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Abstract

In this paper, we study incomplete preferences with optimism and pessimism (IPOP) over
Anscombe-Aumann acts, a class of preference orders that may fail axioms that require the decision-
maker (DM) to think contingently. The main result axiomatizes a preference order ≿ represented
by the following rule:

f ≿ g ⇐⇒ min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ g)dµ,

for any distinct acts f and g. Here u is a utility function over outcomes, and C♯ and C♭ are non-
disjoint sets of beliefs over states of the world. This representation can be interpreted as capturing
the DM’s conservative attitudes toward uncertainty: An act f is deemed superior to another act
g if the pessimistic expected utility of f is greater than the optimistic expected utility of g. The
representation reduces to a standard SEU preference when belief sets are minimal. Conversely,
when belief sets are maximal, the representation encapsulates obvious dominance, the decision rule
introduced by Li (2017).
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1 Introduction

The dominance principle is regarded as one of the most fundamental rationality in many economic

decisions under uncertainty. Experiments conducted in various environments have demonstrated,

however, that subjects often do not take their dominant strategies.1 One plausible explanation for

this anomaly is as follows: Subjects have too little information to form a single scenario of how their

opponents will behave, and thus, they instead consider a set of scenarios as possible. As such, they

may still be able to find a dominant strategy if they can perform contingent reasoning, i.e., compare

the consequences of different strategies conditional on each possible scenario and properly synthesize

those conditional relations to develop (unconditional) dominance relations.2 Without skills to perform

contingent reasoning, however, different scenarios may be applied to evaluate different strategies, which

may hamper subjects to end up with a dominant strategy. For instance, in a second-price auction,

overbidding would be “rationalized” against truth-telling if subject make an as if assumption that

the more aggressively she bids, her opponents are overwhelmed to bid lower values.

The idea of failures in contingent reasoning is not new. In philosophy, Nozick (1969) proposed

strategy-dependent reasoning as a contrast to contingent reasoning to explain Newcomb’s paradox.

More recently, Esponda and Vespa (2019) designed laboratory experiments to detect the cause of

anomalies and deduced that most anomalies can be explained by failures in contingent reasoning.

In parallel with the empirical literature, Li (2017) proposes a novel solution concept known as obvi-

ous strategy-proofness, which assumes a special form of strategy-dependent reasoning, i.e., the con-

sequences of an equilibrium strategy are evaluated based on its worst-case scenario, whereas the

consequences of possible deviations are evaluated based on their best-case scenarios.

Our focus in this paper is on a certain form of strategy-dependent reasoning that emerge naturally

by weakening Anscombe and Aumann’s (1963) axioms so as not to require the decision-maker (DM) to

be sophisticated in contingent reasoning. Specifically, we study a preference order ≿ over Anscombe-

Aumann acts represented as follows:

f ≿ g ⇐⇒
[
min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ g)dµ or f = g

]
.

Here u is the utility function over outcomes, and C♯ and C♭ are sets of beliefs over the state space

interpreted as probabilistic scenarios. This representation can be interpreted as capturing the DM’s

conservative attitudes toward uncertainty. Adopting this interpretation, we shall refer to this class as

incomplete preferences with optimism and pessimism (IPOP). Since different beliefs may be active to

evaluate different strategies, our representation accounts for violation of the dominance principle, or

the monotonicity axiom in Anscombe and Aumann (1963).

1 To list a few, these environments include voting (Esponda and Vespa, 2014; 2019), auctions (Kagel et al. 1987;
Kagel and Levin, 1993; Charness and Levin, 2009; Li, 2017), and matching problems (Rees-Jones, 2017).

2 The notion of contingent reasoning is originally introduced by Savage (1961) in decision theory, and the rationality
for any choice to follow it is called the sure thing principle after him.
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The IPOP representation continuously fills the gap between two important decision rules. As such,

IPOP reduces to subjective expected utility (SEU) when C♯ and C♭ are the same singleton. On the

other hand, IPOP captures obvious dominance (Li, 2017) when C♯ and C♭ comprise all beliefs over the

state space. In general, our DM is too conservative to have a unique belief but not so conservative as to

apply Li’s decision rule with respect to all degenerate beliefs. This flexibility allows us to make sharper

predictions about the DM’s behavior than those derived from Li’s decision rule, while accounting for

experimental observations of deviations from the dominance principle. For instance, in a second-price

auction, all bidding strategies are undominated with respect to Li’s decision rule, but IPOP can yield

a reasonable but not trivial range of undominated bidding strategies, i.e., we can depart from anything

goes.

In Section 3, we present our main result (Theorem 1), which provides the axiomatic foundation of

IPOP. As such, when stating our axioms, we employ two hypotheses, which will reveal some important

properties of IPOP pertaining to the special treatment of constant acts. First, we assume that the

Anscombe-Aumann’s core axioms are maintained, at least when a constant act is involved in a choice,

e.g., we adopt C-completeness from Bewley (2002) and C-independence from Gilboa and Schmeidler

(1989). This hypothesis is motivated by the idea that certain prospects can be understood without

performing contingent reasoning. The monotonicity axiom is also weakened in light of this idea.

Second, and more importantly, we assume that a reference to certain prospects is needed whenever

the DM infers rankings among general acts. Specifically, our key axiom, C-calibration, postulates that

whenever the ranking f ≿ g between distinct acts is confirmed, there must exist some constant act

x that has calibrated this ranking, i.e., f ≿ x and x ≿ g. In other words, transitivity mediated by

constant acts is the only inference rule that can be used to make a choice between uncertain prospects

whose outcomes are highly contingent.

In Section 4, we study the comparative statics of different belief sets. Similar to the case with

other multiple-prior models, the DM’s perceptions of uncertainty are reflected in a belief set size, i.e.,

the larger the belief sets C♯ and C♭, the less complete the preference order will be. As mentioned

before, the two extreme cases correspond to SEU and obvious dominance. Unlike the case of existing

models, however, C♯ and C♭ do not generally need to coincide, and thus, that the DM may perceive

different amounts of uncertainty depending on whether she is optimistic or pessimistic. We introduce

two extra axioms that will characterize the relative size of C♯ and C♭ in terms of set-inclusion. These

axioms jointly characterize the case of when C♯ and C♭ are equalized.

In Section 5, we discover some interesting relations with decision rules other than SEU and obvious

dominance. We first note that the intersection of IPOP and maximin expected utility (MEU) a lá

Gilboa and Schmeidler (1989), as well as the intersection of IPOP and the unanimity rule a lá Bewley

(2002), consists solely of SEU. This is because IPOP satisfies the standard monotonicity axiom only

when C♯ and C♭ are the same singleton. On the other hand, IPOP is less complete than the other two

classes, and thus, MEU and the unanimity rule can be obtained as the extensions of IPOP. This means

that an analyst can understand the revealed choice consistent with either MEU or the unanimity rule
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as having emerged from some underlying IPOP representation. Furthermore, we provide the full

characterization of the set of all complete extensions that can be obtained from IPOP.

All omitted proofs are relegated to appendices. We prove the main theorem in Appendices A and

B, and the rest of propositions in Appendix C. Lastly, we report a few more omitted results in the

supplementary material of this paper.

1.1 Related Literature

Let us briefly introduce a few recent attempts in decision-theory that depart from the dominance

principle. We first note that the same class of preference orders considered in this paper is being

simultaneously and independently studied by Echenique et al. (2020), under the name of twofold con-

servatism. They interpret the representation as capturing the conservative principle under uncertainty,

which suggests the DM to choose a new option over the status-quo only if there is a good reason to

do so. Up to small differences, the axiomatizations in both papers coincide with one another.

Ellis and Piccione (2017) are motivated by anomalies in financial markets wherein investors reveal a

strict preference between different portfolios with same returns. They enrich the standard Anscombe-

Aumann model by adding some structures. Specifically, their framework distinguish from the left and

right sides of the mixture expression h = αf + (1 − α)g even though the objective returns are the

same. As such, h is interpreted as buying a single portfolio, whereas αf + (1 − α)g is interpreted as

buying α units of asset f and (1−α) units of asset g, and their basic correlation representations allow

the DM to strictly prefer h to αf +(1−α)g. Intuitively, this can result from wrong perceptions of the

correlation between f and g. Although there are no formal relations, our paper and Ellis and Piccione

(2017) are complementary at the conceptual level, as the same phenomenon can be explained from

various perspectives. As such, they attribute the source of anomalies to correlation misperception,

whereas our approach attributes it to failures in contingent reasoning.

Similar to our approach, some papers are built on the idea that alternatives with high contingencies

may be difficult for the DM to evaluate. A few examples include Puri (2020), Saponara (2020), and

Valenzuela-Stookey (2020). These papers incorporate the cognitive costs of contemplating complex

objects into traditional decision models. Puri (2020) adopts the vNM framework to study preferences

for simplicity, where the expected value of each lottery is subtracted by a cost that is increasing in the

lottery’s support size. As such, her simplicity representations predict violation of first order stochastic

dominance, which is analogous to violation of monotonicity in this paper. We emphasize that her

main focus is choice under risk where objective distributions are available, whereas our main focus is

choice under uncertainty that involves the state space and its subjective quantification. Hence, this

paper and Puri (2020) have quite different empirical content and potential areas of application.

Saponara (2020) and Valenzuela-Stookey (2020) adopt the Anscombe-Aumann framework as sim-

ilar to this paper. They model cognitive costs as partitions of the state space that place constraints

on the set of contingencies that the DM can consider. There are many formal differences between this
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paper and their works. For instance, revealed reasoning representations by Saponara (2020) maintain

both completeness and monotonicity, and simple bound representations by Valenzuela-Stookey (2020)

maintain monotonicity, whereas we weaken both axioms to account for failures in contingent reasoning.

Another difference from the aforementioned papers is that our representation utilizes no building

blocks beyond those that have already appeared in multiple-prior models. This feature is particularly

useful when we study formal relations with the existing models, such as those of Gilboa and Schmeidler

(1989), Bewley (2002), and Ghirardato et al. (2004). Specifically, preference orders considered in these

papers can be understood as the reveled choice of the DM who follows our behavioral axioms. Our

analysis on this point can be understood in parallel with the work of Gilboa et al. (2010) and its

generalization by Frick et al. (2020), which build a bridge between certain classes of incomplete and

complete preferences. As similar to that the unanimity rule is related to MEU in Gilboa et al. (2010),

and to α-MEU in Frick et al. (2020), we observe that IPOP is related to what we call generalized

α-MEU when its compatible extensions are considered.

An important feature of IPOP is the “dual-self” perspective, which is a certain kind of strategy-

dependent reasoning a lá Nozick (1969). This perspective is found in some other contexts as well.

One example is interval orders, which date back to Luce (1956) and Fishburn (1970). As formalized

in our preliminary result (Lemma 1), a part of axioms considered in this paper characterizes interval

orders, and thus, combines to form a novel behavioral foundation for interval orders. In the context of

ambiguity, Chandrasekher et al. (2020) introduce dual-expected utility, in which the DM’s optimism

and pessimism interact differently from IPOP. Zhang and Levin (2017) provide an alternative charac-

terization of obvious dominance (Li, 2017), but their approach is somewhat indirect compared with

our results, as they maintain the completeness axiom. This point is formally discussed in Section 5.1,

where we propose an additional axiom that pins down obvious dominance within IPOP.

2 The Setting

2.1 Preliminaries

Let X be a convex compact subset of a certain topological vector space, whose element x ∈ X

is called an outcome. There is a state space (Ω,Σ), where Ω is a compact metric space, and Σ

is a field on Ω. Denote by ∆(Ω,Σ), or simply ∆(Ω), the set of all finitely additive probability

measure (a.k.a. probability charges) on (Ω,Σ), and we endow it with the weak-* topology.3 An act

f : Ω → X is a Σ-measurable function that maps each state ω to some outcome x. Then, the set

of acts F = {f ∈ XΩ : f is Σ-measurable} becomes an affine space if we define addition and scalar

multiplication in a state-wise way, i.e., given acts f, g ∈ F and a number α ∈ (0, 1), the mixture

αf + (1 − α)g is defined to be the act that carries an outcome αf(ω) + (1 − α)g(ω) in each state

3 As is well-known, ∆(Ω) turns out to be a compact metrizable space (and thus, separable as well), provided that Ω
is a compact metric space. In particular, every closed subset of ∆(Ω) becomes compact. For reference, see Chapter 15
of Aliprantis and Border (2006).
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ω. A constant act is the one that takes the same outcome in every state. Denote by Fc the set of

all constant acts. Clearly, Fc is isomorphic to X, so we often identify them. Slightly abusing the

notation, we denote by x to express a constant act f such that f(ω) = x for all ω ∈ Ω.

The primitive of our analysis is a weak preference order ≿ over F . As usual, we denote by ≻ and

∼ to express the asymmetric and symmetric parts of ≿, respectively. That is to say, f ≻ g if and only

if f ≿ g and g ̸≿ f , and f ∼ g if and only if f ≿ g and g ≿ f . In general, ≿ is not required to be

complete, so that there may exist f, g ∈ F such that neither f ≿ g nor g ≿ f . In that case, we say f

and g are incomparable. Otherwise, we say f and g are comparable.

2.2 Representation

The following is the notion of representation that we are going to derive.

Definition 1. A preference order ≿ admits an IPOP representation if there exists a tuple (u,C♯, C♭),

where u : X → R is a continuous affine function, and C♯ and C♭ are non-disjoint, closed, and convex

subsets of ∆(Ω), such that for all f, g ∈ F ,

f ≿ g ⇐⇒
[
min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ g)dµ or f = g

]
. (1)

The above representation captures two different identities of the DM, which we refer to as optimism

and pessimism, and the term IPOP originates from this interpretation. An IPOP representation

becomes the SEU (Anscombe and Aumann, 1963) when C♯ and C♭ are the same singleton. On the

other hand, it embodies obvious dominance (Li, 2017) when C♯ and C♭ are equal to ∆(Ω), in which

case (1) reduces to

f ≿ g ⇐⇒
[
min
ω∈Ω

u(f(ω)) ≥ max
ω∈Ω

u(g(ω)) or f = g

]
. (2)

A couple of assumptions are made about belief sets C♯ and C♭. As such, closedness and convexity

are just for the sake of uniqueness results. In particular, closedness implies compactness in the current

setting, so that the minimum and maximum in (1) are indeed attainable. The essential assumption

in the representation is that C♯ and C♭ have a nonempty intersection. It turns out that this condition

ensures the transitivity of a preference order ≿, but it has no role beyond that.4

Contour sets may be useful in grasping the nature of IPOP representations. Figure 1 shows the

upper and lower contour sets of several ≿ that admit IPOP representations. There are two states,

ω1 and ω2, and each axis represents the corresponding coordinate of utility acts u ◦ f ∈ R2. The

reference points are displayed as black bullets, and the upper and lower contour sets are painted in

dark green and right green, respectively. Note that the boundaries are included in contour sets, so

that the green regions are closed convex subsets of R2. Thus, the remaining yellow regions become

4 We prove this claim formally in Appendix D.1.
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Figure 1: Upper contour sets (dark green), lower contour sets (light green), and incomparable sets
(yellow) are displayed for weak preference orders ≿. The reference points are displayed as black bullets.
All the boundaries are included in the green regions.

open sets of incomparable utility acts. Here, we focus on the symmetric case C ≡ C♯ = C♭, so the

contour sets are located symmetrically around the reference points.

