(θ − mt) > 0 and bt = −1 otherwise; in other words, by observing bt, the
recommender can identify whether or not θ > mt. Since mt is the median of the confidence
region [lt, ut], this observation halves the width of the confidence region. Accordingly, when
the recommender chooses a sufficiently small εt, a geometric update is achieved.

While a smaller εt results in a larger update after at = 0 is sent, we cannot set εt = 0

because in that case the probability of sending at = 0 becomes zero. The policy parameter εt
must be chosen to balance this trade-off. Lemma 8 shows that εt = (3/4)wt is an appropriate
choice in the sense that it achieves a constant per-round probability of geometric updates.

16



The proof outline of Theorem 5 is as follows. By Lemma 6, the probability of at = 0 is
Θ(εt) = Θ(wt). Together with Lemma 8, it follows that, in round t, with probability Θ(wt),
the width of confidence region wt shrinks geometrically to wt+1 = Cw,1wt or smaller. This
leads an exponential convergence of θ̂t to the total number of users to which the recommender
has sent at = 0. Finally, when εt = (3/4)wt, Lemma 7 ensures that the per-round regret
is O(w2

t ). Let us refer to an interval between two geometric intervals as an epoch. Since a
geometric update occurs with probability Θ(wt), the expected number of rounds contained
in one epoch is Θ(1/wt). The regret incurred per round is Θ(w2

t ); thus, the total regret
incurred in one epoch is Θ(w2

t × 1/wt) = Θ(wt). Accordingly, the expected regret associated
with each epoch is bounded by a geometric sequence whose common ratio is Cw,1 = 7/8 < 1.
The total regret is the sum of the regret from all the epochs. Consequently, the total regret
is bounded by the sum of a geometric series, which converges to a constant.

6 Simulations

This section provides the simulation results. For each path, we draw θ from Unif[−1, 1], and
xt, zt from the standard normal distribution i.i.d. for T = 10, 000 rounds. We analyze how
regret Reg(t) and the width of the confidence region wt evolve over time under the binary
and ternary recommendation policies.

For all graphs in this section, the lines are averages over 500 sample paths, and the shaded
areas cover between 25 and 75 percentiles over runs. The whiskers drawn at the final round
(T = 10, 000) are the two-sigma confidence intervals of the average values. 13

6.1 Regret

We plot the cumulative regret, Reg(t), in Figures 3 and 4. As proved in Theorem 2, the
simulation result implies almost-linear growth of the cumulative regret under the binary
recommendation: Reg(T ) := Ω̃(T ). In contrast, under the ternary recommendation, the cu-
mulative regret is bounded by a constant. This observation is also consistent with Theorem 5,
which shows that Reg(T ) = O(1) under the ternary recommendation. The simulation result
additionally demonstrates that there is a large quantitative difference between the magnitude
of total regret incurred by these two policies. For T = 10, 000, while the binary recommenda-
tion policy produces Reg(T ) ≈ 10 on average, that under the ternary recommendation policy
produces Reg(T ) ≈ 0.2. Moreover, we can infer from Figures 3 and 4 that the difference

13The implementation of the simulation is available at https://github.com/jkomiyama/
deviationbasedlearning.
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Figure 3: The evolution of cumulative regret
Reg(t) under binary and ternary recommen-
dation.
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Figure 4: The evolution of cumulative regret
Reg(t) under ternary recommendation. The
blue line in this figure is identical to the blue
line in Figure 3.

would grow almost linearly as we further increase the number of rounds T .

6.2 Learning

We now investigate how the width of the confidence region, wt, is updated. First, we focus
on when and how frequently updates occur. We count the occurrence of belief updates,
i.e., the number of rounds such that wt+1 < wt. Among all rounds in which updates occur,
(i) the set of rounds in which the user followed the recommendation is denoted by TObey

(obedience), (ii) the set of rounds in which the user deviated from the recommendation is
denoted by TDeviate (deviation), and (iii) the set of rounds in which the recommender did not
recommend a particular action is denoted by TOtF (on the fence). More formally,

TObey(t) := {s ∈ [t] : ws+1 < ws and as = bs};

TDeviate(t) := {s ∈ [t] : ws+1 < ws, as 6= 0 and as 6= bs};

TOtF(t) := {s ∈ [t] : ws+1 < ws and as = 0}.

