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Abstract

Many patients in need of a kidney transplant have a willing but incompatible (or
poorly matched) living donor. Kidney exchange programs arrange exchanges among
such patient-donor pairs, in cycles and chains of exchange, so each patient receives a
compatible kidney. Kidney exchange has become a standard form of transplantation
in the United States and a few other countries, in large part because of continued
attention to the operational details that arose as obstacles were overcome and new
obstacles became relevant. We review some of the key operational issues in the design
of successful kidney exchange programs. Kidney exchange has yet to reach its full
potential, and the paper further describes some open questions that we hope will
continue to attract attention from researchers interested in the operational aspects of
dynamic exchange.

1 Introduction

Kidney failure is a leading cause of death around the world. The best treatment is trans-
plantation, but no country is presently able to supply all the transplants required by its
patient population. In the U.S. and many other countries, most transplants today come
from deceased donors. While efforts are underway to increase the availability of deceased
donor kidneys, this is a naturally limited source of transplants, because only a tiny fraction
of deaths allow kidneys to be recovered for transplantation.1 But healthy people have two
kidneys, and can remain healthy with one, and so another source of kidneys for transplan-
tation is from healthy living donors, who can give a kidney to save someone with kidney
failure. This also has some natural barriers, because kidneys have to be well matched to the
patient’s immune system, and so not everyone who is healthy enough to donate a kidney can
donate one to whom they wish.

It is also against the law almost everywhere in the world to pay a living donor to donate a
kidney. (The single exception is the Islamic Republic of Iran, where there is a legal monetary

1Loosely speaking, a potential donor must die in a hospital, on a ventilator, so that his/her organs
continue to receive oxygen, and of course the cause of death and general health of the deceased person must
be consistent with having healthy kidneys at the time of death. One focus of efforts in the U.S. to increase
transplantation of organs from deceased donors is to make more effective use of organs from older donors.
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market for kidneys (Akbarpour et al., 2020c), although there are also black markets around
the world.)2 Kidney exchange (KE, also called Kidney Paired donation, KPD) arose as a way
of increasing the availability of transplants from compatible living donors without violating
the ban on compensating donors.3

Suppose someone with kidney failure has a healthy potential donor who loves them and
would like to give them a kidney, but can’t, because the donor’s kidney is incompatible with
the patient. Two or more such incompatible patient-donor pairs might be able to exchange
kidneys, so that each patient gets a kidney that is compatible with him/her, from another
patient’s donor. A handful of early exchanges were identified by inspection, and conducted
within individual transplant centers, and the question arose how to coordinate these, on a
large scale, in ways that would make it feasible to do exchanges among many patients and
donors, who might often be at different hospitals.

This paper recounts that effort, which began very slowly, and required constant adapta-
tion of the market design, involving issues that engaged economists, computer scientists, and
operations researchers in support of surgeons, physicians, and transplant professionals of all
sorts. Today kidney exchange has become a standard form of transplantation in the United
States and a few other countries, in part because of continued attention to the operational
details that arose as previous obstacles were overcome and new ones became relevant. But
much more remains to be done, because the full potential of kidney exchange has yet to be
reached, and there are still many more patients in need of transplants than can presently be
saved.

2 Background

At the beginning of 2020, there are about 100,000 patients with end-stage renal disease
(ESRD) on the deceased donor waitlist in the United States. While patients with ESRD may
be kept alive by dialysis, a transplant leads to better life quality and longer life expectancy
(Wolfe et al., 1999). Each such transplant also saves hundreds of thousands of dollars in