In general, when the reference point is not on the 45◦ line (leftmost image), a thick incomparable

region appears due to the lack of monotonicity. On the other hand, when the reference point is on

the 45◦ line (middle-left image), the thickness disappears around the reference point, indicating that

the contour sets coincide with those generated by the Bewley preference. Importantly, the thickness

depends on how asymmetric the reference point is. As such, the incomparable region expands as the

reference point moves away from the 45◦ line. As to the effect of different belief sets, SEU corresponds

to the special case when C is a singleton (middle-right image). On the other hand, obvious dominance

emerges when C contains all beliefs on the binary state space (rightmost image).

3 Axiomatization Results

3.1 Axioms

Let us present the axioms we use to characterize IPOP representations. The first axiom is a collection

of standard assumptions.

A1 (Structural Assumptions). ≿ is a non-degenerate preorder such that for any f ∈ F there exist

some x, y ∈ Fc for which x ≿ f and f ≿ y.

In what follows, we weaken the remaining Anscombe-Aumann’s axioms, so they are maintained

by our bounded rational DM. To this end, we shall make the following two premises. First, we assume

that our DM can determine the value of a constant act more easily than determining the value of a

general act. Second, our DM uses constant acts as references for making a choice between general acts.

In light of these premises, we shall assume that our primitive order ≿ satisfies the standard axioms,

at least when a constant act is involved in a comparison.
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The second and third axioms are adopted from Bewley’s (2002) representation theorem of the

Knightian uncertainty model. The fourth axiom is adopted from Gilboa and Schmeidler’s (1989)

representation theorem of MEU preferences.

A2 (C-Completeness). For any x, y ∈ Fc, either x ≿ y or y ≿ x holds.

A3 (C-Continuity). For any f ∈ F , {x ∈ Fc : x ≿ f} and {y ∈ Fc : f ≿ y} are closed in Fc.

A4 (C-Independence). For any f, g ∈ F and x ∈ Fc, we have f ≿ g if and only if αf + (1 − α)x ≿
αg + (1− α)x for all α ∈ (0, 1).

The next axiom is another weakening of independence, which postulates the convexity of the upper

and lower contour sets of a constant act.5

A5 (Secure-Potential Independence). For any f, g ∈ F and x ∈ Fc, if f ≿ x and g ≿ x, then
1
2f + 1

2g ≿ x. Also, if x ≿ f and x ≿ g, then x ≿ 1
2f + 1

2g.

To interpret this axiom, we refer to the notions of the “security” and “potential” of acts, introduced

by Kopylov (2009), which capture two different ways of measuring the quality of a general act by

comparing it with certain prospects.6 The axiom states that the DM can understand the quality of

fairly mixed acts better than the quality of each original act, measured in either way. That is, the

first half of the axiom states that if both f and g are understood to be at least as secure as x, then

the fair mixing of f and g should also be understood to be as secure as x. Similarly, the second half

of the axiom states that the potential of their fair mixing should be more easily understood than the

potential of each original one. As such, we are taking as a working hypothesis that the DM has a

better understanding of the quality of fairly mixed acts than the quality of each original act, since the

mixture will get closer to a certain prospect than the original acts.

The next two axioms weaken the standard monotonicity condition.

A6 (C-Monotonicity). For any f ∈ F and x ∈ Fc, if f(ω) ≿ x for all ω ∈ Ω, then f ≿ x. Also, if

x ≿ f(ω) for all ω ∈ Ω, then x ≿ f .

A7 (Secure-Potential Equivalence). For any f, g ∈ F and x ∈ Fc, if f(ω) ∼ g(ω) for all ω ∈ Ω, then

f ≿ x if and only if g ≿ x, and x ≿ f if and only if x ≿ g.

5 The first half of A5 has essentially the same role as uncertainty aversion in Gilboa and Schmeidler (1989), i.e., it
makes an upper contour set convex. On the other hand, the second half assures the convexity of a lower contour set,
which is less common in the literature. As such, in the current context, we do not take this axiom as the DM’s attitude
toward uncertainty, but interpret it in light of security and potential as explained below. Note that it is without loss of
generality to assume that the mixing ration is a half. This special form implies a more general form in the presence of
our continuity axiom.

6 According to his definitions, an act f is more secure than g if for any constant act x, g ≿ x implies that f ≿ x.
Also, f has more potential than g if for any constant act x, x ̸≿ g implies that x ̸≿ f , or equivalently, x ≿ f implies that
x ≿ g.
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The axiom A6 is a natural weakening of monotonicity, which is in effect only when at least one

constant act is involved in a comparison. The axiom A7 is a weak regularity condition saying that

two acts are treated similarly in terms of security and potential whenever they are equivalent in terms

of payoff realizations.7

The last axiom is important both conceptually and analytically. Conceptually, the axioms intro-

duced so far have only implicitly postulated the bounded rationality of the DM, as they posit only

what the DM can at least do. On the other hand, A8 explicitly prescribes how the DM makes a choice

without having the full ability of contingent reasoning. Analytically, A8 has a key role in generating

IPOP’s dual-self perspective, which is an important feature of our decision model.

A8 (C-Calibration). For any distinct acts f, g ∈ F such that f ≿ g, there exists a constant act x ∈ Fc

for which f ≿ x and x ≿ g.

This axiom puts constraints on the DM’s ability to make a choice from general acts. It states that

whenever the DM can rank distinct f and g, there must exist a constant act x that lies between them.

In other words, transitivity relations mediated by constant acts are the only inference rules the DM

can use to rank distinct general acts.

Meanwhile, in the presence of the other axioms, A8 is equivalent to the following alternative

axiom, which admits a different interpretation. Perhaps constant acts are those with values that are

easiest to evaluate, therefore, if neither f nor g is comparable with a constant act, such a pair must

not be comparable themselves. In other words, incomparability relations are “contagious,” as they

will spread via constant acts. The below axiom B8 formalizes this idea, and we refer to this form as

contagion of incomparability.

B8 (Contagion of incomparability). For any distinct acts f, g ∈ F , if there exists a constant act

x ∈ Fc such that neither f nor g is comparable with x, then f and g are incomparable.

3.2 Main Theorem

We are now ready to present the main result of this paper.

Theorem 1. A preference order ≿ satisfies A1–8 if and only if it admits an IPOP representation.

Moreover, C♯ and C♭ are unique, and u is unique up to positive affine transformations.

While the formal arguments are relegated to Appendices A and B, we shall provide a proof sketch

in the hope that it will be useful to grasp the interplays between axioms and representations. As a
7 In our axiomatization, A6 and A7 can be replaced by the following another weakening of monotonicity:

B6 (Secure-Potential Monotonicity). For any f, g ∈ F and x ∈ Fc, if f(ω) ≿ g(ω) for all ω ∈ Ω, then f ≿ x whenever
g ≿ x; Also, x ≿ g whenever x ≿ f .

It is not hard to see that B6 imply both A6 and A7, but the converse implications may not be obvious. As such, since
any IPOP representation satisfies B6, our theorem indirectly proves that A6 and A7 jointly imply B6 in the presence
of other axioms.
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matter of course, a crucial part is the sufficiency of the axioms, which is divided into several steps as

below.

First, since A1–3 assure that ≿ restricted on Fc is a continuous weak order, we can get a utility

function u : X → R over outcomes. Then, define a utility function U(f) to assign the value of

the “minimal” constant act ranked above each general act f . Similarly, U(f) is defined to assign

the “maximal” constant act ranked below f . Using transitivity, we can show that U(f) ≥ U(g)

implies f ≿ g. Thus, it remains to prove the reverse direction, i.e., ≿ is not more complete than the

binary relation jointly represented by U and U . At this point, A8 plays a key role, as it admits an

interpretation as contagious incomparability. Specifically, the axiom adjusts down the degree of ≿’s

completeness, so that we have U(f) ≥ U(g) whenever f ≿ g and f ̸= g. To sum up, the axioms A1–3

and A8 derive the following representation: for any f, g ∈ F , we have

f ≿ g ⇐⇒
[
U(f) ≥ U(g) or f = g

]
.

At this point, the transitivity of ≿ requires that two utility functions maintain the uniform relation

U ≥ U .8

Second, we derive the integral representations of U and U . After transforming each act into a

utility act via the mapping f 7→ u ◦ f , we naturally define functionals T and T on utility acts from

U and U . Here, A7 assures that these functionals are well-defined. We then use A4–6 to provide

several properties of T and T , including restricted forms of additivity and monotonicity. Still, the

Gilboa and Schmeidler’s (1989) representation theorem is not readily applied in the absence of the

full monotonicity, so we develop alternative arguments that make use of the shift of contour sets a lá

Bewley (2002) to recover belief sets.

To this end, we define upper- and lower-contour sets of each utility act ξ ≡ u ◦ f by

U(ξ) =
{
ζ : T (ζ) ≥ T (ξ)

}
and L(ξ) =

{
ζ : T (ξ) ≥ T (ζ)

}
.

These contour sets are then “shifted” to the origin in the two steps as described in Figure 2. Specifically,

we first claim that they can be identified with the contour sets of some diagonal elements. In other

words, we have U(ξ) = U(ξ) and U(ξ) = U(ξ) for some ξ and ξ on the 45◦ line. We then claim that the

contour sets of ξ and ξ are shifted linearly toward the origin, i.e., U(ξ) = U(0)+ξ and L(ξ) = L(0)+ξ.

These arguments imply that it is enough to characterize U(0) and L(0) in order to recover contour sets

of general acts. As usual, this final step is done with the help of the separating hyperplane theorem.

To sum up, the main feature of the IPOP representations – the dual-self perspective – is obtained

in the first step, where we only impose the axioms A1–3 and A8. As such, A8 plays a key role in

8 The way we incorporate reflexivity in our representations may appear to be somewhat ad hoc. At this point, there
is the following trade-off between reflexivity and transitivity – while reflexivity requires the uniform relation U ≥ U , we
must have U ≥ U to maintain transitivity. Hence, having both may imply U = U , but then IPOP reduces to SEU. As
reflexivity may be such a basic condition, we have chosen to add an extra rule in the definition of our representation.
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Figure 2: The contour sets of a utility act ξ are shifted to the origin in two steps.

deriving joint representations by two utility functions. Related arguments are utilized by Valenzuela-

Stookey (2020) to obtain his simple bound representations.9 The rest of axioms are used to add

geometric properties to utility functions U and U .

We note here that the dual-self perspective is closely related to Fishburn’s (1970) interval orders.10

In a more formal sense, a strict preference order ≻ is an interval order if and only if A1–3 and

A8 are satisfied by its weak part ≿. As such, given U and U that jointly represent ≿, we define

I(f) = [U(f), U(f)] for each act f , where the transitivity of ≿ assures that I(f) is a well-defined

interval when constructed in such as way. In this regard, we obtain some behavioral interpretations

of interval orders as a byproduct of the main theorem.

4 Comparative Statics

We study some comparative statics questions with respect to different belief sets. Throughout this

section, we shall assume that a preference order≿ of our interest always admits an IPOP representation

9 Specifically, his axiom, uniform comparability, posits that monotonicity mediated by simple-enough acts is the only
inference rule that the DM can use to rank general acts. In contrast, our C-calibration assumes that transitivity mediated
by constant acts is the only inference rule that has a similar role.

10 According to his definition, a strict order ≻ on a domain X is an interval order if it is irreflexive and satisfies the
condition: x1 ≻ y1 and x2 ≻ y2 imply that either x1 ≻ y2 or x2 ≻ y1. Fishburn (1970) shows that any interval relation
≻ is represented by a correspondence I : X ↠ R, which outputs a closed interval I(x) = [a(x), b(x)] for each x ∈ X, in
the following manner:

• If I(x) ∩ I(y) ̸= ∅, then neither x ≻ y nor y ≻ x (incomparable);

• If I(x) ∩ I(y) = ∅ and I(x) is the right to I(y), then x ≻ y; and

• If I(x) ∩ I(y) = ∅ and I(x) is the left to I(y), then y ≻ x.

In other words, an interval order ranks x higher than y if and only if the left-most point of the interval I(x) is greater
than the right-most point of I(y).
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by some tuple (u,C♯, C♭).

4.1 (Non-)equalizable Belief Sets

The definition of IPOP representations still permits belief sets C♯ and C♭ to differ from each other, so

naturally one might ask when they coincide. We shall provide an answer to a more general question.

Specifically, we detect additional axioms that determine the relative size of one belief sets against one

another in terms of set inclusion.

To state our axioms, we introduce the following notion of a perfect hedge between acts, which is

closely related to the complementability introduced by Siniscalchi (2009).11

Definition 2. An act g is said to be a perfect hedge against f if there exists some α ∈ (0, 1) such

that αf(ω) + (1− α)g(ω) ∼ αf(ω′) + (1− α)g(ω′) holds for all ω, ω′ ∈ Ω. In such a case, we write as

f
α
⌣ g.

Intuitively, g is a perfect hedge against f if the DM can create a risk-free portfolio by mixing f and

g in an appropriate ratio. Any pair of acts that hedges each other cannot be co-monotonic according

to the definition of Schmeidler (1989), but rather, they move toward “opposite” directions as functions

of states. In other words, one act performs better in some states but worse in others, and this trade-off

may make the choice between those acts difficult. Hence, if the DM could somehow manage to rank

f and g, a choice that involves their mixture might become an easier task, as the mixture is expected

to approach a constant act. The next axioms formalize this idea.

A9 (a). For any f, g ∈ F and α ∈ (0, 1), if f ≿ g and f
α
⌣ g, then f ≿ αf + (1− α)g.