Note that |TOtF| = 0 for the case of the binary recommendations since at = 0 is never sent.
Figures 5 and 6 plot the number of updates, |TObey(t)|, |TDeviate(t)|, |TOtF(t)|, and their to-

tal, |TObey(t)|+ |TDeviate(t)|+ |TOtF(t)|. Figure 5 exhibits the case of binary recommendations.
The updates by obedience occurs more often than the updates by deviation.

Figure 6 represents the case of ternary recommendations. Since the recommender rec-
ommends an arm only if she is confident about it, users follow the recommendation blindly
whenever an arm is recommended; therefore, an update occurs only if the recommender con-
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Figure 5: Number of updates under binary
recommendations.
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Figure 6: Number of updates under ternary
recommendations. We observe |TObey(T )| =
|TDeviate(T )| ≈ 0; thus, the total number of
updates until round t is approximately equal
to |TOtF(t)|.

fesses that she is on the fence. The opportunities for her learning are mostly concentrated
at the beginning of the game, but updates occur occasionally even in the later stages of the
game. On average, updates occur more frequently than in the case of binary recommenda-
tions.

Next, we evaluate the total amount of information acquired from each recommendation.
We measure the accuracy of the estimation in round t by

ACC(t) := − log (wt+1/2) .

The value wt+1 is the width of the confidence region after the round-t update. Note that
w1 = u1 − l1 = 1− (−1) = 2, and therefore, ACC(0) is normalized to zero.

We define the accuracy gain from each recommendation as follows:

ACCobey(t) := −
∑

s∈TObey

log(ws+1/ws);

ACCdeviate(t) := −
∑

s∈TDeviate

log(ws+1/ws);

ACCotf(t) := −
∑
s∈TOtF

log(ws+1/ws).

Note that it is always the case that ACC(t) = ACCobey(t) + ACCdeviate(t) + ACCotf(t).
Figures 7 and 8 depict the accuracy gain from each recommendation under the cases of

binary recommendations and ternary recommendations. As illustrated in Figure 5 under the
binary recommendation policy, learning from obedience occurs more frequently than learning
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Figure 7: The breakdown of accuracy gains
under binary recommendations.
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Figure 8: The breakdown of accuracy gains
under ternary recommendations. Almost all
the accuracy gains are from at = 0; thus,
ACC(t) ≈ ACCotf(t).

from deviations. Nevertheless, Figure 7 shows that the recommender acquires information
more from deviations than obedience. This is because once a deviation occurs, it is much
more informative than obedience (as implied by Theorem 1).

Figure 8 reveals that, under the ternary recommendation, almost all the accuracy gains
are obtained when the recommender signals being on the fence. For any stage of the game,
the learning rate is higher than that under binary recommendations, and the difference is
quantitatively large. In round 10, 000, the average accuracy under the ternary policy becomes
larger than that under the binary policy by (roughly) six points, which implies that wT under
the ternary policy is e6 ≈ 403 times smaller than wT under the binary policy.

7 Concluding Remarks

In this paper, we propose deviation-based learning, a novel approach for training recom-
mender systems. Our approach is built upon a simple idea. When a user deviates from a
recommendation, he is aware of the merit of the recommended option, but has concluded
that another option provides him with a better payoff. This event indicates that the rec-
ommender has misestimated the user’s preference, and so the recommender can update her
estimate based on this information. Conversely, if a user follows a recommendation even
though the recommender is not perfectly confident, then the recommender can increase her
confidence. The deviation-based learning is effective when (i) payoffs are unobservable, (ii)
there are many knowledgeable experts, and (iii) the recommender can easily identify the set
of experts.
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Our analysis reveals that the size of the message space is crucial for the efficiency of
learning. In a stylized model with two arms, we demonstrated that a binary message space
results in a large welfare loss. After the recommender is trained to some extent, users start
to follow her recommendations blindly, and users’ decisions are uninformative for advancing
the recommender’s learning. This effect significantly slows down her learning, and the total
regret grows almost linearly in the number of users. In contrast, when the message space is
ternary, the recommender can sometimes disclose the fact that she predicts that two arms
will produce similar payoffs. With the ternary message space, the total regret is bounded by
a constant (which does not depend on the number of users).