2There is a considerable literature on the desirability or undesirability of allowing donors to be compen-
sated, but we will not discuss that here (but see https://marketdesigner.blogspot.com/search/label/

compensation%20for%20donors for more on that and related issues).
3The idea of kidney exchange seems to have first been proposed by Rapaport (1986), but the first clinical

kidney exchanges did not occur until the 1990’s: See Wallis et al. (2011) for a concise history. Other surveys
include Sönmez and Ünver (2013a), Glorie et al. (2014), Anderson et al. (2015a), Biró et al. (2019c). Kidney
exchange started to develop at a time when economists and market designers had begun to pay increased
attention to matching markets, which are markets in which participants care to whom they are matched,
and in which prices don’t do all the work of deciding who gets what. (Other matching markets that were
the object of study and design include the market for new doctors, (cf. Roth (1984), Roth (1991), Roth
and Peranson (1999)), and the design of school choice systems, (cf. Abdulkadiroglu and Sönmez (2003) and
Abdulkadiroğlu et al. (2005a), Abdulkadiroğlu et al. (2005b), Abdulkadiroğlu et al. (2009)). The designs
of both medical labor market clearinghouses and school choice were built upon adaptations of the deferred
acceptance algorithm of Gale and Shapley (1962). However the algorithms that power contemporary kidney
exchange are very different, and are today mostly formulated as mixed-integer programs.
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medical costs compared to dialysis.4

In the coming year (judging from the experience of 2019, and hoping that the Corona
pandemic does not too long depress transplantation rates) about 16,000 U.S. patients will be
transplanted using a cadaver organ. About 6,500 kidneys will be donated from live donors
in the U.S.5 But also about 8,000 patients on the waitlist will either die or become too sick
to be transplanted.

Well over 1,000 of the U.S, living donor kidney transplants in 2019 resulted from kid-
ney exchange, some through exchanges carried out within a single transplant center, and
many through kidney exchange platforms which organize these exchanges among multiple
hospitals.6

In each case, organization of exchanges on a large scale involves the creation of a database
of patient-donor pairs, and the use of software to determine which donors are compatible
with which patients, and then to find optimum collections of exchanges, according to some
well defined criteria.

Early ideas about how to organize such exchanges (Roth et al., 2004) grew out of the work
on “top trading cycles” by Shapley and Scarf (1974), and followup work by Roth (1982) and
Abdulkadiroğlu and Sönmez (1999). The cycles produced by top trading cycle algorithms
could potentially involve exchanges among a cycle consisting of many patient-donor pairs,
and this was beyond the operational capability of most transplant centers in 2004. So the
first inter-hospital exchange in the U.S., the New England Program for Kidney Exchange
(Roth et al., 2005b) was organized around an algorithm that considered only exchanges
between two patient-donor pairs (Roth et al., 2005a)).

Next we describe some basic forms of exchange and some medical facts that determine
compatibility.

2.1 Types of exchanges: cycles and chains

Exchanges of kidneys typically take one of two forms. A cycle involves a set of incompatible
patient-donor pairs. The patient of each pair receives a kidney from the donor of another
pair. To avoid situations in which a patient-donor pair donates a kidney but fails to receive a
kidney, cycles are almost always arranged in a simultaneous manner, i.e. all transplants are
done at the same time. This often limits cycles to small exchanges involving just 2 or 3 pairs,
because a simultaneous exchange among n pairs requires the simultaneous availability of 2n
operating rooms and surgical teams, to handle all the simultaneous nephrectomies (kidney
removals) and transplants.

4In 2014, Medicare paid about $90,000 per year per dialysis patient, but only about $30,000 per year per
transplant patient. With a median waiting time on dialysis of 3.5 years before a transplant, a transplant
saves about $200,000 (United States Renal Data System, 2016). A much more detailed cost analysis is given
by Held et al. (2016).

5See https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/.
6In the U.S. there are three active inter-hospital kidney exchanges, the National Kidney Registry (NKR),

the Alliance for Paired Kidney Donation (APKD), and the UNOS pilot program. There are active kidney
exchanges in Canada, the U.K.(see Manlove and O’malley (2015)), the Netherlands (Keizer et al., 2005),
and smaller kidney exchanges in Australia (Cantwell et al., 2015) and several European countries.
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For this reason, the first exchanges were organized only between two pairs at a time
(Roth et al., 2005a,b). This allows the use of some elegant graph theory (and Edmonds
(1965) algorithm), but it limits the number of transplants that can be arranged to those
that involve a ”double coincidence of wants,” i.e. those that involve two patient-donor pairs
whose patients are each compatible with the other patient’s donor.7 It didn’t take long
before the logistics of doing three-way as well as two-way exchanges was mastered (Saidman
et al., 2006), but real progress depended on enlarging exchange beyond cycles.