A9 (b). For any f, g ∈ F and α ∈ (0, 1), if f ≿ g and f
α
⌣ g, then αf + (1− α)g ≿ g.

The two axioms differ only in which uncertain prospects, f or g, is comparable with the certain

prospect created by them. Specifically, A9 (a) states that the DM is more proactive in accepting f

against the mixture than in rejecting g against the mixture. A9 (b) postulates the exact converse of

this. These axioms then characterize the relative size of belief sets, by which we mean the relation of

set inclusion between them. As a result, they jointly characterize the situation in which the DM has

equal belief sets.

Proposition 1. Let ≿ be represented by (u,C♯, C♭).

(i) C♯ ⊇ C♭ if and only if ≿ satisfies A9 (a).

(ii) C♯ ⊆ C♭ if and only if ≿ satisfies A9 (b).

11 Using the current notation, f and g are complementable according to his definition if f
1/2
⌣ g. We remark that the

same upshots in Proposition 1 could be obtained even if the axioms A9 (a–b) are stated in terms of complementability.
As such, the only if directions of this proposition are trivially maintained, and a careful look at the proof reveals that
the if directions only use the axioms for α = 1/2.
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(iii) C♯ = C♭ if and only if ≿ satisfies both A9 (a-b).

The intuition behind this proposition is explained as follows. Assume that f ≿ g and f
α
⌣ g,

and thus, the mixture αf + (1 − α)g delivers the same utility in every state. Interpreting the axiom

A8 as stating “contagion of incomparability,” the mixture would be comparable with at least one of

f or g.12 As such, A9 (a) says that the finer act f is comparable with the mixture whenever g is

also comparable with it. This means that the DM is more decisive in evaluating f than how much

she is in evaluating g. In a choice between f and g, f is evaluated by the DM’s pessimism, while

g is evaluated by the DM’s optimism. Hence, we conclude that less uncertainty is perceived by the

DM’s pessimism than optimism, from which we predict C♯ ⊇ C♭. The implication of A9 (b) can be

understood symmetrically.

4.2 The Amount of Uncertainty

In several existing multiple-prior models, the size of a belief set reflects the amount of uncertainty

perceived by the DM, or the degree of completeness of the DM’s solid preference order. These ideas

have been formalized by Rigotti and Shannon (2005) for Bewley preferences, and by Ghirardato et al.

(2004) for MEU. Indeed, an analogous result is also available for IPOP.

Definition 3. A preference ≿1 is an extension of ≿2 if f ≿1 g whenever f ≿2 g, i.e., ≿1 ⊇ ≿2 when

they are viewed as subsets of F2. Furthermore, ≿1 is called a compatible extension of ≿2 if ≿1 ⊇ ≿2,

and x ≻1 y whenever x ≻2 y for any x, y ∈ Fc.

Note that since ≿2 maintains C-completeness, ≿1 is a compatible extension of ≿2 if and only if we

have both ≿1 ⊇ ≿2 and ≿1 |Fc =≿2 |Fc .13

Proposition 2. For each i ∈ {1, 2}, let ≿i admit an IPOP representation by (ui, C
♯
i , C

♭
i ) . The

followings are equivalent:

(i) ≿1 is a compatible extension of ≿2.

(ii) C♮
1 ⊆ C♮

2 for each ♮ ∈ {♯, ♭}, and u1 = au2 + b for some a ∈ R++ and b ∈ R.

5 Connections to Other Decision Models

5.1 Obvious Dominance

IPOP encapsulates SEU and obvious dominance in two polar cases. While the former is pinned down

by adding the full completeness axiom, the latter is obtained by adding the full “incompleteness”
12 This exposition is slightly inaccurate since the axiom requires the mixture to be constant, not only payoff-indifferent.

We shall not step into detail here to maintain the intuitiveness of our discussion.
13 Our definition of compatible extension is slightly different from a popular definition in mathematics, e.g., see Chapter

1 of Aliprantis and Border (2006). Specifically, we require the preservation of strict preferences only on constant acts.
This treatment is essential when we characterize the class of all complete, compatible extensions in Section 5.2.2.
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axiom presented below. Throughout this subsection, we assume that every singleton is Σ-measurable,

i.e., {ω} ∈ Σ for every ω ∈ Ω.

A10 (Strong Incomparability). For any f, g ∈ F , if there exists some ω ∈ Ω such that g(ω) ≻ f(ω),

then f ̸≿ g.

This axiom embodies the extreme conservatism of the DM, which urges belief sets to contain all

degenerate beliefs.14

Proposition 3. A preference order ≿ satisfies A1–8 and A10 if and only if there exists a non-

constant, continuous and affine utility function u : X → R such that

f ≿ g ⇐⇒
[
min
ω∈Ω

u(f(ω)) ≥ max
ω∈Ω

u(g(ω)) or f = g

]
. (3)

Moreover, u is unique up to positive affine transformations.

Zhang and Levin (2017) provide an alternative characterization of obvious dominance within the

Anscombe-Aumann’s framework. A main difference from this paper is that they maintain the com-

pleteness axiom, which makes their characterization somewhat indirect compared with Proposition 3.

Specifically, their main result delivers the class of preference orders represented by the following single

utility function:

Uα(f) = α(f)max
ω∈Ω

u(f(ω)) + (1− α(f))min
ω∈Ω

u(f(ω)),

where α : F → [0, 1] is an arbitrary function. The authors then argue that obvious dominance is

characterized as the “intersection” of preference orders parametrized by several α, while their axioms

solely pertain to each Uα. On the other hand, our approach takes incomplete preferences as the model

primitive, which allows us to directly axiomatize obvious dominance.

We also note that the class of preference orders obtained by Zhang and Levin (2017) corresponds

to the special case of “revealed preferences” that can emerge from IPOP representations. This point

will be clarified after we characterize the set of complete extensions of IPOP in the next subsection,

cf. Proposition 5.

5.2 Compatible Extensions of IPOP

In several decision problems of interest, the solid preference order of the DM may be incomplete, but a

certain decision eventually must be made. As such, one might reasonably ask what decision rules can

be obtained from IPOP when an underlying incomplete preference is compatibly extended. In Section

5.2.1, we study the relations among the IPOP and other popular classes of multiple-prior preferences

14 We remark thatA5 is implied byA10 under C-independence and C-monotonicity, so the statement of the proposition
is actually a bit redundant.
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and show that both MEU and Bewley preferences are obtained as compatible extensions of IPOP. In

Section 5.2.2, we characterize the whole set of complete preference orders that can be obtained from

IPOP.

5.2.1 Multiple-prior Representations

Let us start by clarifying the connections among IPOP and some prominent classes of multiple-prior

preferences. The first class is MEU preferences (Gilboa and Schmeidler, 1989), in which a pair of acts

are compared in terms of minimal expected values:

f ≿ g ⇐⇒ min
µ∈C

∫
(u ◦ f)dµ ≥ min

µ∈C

∫
(u ◦ g)dµ,

where C is a nonempty, closed and convex set of beliefs. The second class is Bewley preferences

(Bewley, 2002), which follows the following unanimity rule that compares a pair of acts in a prior-wise

way:

f ≿ g ⇐⇒
∫

(u ◦ f)dµ ≥
∫

(u ◦ g)dµ, ∀µ ∈ C.

As is well-known, the intersection of these classes solely consists of SEU, which corresponds to the

degenerate case in which C is a singleton. On the other hand, Ghirardato et al. (2004) and Gilboa

et al. (2010) point out, in different contexts, that each MEU preference can be seen as the complete

extension of some Bewley preference. Indeed, there are analogous relations that involve IPOP as well.

To formalize this idea, we introduce the following notion of more-conservative relations over different

classes of preference orders.

Definition 4. A nonempty class of preference orders P is said to be more conservative than another

nonempty class P ′ if

• for any ≿∈ P there exists some ≿′∈ P ′ such that ≿′ is a compatible extension of ≿; and

• for any ≿′∈ P ′ there exists some ≿∈ P such that ≿′ is a compatible extension of ≿.

To rephrase the previous observation, the class of Bewley preferences (PBewley) is more conserva-

tive than the class of MEU preferences (PMEU). The next proposition finds that the class of IPOP

preferences (PIPOP) is actually more conservative than both PMEU and PBewley. On the other hand,

the intersection of PIPOP and PMEU, as well as the intersection of PIPOP and PBewley, consists solely

of the class of SEU preferences (PSEU). This is because an IPOP representation satisfies monotonicity

only when its belief sets are the same singleton.

Proposition 4. (i) PMEU ∩ PBewley = PSEU, while PBewley is more conservative than PMEU.

(ii) PMEU ∩ PIPOP = PSEU, while PIPOP is more conservative than PMEU.

(iii) PBewley ∩ PIPOP = PSEU, while PIPOP is more conservative than PBewley.
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5.2.2 Completions of IPOP

We say that a preference order ≿∗ is a completion of an IPOP order ≿ if it is a compatible extension

of ≿ and satisfies both transitivity and completeness. By Proposition 4, any IPOP order has some

MEU preference as its completion, but MEU does not cover the whole class of IPOP’s completions.

In the next proposition, we provide the full characterization of IPOP’s completions that maintain one

weak continuity condition.15

Proposition 5. Let ≿ be a preference order that admits an IPOP representation by a tuple (u,C♯, C♭).

A preference order ≿∗ is a C-continuous completion of ≿ if and only if ≿∗ is represented by a utility

function I : F → R taking the following form:

I(f) = α(f) min
µ∈C♭

∫
(u ◦ f)dµ+ (1− α(f)) max

µ∈C♯

∫
(u ◦ f)dµ, (4)

where α : F → [0, 1] is an arbitrary function.

We refer to the class of preference orders represented in the form (4) as generalized α-maximin

preferences. This class is general in that a fraction α(·) can vary across different acts, which permits

the possibility for ≿∗ to violate independence or monotonicity. Its important subclass includes α-

maximin preferences, and their generalization such as invariant biseparable preferences (Ghirardato

et al., 2004; Chandrasekher et al., 2020). Note that no structure of α(·) is needed to ensure the

C-continuity of ≿∗ as the expected utility of a constant act is independent of beliefs. In other words,

α(·) is not identified on Fc.

Proposition 5 builds a bridge between IPOP, which is held in the DM’s mind, and its completion,

which is observable as a revealed choice. The relation between them would be well understood in

line with Gilboa et al. (2010), who introduce the notions of “objective rationality” and “subjective

rationality” in choice formation processes.16 Their expositions can be rearranged to be accommodated

in the current context. An IPOP order ≿ reflects choices made by the DM that are rational in an

“obviously objective” sense: The DM has proof that she is right in making them even when other

people may not share a common sense of the states of the world. On the other hand, when she cannot

perform contingent reasoning, a proof that sounds compelling to her should be simple enough that it

does not involve state-by-state considerations. A completion ≿∗, therefore, reflects choices that are

rational in “obviously subjective” sense: There is no proof that convinces the DM that she is wrong

in making them without using contingent reasoning.

With the above proposition in hand, a specific completion rule that extends an IPOP order to

the corresponding maximin or maximax preferences can be derived without deficulty. To state these

15 Allowing for the violation of C-continuity, there emerge lexicographic-type completions that are not represented in
generalized α-maximin forms as in this proposition. See Appendix D.2 for a concrete example.

16 According to their definitions, a choice is objectively rational if the DM has proof that she is right in making it,
whereas a choice is subjectively rational if others do not have proof that she is wrong in making it. Gilboa et al. (2010)
use these notions to provide a joint characterization of MEU and Bewley preferences.
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results, let ≿ be a preference order that admits an IPOP representation by a tuple (u,C♯, C♭), and

assume that C ≡ C♯ = C♭. Further, let ≿∗ be a C-continuous completion of ≿. Following the

literature, we say that ≿ and ≿∗ jointly satisfy caution if for any f ∈ F and x ∈ X, f ̸≿ x implies

that x ≿∗ f . We also say that ≿ and ≿∗ jointly satisfy abandon if for any f ∈ F and x ∈ X, x ̸≿ f

implies that f ≿∗ x.

Corollary 1. A pair (≿,≿∗) jointly satisfies caution (resp. abandon) if and only if ≿∗ admits the

maximin (resp. maximax) representation by (u,C).

6 Application to Second-price Auctions

Economists have encountered a “gap” between theory and empirics in second-price auctions. Contrary

to theoretical predictions, much empirical evidence documents bidders who do not report their true

valuations. To provide a clue to understanding this gap, Li (2017) proposes the concept of obvious

dominance. While his decision rule can explain the departure from truth-telling by assuming a bidder

is “extremely” conservative, the rule is too strong to generate a reasonable range of predictions, i.e.,

any bidding strategy in a second-price auction is not dominated in terms of obvious dominance.17

In this section, we apply our decision-theoretic model to revisit second-price auctions. As such, a

bidder is too conservative to have a unique belief about opponents’ bids but not as conservative to

apply Li’s decision rule with respect to all degenerate beliefs. We show that for generic belief sets,

there appear a continuum of undominated bids, meaning that the departure from truth-telling can be

explained by parsimoniously assuming that a bidder is “slightly” conservative. On the other hand,

we can eliminate deviating strategies far enough from a true valuation when belief sets are reasonably

smaller than all degenerate beliefs. Hence, our approach can provide sharper predictions about what

deviations are more likely to occur than others. Lastly, we try to shed some light on an empirical

question of why overbidding is more commonly observed than underbidding, e.g., Kagel et al. (1987)

and Kagel and Levin (1993).

6.1 The Model

A single indivisible good is auctioned off among potential buyers. We fix an arbitrary buyer (DM)

among them and study her undominated bidding strategies in a second-price auction. The personal

outcome space is given by (x, t) ∈ [0, 1]× [0, b̄] ≡ X, where x is a probability of obtaining the good, t

is payment to the auctioneer, and b̄ is the maximal payment exogenously set by the auction platform.

Assume that the DM evaluates each outcome (x, t) by the ex-post utility function u(x, t), which is

strictly increasing in x, and strictly decreasing and continuous in t. Further, we normalize u(0, 0) = 0,

17 Recall that obvious dominance is characterized within IPOP by adding an extra axiom A10, which postulates the
DM’s extreme conservatism. Meanwhile, it should be emphasized that Li’s (2017) main interest is not in explaining the
departure from truth-telling but rather in clarifying a practical difference in extensive mechanisms that share the same
normal form. It is fair to say that Li’s attempt has succeeded greatly in this regard.
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therefore, there exists a unique value v ∈ (0, b̄) that satisfies u(1, v) = u(0, 0). We refer to v as the

DM’s valuation. Note that u(x, t) = vx − t when u is quasi-linear. Let us fix a utility function u

throughout this section.