Our analysis of the binary recommendation policy also provides a simple but useful
caveat: the recommender should not consider the rate at which users follow recommen-
dations to be a key performance indicator. When the recommender has an information
advantage, the user may follow a recommendation even when it does not fully respect his
own information and preference. Accordingly, if such a performance indicator is used, then
the recommendation system may incur a large welfare loss, and the recommender may not
be able to realize this fact.

Future studies could investigate deviation-based learning in more complex environments.
In practice, observable contexts (xt) are often multi-dimensional. Furthermore, users’ payoffs
are rarely linear in the parameter (θ), and their functional form may be unknown ex ante;
thus, the recommender may have to adopt a nonparametric approach. While we believe that
the insight obtained from our stylized model will be informative in general environments,
more comprehensive and exhaustive analyses are necessary for practical applications.
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Appendix

A Proofs

A.1 Proof of Theorem 1

Proof of Theorem 1. For ease of discussion, we assume xt > 0. The case of xt < 0 can be
proved in a similar manner.

Case 1. at = bt = 1.

We have

wt+1 = ut+1 − lt+1

= ut −max(lt, (−Zt/xt)) (by Eq. (2) and (3))

> ut −mt (by mt > lt and at = 1 if and only if mt > −zt/xt)

= (1/2)wt. (6)

Case 2. at = bt = −1

We have

wt+1 = ut+1 − lt+1

= min(ut, (−Zt/xt))− lt (by Eq. (2) and (3))

< mt − lt (by mt < ut and at = −1 if and only if mt < −zt/xt)

= (1/2)wt. (7)

Eq. (4) follows from Eq. (6) and (7).

Case 3. at = −1, bt = 1

We have

wt+1 = ut+1 − lt+1

≤ ut − (−Zt/xt) (by Eq. (2) and (3))

< ut −mt (by at = −1)

= (1/2)wt. (8)

Case 4. at = 1, bt = −1
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We have

wt+1 = ut+1 − lt+1

≤ (−Zt/xt)− lt (by Eq. (2) and (3))

< mt − lt (by at = 1)

= (1/2)wt. (9)

Eq. (5) follows from Eq. (8) and (9).

A.2 Proof of Theorem 2

Proof of Theorem 2. Let C1 = (1/2)Cupdate and

Z(t) :=

{
wt ≤

C1

log T
, |θ −mt| ≥

C1

2 log T

}
.

In the following, we first show the following inequality.

Claim 2.a.
P [Z(3)] ≥ C2

polylog(T )

for some constant C2 > 0.

Proof. Let

A :=

{
u2 ≤ θ +

C1

6 log T

}
,

B :=

{
θ − 5C1

6 log T
≤ l3 ≤ θ − 2C1

3 log T

}
.

Note that A ∩ B ⊆ Z(3).
In order to evaluate the probability that Z(3) occurs, in the following, we evaluate the

probability that A and B occur, assuming θ > 2C1/(log T ) (which occurs with probability
Θ(1) for sufficiently large T ).

Claim 2.b. P[A] = Θ (1/(log T )).

Proof. Recall that (l1, u1,m1) = (−1, 1, 0). Let σ1 =
∫∞
0

2φ(x)dx, which is equal to −Z1
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Figure 9: Illustration of (lt, ut)t=1,2,3 in the instance of Theorem 2. Here, w3 = O(1/ log T )
holds, which implies that (lt, ut) has very small chance of being updated again.

given b1 = −1. Under a1 = −1, Z1 = −σ1. Let

A′ := {z1 < 0} ∩

{
σ1

θ + C1

6 log T

≤ x1 ≤
σ1
θ

}
.