The other form of exchange is a chain, which is initiated by a non-directed donor
(NDD) who has no particular intended recipient.8 The NDD initiates a chain by donating
to the patient of the first pair in the chain, whose donor donates to the patient of the second
pair and so forth. Chains usually end with donation to a patient on the deceased donor
waitlist who has no affiliated living donor who could continue the chain. An advantage
of chains is that they can be arranged sequentially, and non-simultaneously with each pair
receiving a kidney before they donate one (Roth et al., 2006; Rees et al., 2009). This means
that, if a link is broken, no pair is left without a kidney to offer in a future exchange, since
a broken link that leaves a pair without a scheduled transplant comes when they have not
yet donated their donor’s kidney.9 Consequently, not all the operating rooms and surgical
teams have to be available simultaneously (since a potential broken link is much less costly
than in a cycle), so chains most often yield more (sometimes many more) transplants than
a cycle.

The adoption of non-simultaneous nondirected donor chains was one of the biggest oper-
ational changes that separates the current situation, in which kidney exchange has become
a standard form of transplantation in the U.S., from its earliest days. The New England
Program for Kidney Exchange (NEPKE) operated from 2004 until 2011, when it was merged
into a pilot program run by UNOS.10 In its seven years of operation it was responsible for a
number of innovations (see e.g. Saidman et al. (2006)). But it did not employ nonsimulta-
neous chains, and employed only simultaneous cycles and chains, each resulting in only two
or three transplants. Partly as a consequence, it produced only 83 transplants in its seven
years of operation.11 However with the publication of Rees et al. (2009) reporting the very

7Because this simplifies the mathematics, there are theoretical papers today that continue to model kidney
exchange as involving only pairwise exchanges (and insights from these papers may continue to be useful),
but the practice of kidney exchange has moved on.

8Although deceased donors are almost always non-directed, chains are so far initiated by living nondirected
donors, although that may change in the future.

9As non-simultaneous chains have become a standard form of kidney exchange transplants, it turns out
that broken links due to a donor backing out after his/her intended recipient has received a transplant are
rare (Cowan et al., 2017). (This is partly due to operational practices in which not every pair is nominated
to be a non-simultaneous ”bridge” pair, and partly it is a behavioral economics observation: we humans are
substantially nicer than some economic models give us credit for.)

10UNOS, the United Network for Organ Sharing, is the federal contractor that controls the allocation of
organs from deceased donors in the U.S.

11see https://web.archive.org/web/20110727115230/http://www.nepke.org/, https:

//web.archive.org/web/20110727120120/http://www.nepke.org/theprogram.htm, and https:

//web.archive.org/web/20110727115642/http://www.nepke.org/livingdonors.htm
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first non-simultaneous chain, and subsequently Ashlagi et al. (2011a,b) establishing their
ability to substantially increase the rate of exchange transplants, non-simultaneous chains
were adopted by all the major U.S. inter-hospital kidney exchanges.12

2.2 Medical compatibility, crossmatches and pair types

ABO compatibility. For a donor to be compatible with a patient, there are two con-
straints. First, the patient must be blood-type compatible (ABO-compatible). This means
the patient cannot receive a kidney from a donor who has a blood antigen (A or B) that
the patient does not have (see Figure 1). So an O donor (who has neither the A nor the
B antigen) is ABO-compatible with any patient whereas an O patient can only receive a
kidney from an O donor, since other blood-type donors have A, B or both.

Figure 1: ABO-compatibility structure. A directed arc from X to Y means that a donor with
blood-type X is compatible with a recipient with blood-type Y.