We consider the following reduced form to model uncertainty faced by the DM. Note that in a

second-price auction, only the highest opponent’s bid can affect the DM’s payoff. Thus, a single-

dimensional space Ω ≡ [0, b̄] summarizes all payoff-relevant uncertainty, and a second-price auction

induces the DM’s personal outcomes by

(x(b, ω), t(b, ω)) =

(1, ω) if b ≥ ω,

(0, 0) if b < ω.

Here, we assume that ties are broken in favor of the DM, but this assumption is without loss of

generality if the DM’s beliefs are non-atomic.

When the DM conceives that ω is distributed according to µ ∈ ∆(Ω), her subjective expected

utility is simply given as follows:18

U(b, µ) ≡
∫ b̄

0
u(x(b, ω), t(b, ω))dµ(ω) =

∫ b

0
u(1, ω)dµ(ω).

A prominent feature of a second-price auction is that b∗ = v maximizes U(·, µ) regardless of µ, and b∗

is a unique maximizer if there is a neighborhood of v on which µ is fully supported. In other words,

the truth-telling is generally a unique undominated strategy when DM’s uncertainty is captured by a

single subjective belief.

The unique optimality of truth-telling is no longer assured when there are multiple beliefs, and the

DM is bounded rational in the sense of our decision model. Specifically, assume that the DM conceives

non-disjoint, closed, and convex belief sets C♯, C♭ ⊆ ∆(Ω), and she evaluates bidding strategies based

on the corresponding IPOP representation. The set of undominated bidding strategies can then be

naturally defined in terms of the IPOP representation:

B∗(C♯, C♭) =

{
b ∈ [0, b̄] : ̸ ∃b′ ∈ [0, b̄] \ {b} s.t. min

µ∈C♭

∫ b′

0
u(1, ω)dµ(ω) ≥ max

µ∈C♭

∫ b

0
u(1, ω)dµ(ω)

}
.

6.2 Undominated Bids

For the sake of tractability, we impose the following regularity conditions.

Condition 1. Every µ ∈ C♯ ∪ C♭ is a non-atomic probability measure on (Ω,Σ).19

Condition 2. There exists some µ ∈ C♯ ∩ C♭ that is fully supported on a neighborhood of v.

18 Unless otherwise specified, integrations are performed on closed intervals.
19 A probability measure µ is non-atomic if for any event A ∈ Σ with µ(A) > 0, there exists an even B ⊆ A such that

µ(A) > µ(B) > 0.
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As is well-known, under Condition 1, each belief µ has a continuous density function, which we may

write as ϕµ. Condition 2 ensures that there exists at least one belief µ according to which truth-telling

becomes a unique optimal strategy.

We say that truth-telling is transparent for the DM if the optimistic and pessimistic expected

utilities from the truth telling strategy b∗ = v are the same, i.e.,

max
µ∈C♯

∫ v

0
u(1, ω)dµ(ω) = min

µ∈C♭

∫ v

0
u(1, ω)dµ(ω). (5)

The next proposition reveals the structure of an undominated set. An undominated set can be a

singleton if and only if truth-telling is transparent. In particular, as formally discussed in Appendix

D.3, the equality (5) is a knife-edge condition, meaning that truth-telling is not transparent for “almost

every” pair of belief sets. Hence, for generic belief sets, there emerges a continuum of deviating bids

not dominated by any other bids.

Proposition 6. Suppose that Condition 1 is satisfied.

(i) If truth-telling is transparent, then B∗(C♯, C♭) ⊆ {v}. In particular, if Condition 2 is satisfied,

then B∗(C♯, C♭) = {v}.

(ii) If truth-telling is not transparent, then B∗(C♯, C♭) is an open interval that contains v.20

The intuition behind Proposition 6 can be understood from Figure 3. Here, the DM possesses

three beliefs, say µ1, µ2, and µ3, according to which the DM’s expected utility is drawn as a function

of her bid. These functions vary across beliefs, but we know that each expected utility function is

increasing on [0, v) while decreasing on (v, b̄].21 Namely, all these functions are single-peaked around

v. Importantly, the same property is inherited to the minimal expected utility so that the blue line in

the figure maintains single-peakedness as well. Hence, to check whether a given bid b belongs to the

undominated set, all we need is to check whether b’s maximal expected utility exceeds v’s minimal

expected utility, marked with a blue star above. Further, the maximal expected utility inherits single-

peakedness as well, so the region in which the red line exceeds the peak of the blue line must be an

interval. In particular, the undominated interval has a nonempty interior provided that the peaks of

red and blue lines are different, i.e., the transparency condition is not met.

Thus, in second-price auctions, the departure from truth-telling can be explained by the parsimo-

nious assumption that participants are “slightly” bounded rational, rather than they are “extremely”

bounded rational as postulated by Li (2017). As such, obvious dominance may assume too much –

only the trivial prediction set would be available when the DM’s belief sets are too large.

Proposition 7. If both belief sets are consist of the all probability measures on (Ω,Σ), then B∗(C♯, C♭) =

[0, b̄].
20 The topological notion is relative to [0, b̄].
21 This is due to the fact that v is a dominant strategy in the usual sense, and thus, optimal when the DM’s uncertainty

is governed by any single belief.
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Figure 3: The intuition behind Proposition 6

Proof. Consider a belief µ0 that assigns a mass to a point 0 ∈ Ω, according to which every bid b

trivially achieves the maximal expected utility of u(1, 0). (Note that b = 0 can also achieve u(1, 0)

because ties are broken in favor of the DM.) On the other hand, v’s minimal expected utility is strictly

less than u(1, 0) since C♭ contains every probability measure. Thus, any b is undominated, thereby

B∗(C♯, C♭) coincides with [0, b̄].

Our comparative statics result (Proposition 2) is readily translated to undominated bids in second-

price auctions.

Corollary 2. Suppose that Condition 1 is satisfied by (C♯
i , C

♭
i ) for i ∈ {1, 2}. If C♮

1 ⊆ C♮
2 for each

♮ ∈ {♯, ♭}, then B∗(C♯
1, C

♭
1) ⊆ B∗(C♯

2, C
♭
2).

Proof. By Proposition 2, we know that the incomplete preference ≿1 defined by (C♯
1, C

♭
1) is a subset

of ≿2, which is defined by (C♯
2, C

♭
2). Thus, if ≿1 does not rank v higher than b, then so does ≿2. The

proof is done with this and (i) of Proposition 6.

6.3 Overbidding vs Underbidding

There is robust empirical evidence that subjects are more likely to exhibit a consistent pattern of

overbidding, rather than underbidding; however, there is little theory that explains the reason behind

it.22 Among some available candidate explanations, Kagel et al. (1987) infer that overbidding is likely

based on the illusion that it improves the chance of winning with no real cost to the winner as only

the second-highest bid is paid, whereas underbidding substantially decreases the chance of winning

22 For example, in Kagel et al. (1987), the actual bids submitted by subjects are, on average, 11% higher than
theoretical predictions. In Kagel and Levin (1993), while only 8% of bids fall below the true valuations, about 62% of
bids exceed the true valuations.
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with no real benefit from reducing the payment. In other words, they conjecture that overbidding can

be partly attributed to asymmetry in the rules of second-price auctions.

However, in the current decision model, we see that the structural asymmetry of second-price

auctions per se is not enough to explain the empirical tendency toward overbidding. Specifically,

the next proposition indicates that undominated bids would be symmetrically located around the

true valuation, provided that the DM’s tastes and beliefs are symmetric.23 Hence, to generate an

asymmetric range of undominated bids, we must seek explanations for the DM’s primitives, rather

than the mechanism itself.

Proposition 8. Suppose that Condition 1 is satisfied. Furthermore, suppose that u(x, t) = vx − t is

quasi-linear, and every µ ∈ C♯ satisfies ϕµ(v + t) = ϕµ(v − t) whenever v ± t ∈ [0, b̄]. Then, for any

such t, we have v + t ∈ B∗(C♯, C♭) if and only if v − t ∈ B∗(C♯, C♭).

Proof. Fix any t such that v ± t ∈ [0, b̄]. By Proposition 6, it is enough to show that U(v + t) =

U(v − t), where U = maxµ∈C♯ U(·, µ). Indeed, even a sufficient condition for this is true: We show

that U(v + t, µ) = U(v − t, µ) for every µ ∈ C♯. By the quasi-linearity, we have

U(v + t, µ)− U(v − t, µ) =

∫ v+t

v−t
(v − ω)ϕµ(ω)dω = −

∫ t

−t
ωϕµ(ω − v)dω,

where we perform the change of variables ω 7→ ω−v. Since a function ω 7→ ω is odd, and ω 7→ ϕµ(ω−v)

is even due to the ϕµ’s symmetry around v, the above integral is zero.

There are at least two ways that we can depart from Proposition 8 to generate an asymmetric

range of undominated bids. First, and most obviously, we could assume that C♯ contains asymmetric

beliefs. Second, we can depart from the assumption of quasi-linearity that has generated the symmetric

ex-post payoffs around the truth-telling strategy. This would be plausible in auctions for expensive

items, whose income effects are not negligible.

7 Conclusion

In the presence of uncertainty, the DM must think contingently to properly understand the conse-

quences of her choice. In some contexts, this type of reasoning is too difficult for an average agent, as

documented by a large body of empirical literature. Motivated by these empirical findings, this paper

has studied the implications of weakening the standard postulates in decision theory. Specifically, we

have weakened the Anscombe-Aumann’s core axioms to hold only when constant acts are involved.

As a sequel, we have obtained the class of preference orders that are more conservative than those

most popular in the literature of decision making under uncertainty.

23 Note that the result below does not address the “frequency” of misreporting in a specific direction, but rather
pertains only to the “magnitude”.
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What are the main contributions of this paper? In our view, one major contribution is that the

paper introduces the novel representation that continuously fill the gap between two decision criteria

– expected utility maximization and obvious dominance – that respectively provide foundations for

Bayesian incentive compatibility and obvious strategy-proofness in mechanism design. Presumably,

the former is one of the least demanding incentive constraints, whereas the latter is the most demanding

of those proposed so far. The use of a stronger concept can improve the robustness of mechanisms

against misplays by participants. At the same time, however, nonexistence issues may arise, i.e., there

may not exist a mechanism that fulfills strong incentive constraints. Indeed, obviously strategy-proof

mechanisms can exist in only limited economic environments. In this regard, our axiomatic analysis of

bounded rationality may be useful to indicate possible directions to which incentive constraints should

be weakened in the hope of making a better compromise.

An interesting extension is the following generalized dual-self representations – in the general form

of our representation result (Lemma 1), the relevant axioms are stated without the affine structure of

the outcome space. In this regard, we conjecture that we could start our analysis with an abstract

topological space F of acts, and its subset Fc ⊆ F interpreted as the collection of acts somewhat

“clearly” understood by the DM. Generalizing the model in this way leads to exploring various new

applications. For example, such modeling may be useful to study the framing effect (Tversky and

Kahneman, 1981) by allowing us to make an explicit distinction between acts that are materially the

same but with different connotations, expositions, or descriptions.24 Given the recent focus on the

simplicity of mechanism design, these issues await further inspection.

Appendix A General Representation Results

Before proving Theorem 1, we provide a benchmark result which are stated in terms of general rep-

resentation forms. Specifically, we show that a part of our axioms suffice to represent ≿ jointly by

abstract utility functions U and U .

Given any function U : F → R, we denote its image by Im(U) = {U(f) ∈ R : f ∈ F}.

Lemma 1. A preference relation ≿ satisfies A1–3 and A8 if and only if there exist non-constant

functions U,U : F → R with U ≥ U such that

(i) U |Fc = U |Fc holds, and the restriction is continuous on Fc;

(ii) Im(U |Fc) = Im(U) = Im(U) = Im(U |Fc); and

(iii) f ≿ g if and only if U(f) ≥ U(g) or f = g.

24 For example, in the current model, the DM perceives two acts in the same way whenever they are identical as
functions from states to outcomes. Thus, f(ω) = 1

cos2(ω)
− tan2(ω) and 1 are treated as the same object, but the former

is perhaps less easily recognized as a constant act.
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Moreover, a pair of functions V , V : F → R satisfies (i)-(iii) for the same preference relation ≿ if and

only if there exists a continuous and strictly increasing function ϕ : R → R such that V = ϕ ◦ U and

V = ϕ ◦ U .

Proof. The crucial part is the sufficiency of axioms. Suppose that ≿ satisfies A1–3 and A8. Since the

restriction ≿ |Fc is a continuous weak order on Fc ≃ X by A1–3, there exists a continuous function

u : X → R that represents ≿ |Fc . Define U,U : F → R by

U(f) = min
{
u(x) : x ∈ Uc(f)

}
, (6)

U(f) = max
{
u(x) : x ∈ Lc(f)

}
, (7)

where

U(f) = {g ∈ F : g ≿ f}, Uc(f) = U(f) ∩ Fc, (8)

L(f) = {g ∈ F : f ≿ g}, Lc(f) = L(f) ∩ Fc. (9)

Since both Uc(f) and Lc(f) are nonempty compact sets, these utility functions are well-defined.

Clearly, u = U |Fc = U |Fc , and the restriction u is continuous on the space Fc ≃ X.

Let us show that f ≿ g if and only if U(f) ≥ U(g) or f = g. Starting with the if direction,

reflexivity implies that f ≿ g whenever f = g. Suppose that U(f) ≥ U(g). Then, there are outcomes

x, y ∈ X such that u(x) = U(f) ≥ U(g) = u(y). Since u represents ≿, we have x ≿ y, while f ≿ x

and y ≿ g hold by the constructions of x and y. Using transitivity twice, we get f ≿ g as required.

Conversely, suppose that U(f) < U(g) and f ̸= g. Again, let x, y ∈ X be outcomes that attain the

values of U(f) and U(g), respectively. Suppose not, f ≿ g holds. By A8, there exists z ∈ Fc for which

f ≿ z and z ≿ g, meaning that z ∈ Lc(f) and z ∈ Uc(g). Since x maximizes u in Lc(f), it follows

that u(x) ≥ u(z). Similarly, by the minimality of y in Uc(g), we must have u(z) ≥ u(y). Therefore,

it follows that u(x) ≥ u(y), but this is a contradiction to that u(x) = U(f) < U(g) = u(y). Hence,

f ̸≿ g must hold.