In the following, we show that A′ implies A and P[A′] = Ω(1/ log T ).

A′ = A′ ∩ {a1 = −1} (by x1m1 + z1 = z1 < 0)

= A′ ∩ {a1 = −1, b1 = −1} (by x1θ + Z1 = x1θ − σ1 < 0)

= A′ ∩
{
a1 = −1, b1 = −1, u2 ≤ θ +

C1

6 log T

}
(by Eq. (3))

⊆ A. (10)

Therefore,

P[A] ≥ P[A′] (by Eq. (10))

= P[z1 < 0]× P

[
σ1

θ + C1

6 log T

≤ x1 ≤
σ1
θ

]

=
1

2
P

[
σ1

θ + C1

6 log T

≤ x1 ≤
σ1
θ

]

=
1

2

∫ σ1
θ

σ1

θ+
C1

6 log T

φ(x)dx
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≥ σ1
2θ2

C1

6 log T
× 1√

2π
exp

(
− σ2

1

2θ2

)
(for θ ≥ C1/(6 log T ))

= Θ

(
1

log T

)
(since σ1, C1, θ = Θ(1)).

Claim 2.c. The probability P[B|A] = Θ (1/(log T )).

Proof. Let

B′ = {x2 > 0} ∩ {x2m2 + z2 < 0} ∩

{
−Z2

θ − 2C1

3 log T

≤ x2 ≤
−Z2

θ − 5C1

6 log T

}
.

We have

B′ = B′ ∩ {a2 = −1} (by x2m2 + z2 < 0)

= B′ ∩ {a2 = −1, b2 = 1} (by x2θ + Z2 > 2C1/(3 log T ) > 0)

= B′ ∩
{
a2 = −1, b2 = 1, θ − 2C1

3 log T
≤ l3 ≤ θ − 5C1

6 log T

}
(by Eq. (2))

⊆ B.

Furthermore, by using the fact that −Z2 ∈ (0, σ1) = Θ(1) and σ1 = Θ(1), we have the
following under {l2 < 0, x2m2 < 0}:

P[B|A] ≥ P[B′|A]

= P

[
−Z2

θ − 2C1

3 log T

≤ x2 ≤
−Z2

θ − 5C1

6 log T

, x2m2 + z2 < 0

]

≥ P

[
−Z2

θ − 2C1

3 log T

≤ x2 ≤
−Z2

θ − 5C1

6 log T

]
× 1

2

(by x2m2 ≤ 0)

≥ C1

6 log T

−Z2

2θ2
φ

(
−2Z2

θ

)
× 1

2

(for θ ≥ 2× 5C1

6 log T
)

= Θ

(
1

log T

)
. (since Z2, C1, θ = Θ(1))
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Combining these claims, we have

P[Z(3)] ≥ P[A ∩ B] = P[A]× P[B|A] = Ω

(
1

log T
× 1

log T

)
= Ω

(
1

(log T )2

)
, (11)

as desired.

Note that, by Lemma 4, Z(3) implies Z(4)∩Z(5)∩ · · · ∩ Z(T ) with probability at least
1− 1/T . It follows that E[Reg(T )] is bounded as

E[Reg(T )] ≥ E

[
T∑
t=3

reg(t)

∣∣∣∣∣Z(3)

]
Ω

(
1

(log T )2

)
(by Eq. (11))

≥
(

1− 1

T

)
E

[
T∑
t=3

reg(t)

∣∣∣∣∣
T⋂
t=3

Z(t)

]
Ω

(
1

(log T )2

)
(by Lemma 4 and construction of Z(3))

= Θ(1)× Ω

(
T

(log T )2

)
× Ω

(
1

(log T )2

)
(by Lemma 3, Z(t) implies E[reg(t)] = Ω(w2

t ) = Ω(1/(log T )2))

= Ω

(
T

polylog(T )

)
.

A.3 Lemma 9

We prove a lemma that is useful to prove Lemmas 3 and 4.