Finally, we shall prove the uniqueness part. The if direction of the statement is easy to verify. Now,

suppose that (U,U) and (V , V ) satisfy (i)–(iii) of Lemma 1 for the same preference ≿. In particular,

the restrictions u ≡ U |Fc = U |Fc and v ≡ V |Fc = U |Fc represent the same weak order ≿ |Fc on

Fc ≃ X, and hence, each must be a monotonic transformation of one another, i.e., there exists a

strictly increasing function ϕ : Im(u) → R for which v = ϕ ◦ u. Note that ϕ must be continuous to

maintain continuity of u and v. Fix any non-constant act f ∈ F . By Im(u) = Im(U), there exists xf

such that u(xf ) = U(f). Since (U,U) represents ≿,

U(f) \ {f} = {g ∈ F \ {f} : U(g) ≥ U(f)} = {g ∈ F \ {f} : U(g) ≥ u(xf )} = U(xf ) \ {f},

where U(·) is a contour set defined by ≿. On the other hand, repeating the same argument for (V , V ),
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we can there find yf such that v(yf ) = V (f), which in turn yields

U(f) \ {f} = {g ∈ F \ {f} : V (g) ≥ V (f)} = {g ∈ F \ {f} : U(g) ≥ u(yf )} = U(yf ) \ {f}.

Hence, U(xf ) \ {f} = U(yf ) \ {f} holds. In particular, this implies Uc(xf ) = Uc(yf ), which can be

true only when u(xf ) = u(yf ). Therefore, we have

ϕ ◦ U(f) = ϕ ◦ u(xf ) = ϕ ◦ u(yf ) = v(yf ) = V (f),

as desired. The symmetric argument verifies that ϕ ◦ U = V .

We say U : F → R is C-affine if U(αf + (1− α)x) = αU(f) + (1− α)U(x) for all f ∈ F , x ∈ Fc,

and α ∈ (0, 1). Also, a real function u : X → R is affine if u(αx+(1−α)y) = αu(x)+ (1−α)u(y) for

all x, y ∈ X and α ∈ (0, 1). Note that if U is C-affine, then the restriction U |Fc is affine on the domain

Fc that is isomorphic to X. The next lemma states that the axiom A4 makes U and U C-affine,

which in turn makes u = U |Fc = U |Fc affine.

Lemma 2. Suppose that ≿ satisfies A1–3 and A8. Then, ≿ satisfies A4 if and only if there exist

non-constant and C-affine functions U and U that represent ≿ in the way of Lemma 1.

Proof. It is easy to see that ≿ satisfies A4 whenever U and U are C-affine. Conversely, suppose that

≿ satisfies A4. Since ≿ |Fc maintains all the vNM axioms, there exists a continuous affine function

u : X → R that represents ≿ |Fc . Again, let U,U : F → R be defined by (6) and (7), so that U and

U jointly represent ≿ in the way that Lemma 1 prescribes.

Since the argument is symmetric, we only prove that U is C-affine. Fix any f ∈ F , y ∈ Fc, and

α ∈ (0, 1). Let x ∈ Uc(f) be a constant act such that U(f) = u(x). By the construction, x ≿ f holds,

so that A4 yields αx+ (1− α)y ≿ αf + (1− α)y. Since U and U jointly represent ≿, we have

U(αf + (1− α)y) ≤ U(αx+ (1− α)y) = u(αx+ (1− α)y) = αu(x) + (1− α)u(y),

where the equalities follow from U |Fc = u and the affinity of u.

To show that the above inequality is tight, we first claim that x is on the boundary of Uc(f) ⊆ X.

If not, we could have an open ball of x which is contained in Uc(f), but then, there must exist some

x̃ ∈ Uc(f) with u(x̃) < u(x) because u is affine and non-constant. This leads to a contradiction to

the minimality of x in Uc(f). Hence, by the continuity of u, for an arbitrarily small ϵ > 0, we can

pick xϵ ∈ X \ Uc(f) such that |u(x) − u(xϵ)| < ϵ. In particular, since U and U represent ≿, we

have u(x) = U(f) > u(xϵ), from which 0 < u(x) < ϵ + u(xϵ). Moreover, A4 and xϵ ̸≿ f together

imply that αxϵ + (1 − α)y ̸≿ αf + (1 − α)y. Again by the fact that U and U represent ≿, we have
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U(αf + (1− α)y) ≥ u(αxϵ + (1− α)y). To sum up,

αu(x) + (1− α)u(y) < αu(xϵ) + (1− α)u(y) + αϵ

= u(αxϵ + (1− α)y) + αϵ ≤ U(αf + (1− α)y) + αϵ.

Letting ϵ → 0 yields the desired inequality.

Appendix B Proof of Theorem 1

We omit the trivial proof of necessity. We proves the sufficiency of the axioms in Step 1, and the

uniqueness part in Step 2.

Step 1: Sufficiency.

Suppose that ≿ satisfies A1–8. By Lemmas 1 and 2, the axioms A1–4 and A8 imply that there

exist C-affine utility functions U,U : F → R that represent ≿ in the way that these lemmas describe.

Specifically, there exists a non-constant, continuous and affine function u : X → R that calibrate U

and U in the way of (6) and (7), respectively. Henceforth, we arbitrarily fix such a function u, and

assume without loss of generality that [−1, 1] ⊆ Im(u) by means of non-degeneracy.

Define Ξ = {u ◦ f : f ∈ F} ⊆ (Im(u))Ω. A generic element ξ ∈ Ξ is a Σ-measurable real function

on Ω and called a utility act, interpreted as a profile of utility values carried by an act. Since u is affine,

Ξ is a convex subset of RΩ. Note that {ξ ∈ [−1, 1]Ω : ξ is Σ-measurebale} ⊆ Ξ by the normalization

of u. Then, define functionals T , T : Ξ → R by

T (ξ) = U(f) and T (ξ) = U(f), where ξ = u ◦ f.

Note that A7 assures that these functionals are well-defined, i.e., T (ξ) and T (ξ) are uniquely deter-

mined regardless of the choice of acts f and g that deliver the same utility act.

Denote by B(Ω,Σ), or simply by B, the set of all bounded Σ-measurable real functions, and let

Bc = {ξ ∈ B : ξ(ω) = ξ(ω′) for all ω, ω′ ∈ Ω} be the set of diagonal elements in B. Also, let

B+ = B ∩RΩ
+ and B− = B ∩RΩ

−. As usual, (B, ∥ · ∥∞) becomes a Banach space endowed with the sup

norm ∥ξ∥∞ = supω∈Ω |ξ(ω)|. Note that Ξ ⊆ B since u is continuous on the compact domain X. Let

1Ω : Ω → R denote a constant function that takes 1 for every ω ∈ Ω, so that λ1Ω denotes the one that

takes a real λ ∈ R for every ω ∈ Ω.

Now, we shall show that T and T are positively homogeneous, and hence, these functionals can be

uniquely extended to cover the whole space B.

Claim 1. T (λ1Ω) = T (λ1Ω) = λ for any λ ∈ Im(u).

Proof. Given any λ ∈ Im(u), let x ∈ X be an outcome such that u(x) = λ. By construction,

λ1Ω = u ◦ x1Ω, and hence, T (λ1Ω) = U(x) = u(x) = λ. Similarly, we have T (λ1Ω) = λ.
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Claim 2. T and T are positively homogeneous, i.e., T (λξ) = λT (ξ) and T (λξ) = λT (ξ) for all ξ ∈ Ξ

and λ ≥ 0 with λξ ∈ Ξ. Consequently, they have unique extensions to the set of all Σ-measurable real

functions on Ω that preserve positive homogeneity.

Proof. Let us show that T is positively homogeneous. The claim is trivial when λ = 1, and it follows

from Claim 1 when λ = 0. Moreover, the claim for λ > 1 are implied by that for λ ∈ (0, 1). As

such, given that positive homogeneity is obtained for λ ∈ (0, 1), we would have 1
ρT (ρξ) = T (ξ) for

an arbitrary ρ > 1 with ρξ ∈ Ξ, from which T (ρξ) = ρT (ξ). Therefore, we assume that λ ∈ (0, 1)

henceforth. Let f ∈ F be an act such that ξ = u ◦ f . By [−1, 1] ⊆ Im(u), we can find an outcome

x0 ∈ X such that u(x0) = 0. By the fact that u is affine, we have

T (λξ) = T (λu ◦ f) = T (u ◦ (λf + (1− λ)x0))

= U(λf + (1− λ)x0)

= λU(f) + (1− λ)u(x0) = λU(f) = λT (ξ).

where the third line follows from the fact that U is C-affine. Hence, we have shown that T is positively

homogeneous.

By similar arguments, we can show that T is positively homogeneous. Finally, we claim that these

functionals can be uniquely extended to B by preserving positive homogeneity. Indeed, for any non-

zero bounded ξ, we can consider the normalized functional ξ̃ = ξ
∥ξ∥∞ , but ξ̃ ∈ Ξ since [−1, 1] ⊆ Im(u).

To maintain positive homogeneity, we must have T (ξ) = ∥ξ∥∞T (ξ̃) and T (ξ) = ∥ξ∥∞T (ξ̃), which

uniquely define the extensions.

Let us verify several properties of the functional T and T . The next sequence of claims verify

monotonicity, C-additivity, and sub/super-additive.25

Claim 3. T and T are C-monotonic.

Proof. Clear from A6 and positive homogeneity.

Claim 4. T and T are C-additive.

Proof. Recall that U is C-affine, and thus, T (12ξ+
1
2c1Ω) =

1
2T (ξ) +

1
2c trivially holds whenever ξ ∈ Ξ

and c ∈ Im(u). To generalize this observation, given any ξ ∈ B and λ ∈ R, let K = max{∥ξ∥∞, |λ|}.

25 A functional T : B → R is C-monotonic if T (ξ) ≥ T (ζ) whenever ξ ≥ ζ and at least one of them belongs to Bc;
C-additive if T (ξ + λ1Ω) = T (ξ) + λ for all ξ ∈ B and λ ∈ R; super-additive if T (ξ + ζ) ≥ T (ξ) + T (ζ) for all ξ, ζ ∈ B;
sub-additive if T (ξ + ζ) ≤ T (ξ) + T (ζ) for all ξ, ζ ∈ B.
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Assume K > 0 for nontrivial arguments. By positive homogeneity, we see that

T (ξ + λ1Ω) = T

(
2K

(
ξ

2K
+

λ1Ω
2K

))
= 2KT

(
1

2

ξ

K︸︷︷︸
∈Ξ

+
1

2

λ1Ω
K︸︷︷︸

∈Im(u)

)
= 2K

(
1

2
T

(
ξ

K

)
+

1

2

λ

K

)
= T (ξ) + λ,

provided that K > 0. Therefore, we conclude that T is C-additive. Similarly, we can show that T is

C-additive.

Claim 5. T is subadditive, and T is superadditive.

Proof. As before, we assume ξ, ζ ∈ Ξ since the general case follows from positive homogeneity. Let

ξ = u ◦ f and ζ = u ◦ g for some f, g ∈ F . We shall show that T (ξ+ ζ) ≤ T (ξ)+T (ζ), or equivalently,
1
2T (ξ + ζ) ≤ 1

2T (ξ) +
1
2T (ζ). By positive homogeneity, the left-side is equal to T (12ξ +

1
2ζ), which is

further equal to U(12f + 1
2g). Hence, it is enough to show that

U

(
1

2
f +

1

2
g

)
≤ 1

2
U(f) +

1

2
U(g), (10)

for arbitrary f, g ∈ F .

To this end, we first consider the case U(f) = U(g). Let xf ∈ Uc(f) and xg ∈ Uc(g) be outcomes

such that u(xf ) = U(f) = U(g) = u(xg). By constructions, we have xf ≿ f , xg ≿ g, and xf ∼ xg. In

particular, transitivity implies that xf ≿ f and xf ≿ g, from which A5 yields xf ≿ 1
2f + 1

2g. Thus,

xf ∈ Uc(12f + 1
2g). By the definition of U , we have U(12f + 1

2g) ≤ u(xf ), thereby (10) is obtained.

Now, consider the case U(f) ̸= U(g). Without loss of generality, assume that U(f) > U(g), or

equivalently, T (ξ) > T (ζ). Let λ = T (ξ)− T (ζ) > 0, and let ζ̃ = ζ + λ1Ω. By the C-additivity of T ,

T (ζ̃) = T (ζ) + λ = T (ξ). Thus, applying the conclusion of the previous case, we get

T (ξ + ζ̃) ≤ T (ξ) + T (ζ̃) = T (ξ) + T (ζ) + λ.

On the other hand, the C-additivity of T yields

T (ξ + ζ̃) = T (ξ + ζ + λ1Ω) = T (ξ + ζ) + λ.

The above equations together imply T (ξ + ζ̃) ≤ T (ξ) + T (ζ), which shows that T is subadditive. The

symmetric argument proves that T is superadditive, whereas inequalities must be flipped due to the

converse implication of A5.

Claim 6. T and T are continuous in ∥ · ∥∞.
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Proof. Since T is subadditive by Claim 5, it suffices to show that T is continuous at 0 (cf. Lemma

5.51 of Aliprantis and Border, 2006). Fix any ϵ > 0, and consider two points ±2ϵ1Ω ∈ B. Note that

any ξ with ∥ξ∥∞ < ϵ is bounded by these two points. Hence, C-monotonicity implies

−2ϵ = T (−2ϵ1Ω) ≤ T (ξ) ≤ T (2ϵ1Ω) = 2ϵ,

from which |T (ξ)| < 3ϵ. Thus, T is continuous at 0, and so, continuous everywhere. Moreover,

we would repeat the same argument to show the continuity of −T , which is subadditive since T is

superadditive by Claim 5. Then, the continuity of T is implied by that of −T .

We now come to combine the functional properties obtained so far to establish the integral rep-

resentations of T and T . Slightly abusing the previous notation, we define the contour sets of utility

acts as follows: for each ξ ∈ B, Namely, for each ξ ∈ B, we let

U(ξ) =
{
ζ ∈ B : T (ζ) ≥ T (ξ)

}
, Uc(ξ) = U(ξ) ∩ Bc,

L(ξ) =
{
ζ ∈ B : T (ξ) ≥ T (ζ)

}
, Lc(ξ) = L(f) ∩ Bc.

Further, let ξ 7→ ξ and ξ 7→ ξ be the operators from B to Bc defined by

ξ = arg min
{
T (ζ) : ζ ∈ Uc(ξ)

}
,

ξ = arg max
{
T (ζ) : ζ ∈ Lc(ξ)

}
.