Lemma 9 (Gap between Zt and −xtmt: Binary Case). There exist universal constants
Cl, Cu > 0 such that the following inequalities hold.

1. If sgn(xtmt)at < 0, then

Cl min(1, 1/|xt|) < at(Zt + xtmt) < Cu. (12)

2. If sgn(xtmt)at > 0, then
Cl < at(Zt + xtmt). (13)

The term min(1, 1/|x|) in Eq. (12) is derived from the fact that e−x2/2 decays faster for
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Figure 10: Illustration of Lemma 9 when xtmt > 0. The lemma bounds G := at(Zt + xtmt).
The left figure corresponds to Eq. (12), whereas the right figure corresponds to Eq. (13).

a large |x|. It is analogous to the equation

1

(x+ 1)2 − x2
=

1

2x+ 1
≥ 1

3
min

(
1,

1

x

)
for x > 0.

Proof of Lemma 9. For ease of discussion, we assume xtmt ≥ 0 (which aligns with Figure 1).
The case of xtmt < 0 can be dealt with the same discussion.

Let φ(x) = 1√
2π
e−x

2/2 be the pdf of the standard normal distribution and erf(x) =
2√
π

∫ x
0
e−t

2
dt be the error function. Let at = −1 and C2 = min(1, 1/|xtmt|). Then,

Zt + xtmt =

∫ −xtmt
−∞ (z + xtmt)φ(z)dz∫ −xtmt

−∞ φ(z)dz

≤ 1

φ(−xtmt)

∫ −xtmt
−∞

(z + xtmt)φ(z)dz

≤ 1

φ(−xtmt)

∫ −xtmt−C2

−xtmt−2C2

(z + xtmt)φ(z)dz

≤ −C2

φ(−xtmt)

∫ −xtmt−C2

−xtmt−2C2

φ(z)dz

≤ −C2

φ(−xtmt)
min

z∈[−xtmt−2C2,−xtmt−C2]
φ(z)
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≤ −C2 min
z∈[−xtmt−2C2,−xtmt−C2]

e−(3/2) = −C2e
−(3/2)

(by e−(x+a)2/2/e−x2/2 = e−xa−a
2/2 and |xtmt|C2 ≤ 1)

= −e−(3/2) min(1, 1/|xtmt|) ≤ −e−(3/2) min(1, 1/|xt|),

which implies the first inequality14 of Eq. (12).
Moreover,

Zt + xtmt = Ez∼N tr
−∞,−xtmt

[z] + xtmt

=

∫ −xtmt
−∞ (z + xtmt)φ(z)dz∫ −xtmt

−∞ φ(z)dz

≥
∫ 0

−∞ zφ(z)dz∫ 0

−∞ φ(z)dz

(by φ(x+ c)/φ(x) ≤ φ(c) for any x, c ≤ 0)

= −
∫∞
0
zφ(z)dz∫∞

0
φ(z)dz

= −
√

2

π
,

which is a constant and implies the second inequality15 of Eq. (12).
If at = 1, then

Zt + xtmt = Ez∈N tr(−xtmt,∞)[z] + xtmt

≥ 1

2
Ez∈N tr(0,∞)[z]

=

√
1

2π
,

which implies Eq. (13).

A.4 Proof of Lemma 3

Proof of Lemma 3. Without loss of generality, we assume mt ≥ 0. (Otherwise, by using the
symmetry of the model, we may flip the sign of variables as (lt, ut, θ) = (−ut,−lt,−θ) and
apply the same analysis to obtain the same result.) For the ease of discussion, we assume

14Note that at = −1 and the inequality here is flipped.
15Again, at = −1 and the inequality here is flipped.
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Figure 11: Recommendation at is determined by the sign of xtmt + zt, whereas the true
superior arm is determined by xtθ + zt. When zt ∈ [−xtmt,−xtθ], the recommender fails to
recommend the superior arm.

mt − θ > 0. (In the case of mt − θ < 0, we can follow essentially the same discussion as the
case of mt − θ > 0.)

For t ∈ [T ] and l > 0, let

C(t, l) := {−xtmt < zt < −xtθ − l} ∩ {xt(mt − θ) < Cl}.