Note that these operators are well-defined.26

In the next claim, the observations (c) and (d) are especially important – (c) says that contour sets

are invariant to the operators ξ 7→ ξ, ξ, and then, (d) argues that contour sets of constant utility acts

can be shifted along the 45◦ line. According to these observations, it is enough for us to characterize

U(0) and L(0) to recover contour sets of arbitrary points.

Claim 7. The following are true for any ξ, ζ ∈ B and λ ∈ R.

(a) U is decreasing in T in the sense that U(ξ) ⊆ U(ζ) whenever T (ξ) ≥ T (ζ).

(b) L is increasing in T in the sense that L(ξ) ⊇ L(ζ) whenever T (ξ) ≥ T (ζ).

(c) U(ξ) = U(ξ) and L(ξ) = L(ξ).

(d) U(λ1Ω) = U(0) + λ1Ω and L(λ1Ω) = L(0) + λ1Ω.

(e) U(0) and L(0) are closed convex cones such that B+ ⊆ U(0) and B− ⊆ L(0).

26 To see this, note firstly that Uc(ξ) and Lc(ξ) are non-empty. Also, T (λ1Ω) = T (λ1Ω) = λ hold by Claim 1, which
means that T and T are strictly increasing and continuous on Bc (which can be identified with R). Therefore, ξ and ξ
are uniquely determined for every ξ ∈ B.
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Proof. By the definitions of contour sets, (a) and (b) are obviously true. Then, they together imply

that it is enough for (c) to prove that T (ξ) = T (ξ) and T (ξ) = T (ξ) hold for any ξ. Note that

T (ξ) ≤ T (ξ) and T (ξ) ≥ T (ξ) by the constructions of operators ξ 7→ ξ, ξ. Suppose not, one of these

inequality is strict. Since the argument is symmetric, assume that T (ξ) < T (ξ). Then, we can pick a

number T (ξ) < λ < T (ξ), but then, T (λ1Ω) = λ < T (ξ) and λ1Ω ∈ Uc(ξ) hold. This is a contradiction

to the minimality of ξ within Uc(ξ). Hence, we must have T (ξ) = T (ξ) and T (ξ) = T (ξ), thereby (c)

is obtained.

To see (d), we use the C-additivity of T proved in Claim 4. Observe that

ξ ∈ U(λ1Ω) ⇐⇒ T (ξ) ≥ T (λ1Ω) = T (λ1Ω)

⇐⇒ T (ξ − λ1Ω) ≥ 0

⇐⇒ (ξ − λ1Ω) ∈ U(0)

⇐⇒ ξ ∈ U(0) + λ1Ω,

from which U(λ1Ω) = U(0) + λ1Ω. Similarly, using the C-additivity of T , we see that L(λ1Ω) =

L(0) + λ1Ω, as required.

To see (e), recall that convexity follows from sub/super-additivity (proved in Claim 5), and closed-

ness follows from continuity (proved in Claim 6). Moreover, by positive homogeneity (proved in

Claim 2), we know that U(0) and L(0) are cones. Finally, we have B+ ⊆ U(0) and B− ⊆ L(0) by

C-monotonicity observed in Claim 3.

We characterize convex closed cones U(0) and L(0) as the intersections of supporting hyperplanes.

The following proof is based on the standard separating hyperplane argument.

Claim 8. There exist non-empty, closed, and convex sets C♭, C♯ ⊆ ∆(Ω) such that

U(0) =
{
ξ ∈ B : min

µ∈C♭

∫
ξdµ ≥ 0

}
, (11)

L(0) =
{
ξ ∈ B : max

µ∈C♯

∫
ξdµ ≤ 0

}
. (12)

Proof. Let B∗ denote the norm dual of B. By the Riesz representation theorem (cf. Corollary 14.11

of Aliprantis and Border, 2006), B∗ is isometrically isomorphic to the collection of all signed charges

having bounded variation on (Ω,Σ), which we denote by ba(Ω,Σ). Now, consider any ζ ∈ B \ U(0).
Since U(0) ∩ {ζ} = ∅ and U(0) is closed and convex by Claim 7, using the separating hyperplane

theorem (cf. Corollary 7.47 of Aliprantis and Border, 2006), there exists a non-zero bounded linear

functional µζ ∈ B∗, which can be identified with an element of ba(Ω,Σ), such that

min
ξ∈U(0)

∫
ξdµζ ≡ b >

∫
ζdµζ .
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In particular, since U(0) is a cone that contains B+, µζ is positive, so we can normalize it to be a

probability charge. Since 0 ∈ U(0), we have b ≤ 0. Indeed, b = 0 holds since otherwise, there exists

some ξ ∈ U(0) such that
∫
ξdµζ < 0, but then the left-side of the above equation can be arbitrarily

small by taking cξ ∈ U(0) with large c > 0. Therefore, we have shown that for each ζ ∈ B \ U(0),
there exists a probability charge µζ over (Ω,Σ) such that

min
ξ∈U(0)

∫
ξdµζ = 0 >

∫
ζdµζ .

Now, let C♭ = Cl (Co{µζ : ζ ∈ B \ U(0)}), which is closed and convex by construction. Note that

minµ∈C♭

∫
ξdµ ≥ 0 holds for any ξ ∈ U(0), whereas we have

∫
ζdµζ < 0 for any ζ /∈ U(0) by taking

µζ ∈ C♭. Therefore, U(0) is characterized as in (11).

Symmetrically, for any ζ ∈ B \ L(0), the separating hyperplane theorem yields a non-zero signed

charge µζ ∈ ba(Ω,Σ) such that

max
ξ∈L(0)

∫
ξdµζ ≡ a <

∫
ζdµζ .

Again, the same argument shows that a = 0, and µζ is positive, meaning that we can normalize it to

be a probability charge. Hence, letting C♯ = Cl (Co{µζ : ζ ∈ B \ L(0)}) yields the characterization of

L(0) given as in (12).

Note that ζ ∈ U(ζ), or equivalently ζ ∈ L(ζ), holds by construction. Thus, Claim 7 and 8 imply

that

ζ ∈ L(ζ) = L(0) + ζ ⇐⇒ ζ − ζ ∈ L(0)

⇐⇒ max
µ∈C♯

∫
(ζ − ζ)dµ ≤ 0 ⇐⇒ max

µ∈C♯

∫
ζdµ ≤ ζ, (13)

where ζ is identified with the corresponding real number in the right-side. We claim that (13) must

be tight. Suppose not, the inequality is strict, and let ζ0 ∈ Bc be a constant utility act such that

maxµ∈C♯

∫
ζdµ < ζ0 < ζ. A contradiction would be derived if we can show that ζ ∈ L(ζ0). As such,

by Claim 8, this is equivalent to

ζ ∈ L(ζ0) = L(0) + ζ0 ⇐⇒ ζ − ζ0 ∈ L(0)

⇐⇒ max
µ∈C♯

∫
(ζ − ζ0)dµ ≤ 0 ⇐⇒ max

µ∈C♯

∫
ζdµ ≤ ζ0,

where the last assertion is true by the assumption, hence, we encounter a contradiction. Therefore,
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any ζ ∈ B satisfies the following identity:

ζ = max
µ∈C♯

∫
ζdµ, (14)

where the constant function ζ is identified with the real number corresponding to its anonymous

coordinate.27

Now, fix any f, g ∈ F with f ̸= g, and denote their utility acts by ξ = u ◦ f and ζ = u ◦ g.

Combining Claim 7 and 8, we see that

f ≿ g ⇐⇒ U(f) ≥ U(g)

⇐⇒ T (ξ) ≥ T (ζ)

⇐⇒ ξ ∈ U(ζ) = U(ζ) = U(0) + ζ

⇐⇒ ξ − ζ ∈ U(0)

⇐⇒ min
µ∈C♭

∫
(ξ − ζ)dµ ≥ 0

⇐⇒ min
µ∈C♭

∫
ξdµ ≥ ζ. (15)

Substituting (14) into (15), we obtain

f ≿ g ⇐⇒ min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ g)dµ, (16)

for any f ̸= g, so that the desired representation is obtained.

Note that C♯ and C♭ are nonempty, closed, and convex by construction. Our remaining task is to

show that they are not disjoint. To this end, suppose by contradiction that C♯ ∩ C♭ = ∅. Since these

sets are weak-* compact subsets of B∗, the strong separating hyperplane theorem yields a bounded

linear functional ξ∗∗ ∈ B∗∗ such that minµ∈C♭⟨ξ∗∗, µ⟩ > maxµ∈C♯⟨ξ∗∗, µ⟩, where ⟨·, ·⟩ denotes the inner
product. In particular, by the normalization of u, there exists an act f ∈ F such that

v1 ≡ min
µ∈C♭

∫
(u ◦ f)dµ > max

µ∈C♯

∫
(u ◦ f)dµ ≡ v2. (17)

Now, let x, x′ ∈ X be any outcomes with u(x) > u(x′) such that u(x), u(x′) ∈ (v2, v1). By the

representation (14), we have f ∼ x and f ∼ x′, but x ≻ x′, meaning that ≿ violates transitivity.

Therefore, C♯ ∩ C♭ ̸= ∅.28

27 The symmetric identity, ζ = infµ∈C♭

∫
ζdµ, can also be verified though we do not use it in the proof.

28 Hence, we have shown that the transitivity of ≿ implies that (17) does not hold for all acts, which in turn implies
that C♯∩C♭ ̸= ∅. In the supplementary appendix of this paper, we further show that these conditions are equivalent; see
Appendix D.1.2. Hence, in other words, the non-emptiness of belief sets ensures transitivity, but it has no role beyond
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Step 2: Uniqueness of belief sets.

We shall prove that C♯ and C♭ are uniquely determined. Given a utility function u : X → R,
suppose by contradiction that there exist two different pairs of belief sets, say (C♯, C♭) and (D♯, D♭)

that represent the same preference ≿. Without loss of generality, assume that there exists some

µ♯ ∈ C♯ \ D♯. Applying the separating hyperplane theorem to {µ♯} and D♯, we obtain a non-zero

bounded linear functional ξ∗∗ ∈ B∗∗ and a scalar λ ∈ R such that

max
µ∈D♯

⟨
ξ∗∗, µ

⟩
≤ λ <

⟨
ξ∗∗, µ♯

⟩
. (18)

In particular, we can let ξ∗∗ ≡ ξ ∈ B. If we let λ1Ω ∈ B be a constant function, then

min
µ∈C♭

⟨
λ1Ω, µ

⟩
= min

µ∈D♭

⟨
λ1Ω, µ

⟩
= λ. (19)

Let K = max{∥ξ∥∞, |λ|}, and observe that K > 0. Combining (18) and (19), it follows that

λ

K
= min

µ∈D♭

⟨
λ

K
1Ω, µ

⟩
≥ max

µ∈D♯

⟨
ξ

K
, µ

⟩
, (20)

λ

K
= min

µ∈C♭

⟨
λ

K
1Ω, µ

⟩
<

⟨
ξ

K
, µ♯

⟩
≤ max

µ∈C♯

⟨
ξ

K
, µ

⟩
, (21)

while we have ξ
K , λ1Ω

K ∈ [−1, 1]Ω ∩ B ⊆ Ξ. Hence, there exist f ∈ F and x ∈ X for which u ◦ f = ξ
K

and u(x) = λ
K , from which x ≿ f according to (20). However, (21) implies that x ̸≿ f , a contradiction.

Q.E.D.

Appendix C Proofs for Sections 4 and 5

We adopt the same notation as the previous section. Let B(Ω,Σ), or simply B, denote the set of all

bounded Σ-measurable real functions on Ω, endowed with the sup norm ∥ · ∥∞. Denote by B∗ the

norm dual of B, and by B∗∗ the double dual. We sometimes use inner product notation: ⟨ξ∗, ξ⟩ stands
for a functional ξ∗ ∈ B∗ acting on ξ ∈ B etc.

C.1 Proof of Proposition 1

We only prove the first equivalence since the second can be symmetrically discussed, and the third is

a direct corollary to these statements. That is, we want to show that C♯ ⊇ C♭ if and only if A9 (a)

is satisfied.

Necessity. Suppose that C♯ ⊇ C♭. Take any f, g ∈ F with f ≿ g and f
α
⌣ g. By the definition of

that.
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f
α
⌣ g, there exists λ ∈ R for which

αu ◦ f + (1− α)u ◦ g = λ1Ω

⇐⇒ u ◦ g =
λ

1− α
1Ω − α

1− α
u ◦ f. (22)

Then, we see that

max
µ∈C♯

∫ (
u ◦ (αf + (1− α)g)

)
dµ = max

µ∈C♯

∫
λ1Ωdµ = λ

= α min
µ∈C♭

∫
(u ◦ f)dµ− α min

µ∈C♭

∫
(u ◦ f)dµ+ λ

= α min
µ∈C♭

∫
(u ◦ f)dµ+ (1− α) max

µ∈C♭

∫ (
λ

1− α
1Ω − α

1− α
u ◦ f

)
dµ

= α min
µ∈C♭

∫
(u ◦ f)dµ+ (1− α) max

µ∈C♭

∫
(u ◦ g)dµ

≤ α min
µ∈C♭

∫
(u ◦ f)dµ+ (1− α) max

µ∈C♯

∫
(u ◦ g)dµ

≤ α min
µ∈C♭

∫
(u ◦ f)dµ+ (1− α) min

µ∈C♭

∫
(u ◦ f)dµ

= min
µ∈C♭

∫
(u ◦ f)dµ,

where the forth line follows from (22), the fifth line uses the assumption C♯ ⊇ C♭, and the sixth line

is due to f ≿ g. Therefore, f ≿ αf + (1− α)g, from which A9 (a) is satisfied.

Sufficiency. suppose that there exists some µ♭ ∈ C♭ \ C♯. As usual, assume that [−1, 1] ⊆ Im(u).

The separating hyperplane theorem yields a non-zero bounded linear functional ξ∗∗ ∈ B∗∗ and a scalar

c ∈ R such that ⟨ξ∗∗, µ♭⟩ < c < ⟨ξ∗∗, µ♯⟩ for all µ♯ ∈ C♯. Without loss of generality, we let ξ = ξ∗∗ be

in B. By the compactness of C♯, we have

min
µ∈C♭

⟨ξ, µ⟩ < min
µ∈C♯

⟨ξ, µ⟩. (23)

Define γ = max{∥ξ∥∞, γ0}, where γ0 = |minµ∈C♯⟨ξ, µ⟩|+ |minµ∈C♭⟨ξ, µ⟩|, and observe that γ, γ0 > 0.

Furthermore, we set ζ = ξ
γ and λ = minµ∈C♯⟨ζ, µ⟩ + minµ∈C♭⟨ζ, µ⟩. By construction, ζ ∈ [−1, 1]Ω

holds, and (23) gives rise to

min
µ∈C♭

⟨ζ, µ⟩ < min
µ∈C♯

⟨ζ, µ⟩. (24)

33



Also, observe that

|λ| ≤
∣∣∣∣min
µ∈C♯

⟨ζ, µ⟩
∣∣∣∣+ ∣∣∣∣min

µ∈C♭
⟨ζ, µ⟩

∣∣∣∣ = γ0
γ

≤ 1,

from which λ ∈ [−1, 1]. Hence, we can find some acts f, h ∈ F such that u ◦ f = 1
2ζ and u ◦ h = −ζ,

and an outcome x ∈ X such that u(x) = λ.

Now, let g = 1
2h + 1

2x. We shall show that A9 (a) is violated by f , g and their fair mixture
1
2f + 1

2g. To this end, first observe that

u ◦
(
1

2
f +

1

2
g

)
=

1

2
u ◦ f +

1

4
u ◦ h+

1

4
u(x)1Ω =

1

4
ζ − 1

4
ζ +

1

4
λ1Ω =

1

4
λ1Ω, (25)

meaning that f
1/2
⌣ g. Moreover, we see that

max
µ∈C♯

∫
(u ◦ g)dµ =

1

2
max
µ∈C♯

∫
(u ◦ h)dµ+

1

2
u(x) =

1

2
max
µ∈C♯

⟨−ζ, µ⟩+ 1

2
λ

= −1

2
min
µ∈C♯

⟨ζ, µ⟩+ 1

2

(
min
µ∈C♯

⟨ζ, µ⟩+ min
µ∈C♭

⟨ζ, µ⟩
)

=
1

2
min
µ∈C♭

⟨ζ, µ⟩ = min
µ∈C♭

∫
(u ◦ f)dµ,

from which f ≿ g. To falsify A9 (a), it remains to show that

min
µ∈C♭

∫
(u ◦ f)dµ < max

µ∈C♯

∫
u ◦

(
1

2
f +

1

2
g

)
dµ,

which is, by (25) and the constructions of f and λ, equivalent to the following inequality:

min
µ∈C♭

⟨ζ, µ⟩ < 1

2

(
min
µ∈C♯

⟨ζ, µ⟩+ min
µ∈C♭

⟨ζ, µ⟩
)

︸ ︷︷ ︸
≡λ

. (26)

Indeed, (24) implies that (26) is true, and thus, we are done. Q.E.D.

C.2 Proof of Proposition 2

Suppose that (ii) is true. We can let u ≡ u1 = u2 without loss of generality. Clearly, ≿1 |Fc =≿2 |Fc .

Fix any f, g ∈ F with f ≿2 g. If f = g, then both f ∼1 g and f ∼2 g hold by reflexivity, so there is

nothing to prove. Otherwise, it holds that

min
µ∈C♭

1

∫
(u ◦ f)dµ ≥ min

µ∈C♭
2

∫
(u ◦ f)dµ ≥ max

µ∈C♯
2

∫
(u ◦ g)dµ ≥ max

µ∈C♯
1

∫
(u ◦ g)dµ,
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Table 1: Acts in Proposition 3

ω Ω \ {ω}
u ◦ f γ α

u ◦ g β δ

where the first and third inequalities follow from C♭
1 ⊆ C♭

2 and C♯
1 ⊆ C♯

2, respectively. Hence, we obtain

f ≿1 g, from which ≿1 is a compatible extension of ≿2.

Conversely, suppose that (ii) is false. If u1 is not a positive affine transformation of u2, the two

preferences differ on Fc, from which one cannot be a compatible extension of another. Thus, we can

let u ≡ u1 = u2. Since (ii) fails, we have either µ ∈ C♯
1 \C

♯
2 or µ ∈ C♭

1 \C♭
2. Assuming the former case,

the separating hyperplane theorem yields ξ∗∗ ∈ B∗∗ such that

⟨
ξ∗∗, µ

⟩
> c ≡ max

µ2∈C♯
2

⟨
ξ∗∗, µ2

⟩
. (27)

After normalization, we can let ξ∗∗ = u ◦ f for some f ∈ F . Now, let x ∈ X be an outcome such that

u(x) = c. By (27), it follows that x1Ω ≿2 f . On the other hand, since µ ∈ C♯
1,

max
µ1∈C♯

1

∫
(u ◦ f)dµ1 > u(x),

whereas f ̸= x since f must not be constant to maintain (27). Thus, we have x ̸≿1 f , from which ≿1

is not a compatible extension of ≿2. The case in which µ ∈ C♭
1 \ C♭

2 is similarly discussed. Q.E.D.

C.3 Proof of Proposition 3

Clearly, the representation in this proposition is the special case of Theorem 1, corresponding to the

case of when C♯ = C♭ = ∆(Ω). In particular, it is easy to see that the representation satisfies A10.

To prove the sufficiency, suppose that ≿ satisfies all the listed axioms, and thus, admit an IPOP

representation by some (C♯, C♭, u). Let [0, 1] ⊆ Im(u) without loss of generality. It is enough to

show that c♯ = c♭ = 1, where c♮ = maxµ∈C♮ µ({ω}) for each ω ∈ Ω and ♮ ∈ {♯, ♭}. To this end, let

α > β > γ > δ be arbitrary numbers in [0, 1], and consider acts f, g ∈ F which pay the utility values,

in each event {ω} and Ω \ {ω}, as being summarized in Table 1. Note that f does not dominate g,

and so, A10 implies that f ̸≿ g. That is, we must have

min
µ∈C♭

∫
(u ◦ f)dµ = c♭γ + (1− c♭)α

< c♯β + (1− c♯)δ = max
µ∈C♯

∫
(u ◦ g)dµ.
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which is satisfied for all α > β > γ > δ if and only if c♭ = c♯ = 1. Q.E.D.

C.4 Proof of Proposition 4

Clearly, PMEU ∩ PBewley = PMEU ∩ PIPOP = PSEU because IPOP and Bewley preferences would be

complete if and only if the associated prior set is singleton. Note that any ≿Bewley∈ PBewley can be

extended to ≿∗∈ PSEU ⊆ PMEU by letting ≿∗ be a SEU preference defined by the same utility function

u as ≿Bewley, and an arbitrary µ in the belief set of ≿Bewley. Thus, the crucial part would be that

any ≿MEU∈ PMEU has some ≿Bewley∈ PBewley for which ≿MEU is a compatible extension of ≿Bewley.

Indeed, this claim follows from the combination of Definition 3 and Proposition 4 and 5 in Ghirardato

et al. (2004), thereby we obtain (i). Then, notice that a more-conservative relation is a transitive order

over nonempty classes of preferences. Hence, (ii) will follow from the combination of (i) and (iii).

Our remaining task is to prove (iii). We first show that any ≿∈ PIPOP satisfies independence if and

only if C♯ = C♭ = {µ0} for some µ0 ∈ ∆(Ω), i.e., ≿∈ PSEU. The if direction is trivial, so let us consider

the only if direction. Pick any µ0 ∈ C♯ ∩ C♭, and suppose that there exists some µ1 ∈ C♯ \ {µ0}. By

the separating hyperplane theorem, there is an act f ∈ F such that

max
µ∈C♯

∫
(u ◦ f)dµ ≥

∫
(u ◦ f)dµ1 >

∫
(u ◦ f)dµ0 ≥ min

µ∈C♭

∫
(u ◦ f)dµ.

Let x ∈ X be an outcome such that u(x) = minµ∈C♭

∫
(u ◦ f)dµ. While f ≿ x by the construction, we

see for an arbitrary λ ∈ (0, 1) that

min
µ∈C♭

∫ (
u ◦ (λf + (1− λ)f)

)
dµ

≤ λ min
µ∈C♭

∫
(u ◦ f)dµ+ (1− λ) min

µ∈C♭

∫
(u ◦ f)dµ

< λu(x) + (1− λ) max
µ∈C♯

∫
(u ◦ f)dµ = max

µ∈C♯

∫ (
u ◦ (λx+ (1− λ)f)

)
dµ,

from which λf + (1− λ)f ̸≿ λx+ (1− λ)f . Therefore, ≿ violates independence. Consequently, since

Bewley preferences satisfy independence, we confirm that PBewley ∩ PIPOP = PSEU.

Next, we shall show that PIPOP is more conservative than PBewley. Again, note that any ≿IPOP∈
PIPOP can be extended to ≿∗∈ PBewley, as any SEU preference ≿∗ defined by u and an arbitrary

µ ∈ C♯ ∩ C♭ does work. Conversely, fix any ≿Bewley∈ PBewley that is represented by (u,C). Then,

we define ≿IPOP∈ PIPOP by using the same utility function u, and setting C = C♯ = C♭. Clearly,

≿Bewley |Fc =≿IPOP |Fc . Moreover, it is easy to see that f ≿IPOP g whenever f ≿Bewley g, thereby

≿Bewley is a compatible extension of ≿IPOP. Hence, PIPOP is more conservative than PBewley. Q.E.D.
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C.5 Proof of Proposition 5

Let ≿∗ be a C-continuous completion of ≿. Given an act f ∈ F , consider the nonempty sets A =

{x ∈ Fc : x ≿∗ f} and B = {x ∈ Fc : f ≿∗ x}, which are closed since ≿∗ is C-continuous. Moreover,

A ∪ B = X since ≿∗ is complete, so the connectedness of Fc ≃ X implies that A ∩ B ̸= ∅. Then, we

fix an arbitrary xf ∈ A ∩B and set I(f) = u(xf ). Note that I(f) is independent of how xf is chosen

because f ∼∗ x for every x ∈ A ∩B.

Let us show that I(f) takes the form as in the statement. Since ≿∗ is a compatible extension,

neither f ≻ xf nor xf ≻ f holds to assure that f ∼∗ xf . Note that f ̸≻ xf gives rise to either f ̸≿ xf

or xf ≿ f . Similarly, xf ̸≻ f gives rise to either f ≿ xf or xf ̸≿ f . Hence, if f ∼∗ xf , then f and x

must be either indifferent or incomparable with respect to ≿. In the former case, the minimum and

maximum expected utilities of f are both equal to u(xf ), and thus, I(f) takes the form (4) for an

arbitrary α(f) ∈ (0, 1). In the latter case, we see that

max
µ∈C♯

∫
(u ◦ f)dµ > u(xf ) > min

µ∈C♭

∫
(u ◦ f)dµ,

from which we can find an α(f) ∈ (0, 1) that provides (4).

Now, we shall show that I(·) represents ≿∗. Assume that I(f) ≿ I(g). By construction, there exist

xf ∼∗ f and xg ∼∗ g such that u(xf ) = I(f) ≥ I(g) = u(xg), meaning that xf ≿ xg. In particular,

this leads to xf ≿∗ xg, from which transitivity dictates f ≿∗ g. Furthermore, when I(f) > I(g), we

must have f ∼∗ xf ≻∗ xg ∼∗ g, thereby f ≻∗ g. Therefore, f ≿∗ g if and only if I(f) ≥ I(g), as

desired.

As to the converse direction, suppose that ≿∗ is represented by I : F → R as in (4), where

α : F → [0, 1] is an arbitrary function. Clearly, ≿∗ is a weak order, and it is C-continuous by the fact

that I(x) = u(x) for every x ∈ Fc. Note that this implies that ≿ |Fc =≿∗ |Fc . Now, take any f, g ∈ F
with f ≿ g. If f = g then f ≿∗ g, as ≿∗ is complete. If f ̸= g, by the transitivity of ≿, we have

I(f) ≥ min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ f)dµ ≥ I(g),

from which f ≿∗ g. Therefore, ≿∗ is a compatible extension of ≿. Q.E.D.

C.6 Proof of Corollary 1

It is easy to check the if part. For the only if part, assume that (≿,≿∗) jointly satisfies caution. In

view of proposition 5, we have to show that caution dictates α(f) = 1 for all f ∈ F . Clearly, we can

set α in that way for any f whose expected utility does not depend on µ ∈ C. Suppose not, there

exists f such that α(f) < 1 and minµ∈C
∫
(u ◦ f)dµ < maxµ∈C

∫
(u ◦ f)dµ. As such, if x ∈ Fc is picked

so that minµ∈C
∫
(u ◦ f)dµ < u(x) < maxµ∈C

∫
(u ◦ f)dµ, then we have f ̸≿ x. However, by letting

u(x) be close enough to minµ∈C
∫
(u ◦ f)dµ, we have f ≻∗ x, which causes a contradiction to caution.

37



Hence, α(f) = 1. The case of maximax is similarly discussed. Q.E.D.

C.7 Proof of Proposition 6

Recall that U(·, µ) is maximized at v for any µ, and so is minµ∈C♭ U(·, µ). Hence, any bid b ̸= v is

dominated by some other b′ if and only if b is dominated by v. Similarly, note that maxµ∈C♭ U(·, µ)
is maximized at v so that b /∈ B∗(C♯, C♭) for any b ̸= v whenever truth-telling is transparent. Hence,

we have B∗(C♯, C♭) ⊆ {v} if truth-telling is transparent. Moreover, if Condition 2 is satisfied v is not

dominated by any b ̸= v, so we have B∗(C♯, C♭) = {v}.
Now, suppose that truth-telling is not transparent, so the left-side is strictly greater than the

right side in (5). This assures that v ∈ B∗(C♯, C♭), and thus, we have b ∈ B∗(C♯, C♭) if and only if

U(b) > U(v), where

U(b) ≡ max
µ∈C♯

∫ b

0
u(1, ω)dµ(ω)︸ ︷︷ ︸
≡U(b,µ)

and U(b) ≡ min
µ∈C♭

∫ v

0
u(1, ω)dµ(ω). (28)

Thus, to see that B∗(C♯, C♭) takes an interval form, it suffices to show that U is weakly increasing

on [0, v], and it is weakly decreasing on [v, b̄]. Indeed, it is straightforward to show U(·, µ) has these

properties for every µ ∈ C♯, and thus, so does U defined as the maximum.29 Finally, let us show that

B∗(C♯, C♭) is open (relative to [0, b̄]). Note that B∗(C♯, C♭) is the inverse image of an open set under

U , so that it is enough to prove that U is continuous. To this end, fix any µ ∈ C♯. By Condition 1, we

know µ[0, b] is continuous in b. Furthermore, observe that ν[0, b] =
∫ b
0 u(1, ω)dµ(ω) is continuous in b,

as ν is obtained by transforming µ with the continuous Radon-Nikodym derivative dν
dµ(ω) = u(1, ω).