Claim 4.a. C(t, l) ⊆ {reg(t) ≥ l}.

Proof.

{−xtmt < zt < −xtθ − l} ∩ {xt(mt − θ) < Cl}

= {0 < xtmt + zt} ∩ {xtθ + zt < −l} ∩ {xt(mt − θ) < Cl}

⊆ {0 < xtmt + zt} ∩ {xtθ + zt < −l} ∩ {xtθ + Zt > 0}

(by Eq. (13))

= {xtθ + zt < −l} ∩ {b∗t = −1} ∩ {at = 1} ∩ {bt = 1}.

It follows from bt 6= b∗t and xtθ + zt < −l that reg(t) > l.

Claim 4.b. P[C(t, l)] ≥ Θ(mt − θ − l).
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Proof. By using the fact that Cl is a universal constant and 1 ≥ mt > θ ≥ −1, we have

P[xt(mt − θ) < Cl] ≥ P[2xt < Cl, xt > 0]

≥ P[Cl/2 < 2xt < Cl, xt > 0]

≥
∫ Cl/2

Cl/4

φ(x)dx

= Θ(1).

Moreover, for any Cl/4 ≤ xt ≤ Cl/2,

P[−xtmt < zt < −xtθ − l] =

∫ −xtθ−l
−xtmt

φ(z)dz

= xt(mt − θ − l) min
z∈{−xtmt,−xtθ−l}

φ(z)

= Θ(mt − θ − l).

Therefore, P[C(t, l)] ≥ Θ(1)×Θ(mt − θ − l) = Θ(mt − θ − l).

Combining Claims 4.a and 4.b, the regret is bounded as follows:

E[reg(t)] ≥
∫ ∞
l=0

P[reg(t) ≥ l]dl

≥
∫ ∞
l=0

P[C(t, l)]dl (by Claim 4.a)

≥
∫ mt−θ

l=0

Θ(mt − θ − l)dl (by Claim 4.b)

= Ω((mt − θ)2).

A.5 Proof of Lemma 4

Proof of Lemma 4. Let

U1(t) = {btsgn(xt) < 0} ∩ {bt > −Zt/xt},

U2(t) = {btsgn(xt) > 0} ∩ {at < −Zt/xt},

U(t) = U1(t) ∪ U2(t).

By the update rule (Eq. (2) and (3)), event U(t) is equivalent to (at+1, bt+1) 6= (at, bt).
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Eq. (12) and (13) in Lemma 9 imply

|Zt − xtmt| ≥ Cl min(1, 1/|xt|). (14)

Accordingly,

U(t) = U1(t) ∪ U2(t)

⊆ {bt > −Zt/xt} ∪ {at < −Zt/xt}

⊆ {wt/2 > Cl min(1/|xt|, 1/|xt|2)}

(by ut −mt = mt − lt = wt/2 and Eq. (14)).

For a sufficiently small wt,16

P[U(t)] ≤ P
[
wt >

2Cl

x2t

]
= P

[
x2t >

2Cl

wt

]
= 2Φc

(√
2Cl

wt

)

≤ exp

(
−2Cl

wt

)
× 2Φc (0)

= exp

(
−2Cl

wt

)
,

which completes the proof.

A.6 Proof of Theorem 5

Proof of Theorem 5. Let
E(t) = {wt+1 ≤ Cw,1wt}.

Lemmas 6 and 8 imply that there exists a universal constant Cshrink > 0 such that

P[E(t)] ≥ Cshrinkwt. (15)

Lemma 7 states that
E[reg(t)] ≤ Cregtw

2
t . (16)

16wt ≤ 2C is enough to assure {wt/2 > Cl/|xt|} ⊆ {wt/2 > Cl/|xt|2}.
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For s ∈ 1, 2, . . . , let

Ps(t) = {Cs
w,1 ≤ wt ≤ Cs−1

w,1 },

Regs(T ) =
T∑
t=1

reg(t)1[P(t)].

Let ts be the first round in which Ps(t) holds. Then, for each round t = ts + 1, ts + 2, . . . ,
we have the following:

1. Eq. (15) implies that, with probability at least CshrinkC
s
w,1, E(t) occurs. Furthermore,

once E(t) occurs, Ps(t′) never occurs again for round t′ > t.

2. Eq. (16) implies that the expected regret per round is at most Cregt(C
s−1
w,1 )2.

Accordingly, it follows that

E[Regs(T )]

≤ Cregt(C
s−1
w,1 )2

(
1 + (1− CshrinkC

s
w,1) + (1− CshrinkC

s
w,1)

2 + (1− CshrinkC
s
w,1)

3 + . . .
)

=
Cregt(C

s−1
w,1 )2

CshrinkCs
w,1

=
Cregt

CshrinkC2
w,1

Cs
w,1. (17)

The regret is bounded as

E[Reg(T )] =
∞∑
s=1

E[Regs(T )]

=
Cregt

CshrinkC2
w,1

∞∑
s=1

Cs
w,1 (by Eq. (17))

=
Cregt

CshrinkC2
w,1

1

1− Cw,1
,

which is a constant.

A.7 Proof of Lemma 6

Proof of Lemma 6. We have

P[at = 0] = P [|xtmt + zt| ≤ εt]
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= P

[∫ εt/(1+m2
t )

−εt/(1+m2
t )

φ(x)dx

]
(by xtmt + zt ∼ N (0, 1 +m2

t ) given mt)

= Θ(εt) (by 1 ≤ (1 +m2
t ) ≤ 2 and φ(x) ≤ 1),

which completes the proof.

A.8 Proof of Lemma 7

We first introduce the following lemmas.

Lemma 10 (Gap between Zt and −xtmt: Ternary Case). There exist universal constants
Cl > 0 such that the following inequalities hold.

1. If sgn(xtmt)at < 0, then

Cl min(1, 1/|xt|) < at(Zt + xtmt). (18)

2. If sgn(xtmt)at > 0, then
Cl < at(Zt + xtmt). (19)

Lemma 10 is a version of Lemma 9 for the ternary recommendation. We omit the proof
of Lemma 10 because it follows the same steps as Lemma 9.

Lemma 11 (Expected Regret from Choosing the Inferior Arm). The following inequality
holds:

E[reg(t)1[b∗t 6= bt, at 6= 0]] = O(w2
t ).

Proof of Lemma 11. We have

{b∗t 6= bt, at 6= 0} ⊆ {b∗t 6= at, at 6= 0} ∪ {at 6= bt, at 6= 0},

and we bound each of the terms in the right hand side.

Claim 8.a. E[reg(t)1[b∗t 6= at, at 6= 0]] = O(w2
t ).

Proof.

{b∗t 6= at, at 6= 0} ⊆ {b∗t 6= at}

= {sgn(xtθ + zt) 6= sgn(xtmt + zt)}

= {zt ∈ [min(−xtθ,−xtmt),max(−xtθ,−xtmt)]},
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and thus, conditioning on xt, we have

P[zt ∈ [min(−xtθ,−xtmt),max(−xtθ,−xtmt)] |xt]

≤
∫ max(−xtθ,−xtmt)

z=min(−xtθ,−xtmt)
φ(z)dz

≤
∫ max(−xtθ,−xtmt)

z=min(−xtθ,−xtmt)
dz = |xt(θ −mt)|, (20)

where we have used the fact that φ(z) ≤ 1. The event b∗t 6= at implies reg(t) ≤ xtwt, and
marginalizing Eq. (20) over xt, we have

E[reg(t)1[b∗t 6= at, at 6= 0]] ≤
∫ ∞
x=−∞

φ(x)|x2wt(θ −mt)|dx

≤
∫ ∞
x=−∞

φ(x)x2w2
t dx

= w2
t

∫ ∞
x=−∞

φ(x)x2dx = O
(
w2
t

)
,

as desired.

Claim 8.b. P[at 6= bt, at 6= 0] = O(w2
t ).

Proof.