Hence, each U(·, µ) is continuous, thereby so is U . Q.E.D.

29 More formally, recall that each µ ∈ C♯ has a probability density function ϕ by Condition 1, so that we can write
U(b, µ) =

∫ b

0
u(1, ω)ϕ(ω)dω. By the Leibniz rule, it follows that ∂U(b,µ)

∂b
= u(1, b)ϕ(b), which is weakly positive (resp.

negative) if b ≤ v (resp. b ≥ v) by the assumptions on u. Moreover, these properties are inherited to U because
monotonicity is preserved by the max operator.
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Supplementary Material to “An Axiomatic Approach to Failures in

Contingent Reasoning”

Masaki Miyashita and Yuta Nakamura

Appendix D Additional Results

D.1 Weaker Transitivity and Disjointness of Belief Sets

Recall that we have allowed for the possibility that the DM’s optimism and pessimism possess different

belief sets. As such, their non-emptiness is the only essential restriction assumed in Theorem 1. We

show that this restriction guarantees the transitivity of ≿, but it has no role more than that. We also

present other equivalent restatements of transitivity that have natural interpretations in light of the

DM’s rationality.

To this end, we consider the following alternative ofA1 that replaces transitivity with C-transitivity,

which applies only when the middle is a constant act.30

B1. ≿ is a non-degenerate and reflexive order such that for every f ∈ F there exist some x, y ∈ Fc

for which x ≿ f and f ≿ y. Moreover, ≿ is C-transitive; for any f, g ∈ F and x ∈ Fc, if f ≿ x

and x ≿ g, then f ≿ g.

D.1.1 The Role of Transitivity in General Representations

After replacing A1 by B1, we continue to have our previous representation results with only minor

modifications. For general representations, our Lemma 1 is restored by deleting the condition U ≥ U

from its statement. The proof is essentially the same as before, so omitted.

Lemma 4. A preference relation ≿ satisfies B1, A2, A3, and A8 if and only if there exist non-

constant functions U,U : F → R such that

(i) U |Fc = U |Fc holds, and the restriction is continuous on Fc ≃ X;

(ii) Im(U |Fc) = Im(U) = Im(U) = Im(U |Fc); and

(iii) f ≿ g if and only if U(f) ≥ U(g) or f = g.

Moreover, a pair of functions V , V : F → R satisfies (i)-(iii) for the same preference relation ≿ if and

only if there exists a continuous and strictly increasing function ϕ : R → R such that V = ϕ ◦ U and

V = ϕ ◦ U .

30 In this regard, C-transitivity is viewed as the reverse of C-calibration, and thus, it should be thought of as being
more or less “minimal” in representation results. As such, we have essentially the same results as before both for general
and expected utility representations.
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The next result shows that the omitted condition U ≥ U is equivalent to the transitivity of ≿.

In that sense, transitivity guarantees that the optimism inside the DM is actually more “optimistic”

than her pessimism. Yet another interpretation is available. (iii) of the below lemma says that the

optimism and pessimism rank a pair of acts in the same order whenever the DM is decisive for the

pair. Putting differently, the different selves of the DM share the same ordinal preferences on the

domain on which the DM confirms solid rankings.

Lemma 5. Suppose that ≿ satisfies B1, A2, A3, and A8. Let U and U be arbitrary functions that

represent ≿ in the way of Lemma 4. The following conditions are equivalent:

(i) ≿ satisfies transitivity;

(ii) U(f) ≥ U(f) for all f ∈ F ; and

(iii) (U(f)− U(g))(U(f)− U(g)) ≥ 0 whenever f and g are comparable.

Proof. It is easy to see (ii) ⇒ (i). Let us show (i) ⇒ (ii). Suppose not, there exists some f ∈ F for

which U(f) < U(f). Take outcomes x, y ∈ X such that u(x) = U(f) and u(y) = U(f), where u stands

for the common restriction of U and U on Fc. Then, we have x ≿ f and f ≿ y, so that transitivity

yields x ≿ y. However, since U(f) < U(f), we have U(x) < U(y) and U(x) < U(y), which leads to

y ≻ x, a contradiction.

Let us show that (iii) is equivalent to (ii). Note that (iii) is trivially satisfied when f = g. So,

take any f, g ∈ F such that f ≿ g and f ̸= g, so U(f) ≥ U(g). Assuming that (ii) is true, we have

U(f) ≥ U(f) ≥ U(g) ≥ U(g), from which (iii) is obtained. Conversely, suppose that (ii) is violated,

i.e., there exists f ∈ F for which U(f) < U(f). Given any number c ∈ (U(f), U(f)), let z ∈ X be an

outcome for which U(z) = U(z) = c. While z ≿ f holds, we have

(
U(f)− U(z)

)︸ ︷︷ ︸
<0

(
U(f)− U(z)

)︸ ︷︷ ︸
>0

< 0,

from which (iii) is violated. Therefore, we have established all the desired equivalence.

D.1.2 The Role of Transitivity in Expected Utility Representations

After replacing A1 by B1, an alternative result is established for expected utility representations. In

the below theorem, only the difference from Theorem 1 is that the condition C♯ ∩ C♭ ̸= ∅ is deleted.

The proof is essentially the same, so omitted.

Theorem 2. A preference relation ≿ satisfies B1 and A2–8 if and only if there exist a non-constant,

continuous and affine function u : X → R and nonempty, closed and convex sets C♯, C♭ ⊆ ∆(Ω) such

that

f ≿ g ⇐⇒
[
min
µ∈C♭

∫
(u ◦ f)dµ ≥ max

µ∈C♯

∫
(u ◦ g)dµ or f = g

]
.
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Moreover, C♯ and C♭ are unique, and u is unique up to positive affine transformations.

The next result shows that the disjointness of C♯ and C♭ is equivalent to the transitivity of ≿. In

particular, since Lemma 4 deals with a more general class of preferences than Theorem 2, the next

proposition inherits the results of Lemma 5 as well.

Proposition 9. Suppose that ≿ satisfies B1 and A2–8. Let (u,C♯, C♭) be an arbitrary profile that

represents ≿ in the way of Theorem 2. The followings are equivalent:

(i) C♯ ∩ C♭ ̸= ∅;

(ii) ≿ satisfies transitivity;

(iii) For any f ∈ F ,

max
µ∈C♯

∫
(u ◦ f)dµ ≥ min

µ∈C♭

∫
(u ◦ f)dµ; and

(iv) For any f, g ∈ F such that f ≿ g,(
max
µ∈C♯

∫
(u ◦ f)dµ−max

µ∈C♭

∫
(u ◦ g)dµ

)(
min
µ∈C♯

∫
(u ◦ f)dµ− min

µ∈C♭

∫
(u ◦ g)dµ

)
≥ 0.

Proof. The statements (ii), (iii), and (iv) are equivalent due to Lemma 5. Also, it is straightforward to

see (i) ⇒ (iii). Finally, we can show (iii) ⇒ (i) by appealing to the separating hyperplane theorem.

D.2 An Example of Not C-continuous Completions

We show that C-continuity in Proposition 5 is an indispensable assumption by presenting an example

of completion ≿∗ that cannot be represented as generalized α-maximin.

Let ≿ be represented by (u,C♯, C♭). For simplicity, assume that C ≡ C♯ = C♭, |C| ̸= 1, and

X = [0, 1]. We also assume that u : [0, 1] → R is strictly increasing. Now, consider the following two

utility functions on acts:

I(f) = αmin
µ∈C

∫
(u ◦ f)dµ+ (1− α)max

µ∈C

∫
(u ◦ f)dµ,

J(f) = βmin
µ∈C

∫
(u ◦ f)dµ+ (1− β)max

µ∈C

∫
(u ◦ f)dµ,

where 0 ≤ β < α ≤ 1. By Proposition 5, the complete preferences derived from I and J are completions

of ≿.
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Beside these completions, we consider a weak order ≿∗ defined as follows:

f ≿∗ g ⇐⇒

I(f) > I(g); or

I(f) = I(g) and J(f) ≥ J(g).

It is not hard to check that≿∗ is a completion of≿, while we claim that≿∗ violates C-continuity. To see

this, let f be a non-constant act such that minµ∈C
∫
(u◦f)dµ < maxµ∈C

∫
(u◦f)dµ.31 Then, x ∈ Lc(f)

holds whenever u(x) < I(f), and x ∈ Uc(f) holds whenever u(x) > I(f). What if u(x) = I(f)? Since

I(f) < J(f) and u(x) = I(x) = J(x), we have f ≿∗ x but x ̸≿∗ f . Therefore, Lc(f) =
[
0, u−1(I(f))

]
and Uc(f) =

(
u−1(I(f)), 1

]
, from which we confirm the violation of C-continuity.

D.3 On the Genericity of Non-transparency

As in Section 6 of the main text, let Ω = [0, b̄] be an interval of bids in a second-price auction, and Σ

be its Borel algebra. Slightly changing the notation from the main text, we denote by ∆(Ω) the set

of all probability measures on (Ω,Σ).32 As before, ∆(Ω) is endowed with the weak-* topology, which

is metrized by the Prokhorov metric dP.

Let C be the family of nonempty, closed, and convex subsets of ∆(Ω), and let C∗ collect all pairs

(C♯, C♭) ∈ C satisfying C♯ ∩ C♭ ̸= ∅. We endow C with the Hausdorff metric defined by

dH(C1, C2) = max

{
max
µ1∈C1

min
µ2∈C2

dP(µ1, µ2), max
µ2∈C2

min
µ1∈C1

dP(µ1, µ2)

}
,

and endow C∗ with the natural extension of dH given by max{dH(C♯
1, C

♯
2), d

H(C♭
1, C

♭
2)} to measure the

distance between pairs (C♯
1, C

♭
1) and (C♯

2, C
♭
2). Slightly abusing the notation, the metric on C∗ is again

denoted by dH.

Let u : [0, b̄]2 → R be the DM’s ex-post utility function that satisfies all the conditions presented in

Section 6. Given (C♯, C♭), recall that truth-telling is said to be transparent for the DM if the maximal

expected utility over C♯ is equal to the minimal expected utility over C♭. Using this notion, we define

the pairs of “collapsed” belief sets by

T =

{
(C♯, C♭) ∈ C∗ : max

µ∈C♯

∫ v

0
u(1, ω)dµ(ω) = min

µ∈C♭

∫ v

0
u(1, ω)dµ(ω)

}
Now, we claim that transparency is a knife-edge condition that is almost surely violated. Formally,

the next proposition shows that the complement of the collapsed belief set pairs constitutes a dense

subset of C∗.

Proposition 10. C∗ \ T is dense in C∗ with respect to dH

31 Such an act can be found by applying the separating hyperplane theorem to any µ, µ′ ∈ C with µ ̸= µ′.
32 That is, each element of ∆(Ω) is countably additive, not just finitely additive.
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Proof. Fix any collapsed pair (C♯, C♭) ∈ T and δ > 0. We are done if there exists a pair (D♯, D♭) ∈
C∗ \ T whose distance from (C♯, C♭) is bounded by δ. To this end, let µL be a probability measure

that assigns a mass to 0 ∈ [0, b̄], and let µH be an arbitrary probability measure supported on (v, b̄].

Given an arbitrary ϵ > 0, we set

D♯ =
{
(1− ϵ)µ+ ϵLµL + ϵHµH : µ ∈ C♯ and ϵL, ϵH ≥ 0 with ϵL + ϵH = ϵ

}
,

D♭ =
{
(1− ϵ)µ+ ϵLµL + ϵHµH : µ ∈ C♭ and ϵL, ϵH ≥ 0 with ϵL + ϵH = ϵ

}
.

Clearly, D♯ and D♭ are non-disjoint, closed, and convex, so that (D♯, D♭) ∈ C∗. Also, note that

D̃♯ ≡ (1− ϵ)C♯ + ϵµL ⊆ D♯ and D̃♭ ≡ (1− ϵ)C♭ + ϵµH ⊆ D♭ hold. Hence,

max
µ∈D♯

∫ v

0
u(1, ω)dµ(ω) ≥ max

µ∈D̃♯

∫ v

0
u(1, ω)dµ(ω)

= (1− ϵ) max
µ∈C♯

∫ v

0
u(1, ω)dµ(ω) + ϵu(1, 0)

> (1− ϵ) min
µ∈C♭

∫ v

0
u(1, ω)dµ(ω) + ϵ× 0

= min
µ∈D̃♯

∫ v

0
u(1, ω)dµ(ω) ≥ min

µ∈D♭

∫ v

0
u(1, ω)dµ(ω),

from which (D♯, D♭) ∈ C∗ \ T . Let us show that dH(C♯, D♯) < δ when ϵ is small enough. To this end,

fix any µ♯ ∈ C♯, and notice that µϵ = (1− ϵ)µ+ ϵLµL + ϵHµH weakly converges to µ♯ as ϵ tends to 0.

Hence, for sufficiently small ϵ > 0, we have

min
µ∈D♯

dP(µ♯, µ) ≤ dP(µ♯, µϵ) < δ.

In particular, since C♯ is weak-* compact, we can pick ϵ1 > 0 such that the above inequality uniformly

holds for any µ♯. Thus, if we use such an ϵ1 in the definition of D♯, then

max
µ♯∈C♯

min
µ∈D♯

dP(µ♯, µ) < δ.

Conversely, consider any belief of the form µ = (1− ϵ)µ♯ + ϵLµL + ϵHµH , which weakly converges to

µ♯ ∈ C♯ as ϵ tends to 0. For sufficiently small ϵ > 0, we have

min
ρ♯∈C♯

dP(ρ♯, µ) ≤ dP(µ♯, µ) < δ.

Note that the above inequality does hold no matter how ϵ is split into ϵL and ϵH , provided that ϵ > 0

is small enough. Thus, each µ ∈ D♯ is parametrized by µ♯. Again, since C♯ is weak-* compact, we can
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pick ϵ2 > 0 to be used in the definition of D♯, so that

max
µ♯∈D♯

min
µ∈C♯

dP(µ♯, µ) < δ.

Hence, by choosing ϵ < min{ϵ1, ϵ2}, we obtain dH(C♯, D♯) < δ, as desired. Furthermore, the symmetric

argument proves dH(C♭, D♭) < δ, thereby dH((C♯, C♭), (D♯, D♭)) < δ.
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