{at 6= bt, at 6= 0}

= {sgn(xtmt + zt) 6= sgn(xtθ + Zt), at 6= 0}

⊆ {xtmt + zt > 0, xtθ + Zt < 0} ∪ {xtmt + zt < 0, xtθ + Zt > 0}

⊆ {xtθ − xtmt + Cl min(1, 1/|xt|) < 0} ∪ {xtθ − xtmt − Cl min(1, 1/|xt|) > 0}

(by Eq. (18) and Eq. (19))

= {|xtθ − xtmt| ≥ Cl min(1, 1/|xt|)},

and thus

P[at 6= bt, at 6= 0] ≤ P[|xtθ − xtmt| ≥ Cl min(1, 1/|xt|)]

= P
[
|xt|2 ≥

Cl

|θ −mt|

]
≤ P

[
|xt|2 ≥

Cl

wt

]
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= 2Φc

(√
Cl

wt

)
≤ e

− wt
2Cl

= O(w2
t ). (An exponential decays faster than any polynomial)

(Proof of Lemma 11, continued.) Combining Claims 8.a and 8.b, we have

E[reg(t)1[b∗t 6= bt, at 6= 0]] ≤ E[reg(t)1[b∗t 6= at, at 6= 0]] + E[reg(t)1[at 6= bt, at 6= 0]]

= O(w2
t ).

Proof of Lemma 7.

E[reg(t)] ≤ E[1[at = 0]reg(t)] + E[1[bt 6= b∗t , at 6= 0]reg(t)]

≤ E[1[at = 0]|xtθ + zt|] + E[1[bt 6= b∗t , at 6= 0]reg(t)]

≤ P[at = 0](εt + wt) + E[1[bt 6= b∗t , at 6= 0]reg(t)]

(by at = 0 implies |xtmt + zt| ≤ εt and |xtθ + zt| − |xtmt + zt| ≤ |xtwt|)

≤ O((εt + wt)
2) + E[1[bt 6= b∗t , at 6= 0]reg(t)] (by Lemma 6)

≤ O((εt + wt)
2) +O(w2

t ) (by Lemma 11)

= O((max(εt, wt))
2).

A.9 Proof of Lemma 8

Proof of Lemma 8. Let
X (t) := {xt ≥ 2}.

Claim 9.a. X (t) and at = 0 implies {wt+1 ≤ (7/8)wt}.

Proof. Eq. (2) and (3) imply that lt+1 = max(lt,−Zt/xt) or ut+1 = min(ut,−Zt/xt) always
holds. By using this, we have

{X (t), at = 0}

:= {xt ≥ 2, at = 0}
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= {xt ≥ 2, |xtmt + Zt| ≤ εt}

⊆ {|mt + Zt/xt| ≤ εt/2}

= {|mt + Zt/xt| ≤ εt/2} ∩ {lt+1 = max(lt,−Zt/xt) ∪ ut+1 = min(ut,−Zt/xt)}

(by Eq. (2) and (3))

⊆ {lt+1 ≥ mt − εt/2 ∪ ut+1 ≤ mt + εt/2}

= {lt+1 ≥ mt − (3/8)wt ∪ ut+1 ≤ mt + (3/8)wt}.

Moreover, by wt/2 = ut −mt = mt − lt, we have

{lt+1 ≥ mt − (3/8)wt ∪ ut+1 ≤ mt + (3/8)wt} ⊆ {wt+1 ≤ (7/8)wt}.

Claim 9.b. Pr[X (t)] = Θ(1).

Proof.
Pr[X (t)] = Φc(2) ≥ 3

4

e−2√
2π
,

where the last transformation uses the results in Feller (1968).

Combining Claims 9.a and 9.b, we have

Pr[wt+1 ≤ (7/8)wt|at = 0] = Pr[wt+1 ≤ (7/8)wt, at = 0|at = 0]

≤ Pr[X (t)|at = 0] (by Claim 9.a)

= Pr[X (t)] (by X (t) and at are independent)

≥ 3

4

e−2√
2π
. (by Claim 9.b)
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