Recent desensitization technology sometimes makes it possible to transplant a patient
who is ABO incompatible (ABOi); for example in some cases in which the patient’s relevant
blood antigen antibody concentrations (titers) are sufficiently low.13

12Perhaps the earliest suggestion that long non-simultaneous chains could be started by NDDs was in Roth
et al. (2006), but it took another half a dozen years, operational innovations, and the gathering of evidence
to overcome substantial opposition before they became the dominant form of kidney exchange in the U.S.
(cf. Anderson et al. (2015a).) In many other countries, chains, and non-simultaneous chains, are only now
being slowly adopted.Other kinds of non-simultaneous exchanges have been conducted and considered, see
e.g. Butt et al. (2009); Ausubel and Morrill (2014); Kute et al. (2016); Akbarpour et al. (2020b,a).

13For example, blood type A actually comes in two types, A1 and A2, and it is sometimes possible to
transplant an A2 organ into an O or B patient, an A1 organ into a B patient, a B organ into an A patient, and
an A2B organ into an A or B patient. To get an idea of the issues involved, note that A2 blood types have less
A1 antigen on their cell surface so it is possible to transplant A2 organs into a B or O recipient with a low anti-
A titer. The titer measures the amount or concentration of antibody. For patients receiving A2 organs we
determine the A1 titer using a method (DTT) that detects only the IgG (Immunoglobulin G) portion of the
antibody. If the DTT anti-A titer is low (typically 4 or less) this will be considered a “compatible” transplant.
For true ABO incompatible transplants we use two methods – again the DTT anti-A or B titer (depending on
the incompatibility) and a method that uses an anti-human globulin molecule that measures both IgG and
IgM (Immunoglobulin M) portions of the antibody. The titer considered to be acceptable for desensitization
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Tissue type compatibility. In addition to blood-type antigens, the donor has human
leukocyte antigens (HLA). Each donor and patient inherit antigens from their parents, and
for each location on the relevant chromosome a patient has 1 or 2 antigens.14 For a kidney
to be compatible, the patient cannot have antibodies to the donor’s HLA, because otherwise
the patient’s immune system will immediately try to reject the organ. A patient is ”tissue-
type compatible” to the donor if she has no antibodies to the donor’s HLA. This type of
compatibility is verified using a crossmatch test.

Patients need to take immunosuppressive medications after transplantation to prevent
their immune system from attacking any foreign antigens, and it is desirable to do as little
suppression of the patient’s immune system as possible. For this reason it is also preferred to
transplant an organ from a donor who has some of the same HLA antigens as the patient. Due
to the development of desensitization technologies it is sometimes possible to transplant an
organ to which the patient has an antibody. However, typically this results in worse outcomes
than receiving a compatible kidney. One of the virtues of kidney exchange is that it allows
more patients to receive transplants of compatible kidneys. However when no compatible
kidney is available, “desensitizing” the patient to allow an otherwise incompatible kidney to
be transplanted generally has a better outcome than remaining on dialysis. Consequently,
extremely highly sensitized patients sometimes are transplanted through kidney exchange
with a kidney to which they have sufficiently few antibodies to allow desensitization.15

A common measure for how difficult it will be for a patient to find a compatible donor
(among those who are blood type compatible) is the Panel Reactive Antibody (PRA), which
captures the likelihood, that based on her antibodies the patient is tissue-type incompatible
with a random donor in the population despite being ABO compatible.16 A patient with
high PRA is referred to as “highly sensitized.”17

More about HLAs, antibodies and differences across KE programs and hospitals.
In the early days of kidney exchange, databases included antigens (alleles) for three locations
(loci) on chromosome 6 called A,B, and DR. As crossmatch testing became more accurate
and it was clear that more antigens play a role, KE programs (and hospitals) gradually added
antigens for loci C, DQ and DP. This turns out to help predict both initial compatibility,
and the quality of the match, as some HLA mismatches are more important than others

varies by transplant center but typically it is 64 or 128. Guidelines for ABOi transplants through UNOS
can be found here: https://optn.transplant.hrsa.gov/media/2223/mac_pcproposal_201707.pdf. (See
also Sönmez et al. (2018) and Salvadori and Tsalouchos (2020).)

14One if the same antigen is inherited from both parents.
15Desensitization works better for ABO incompatibility than for tissue type incompatibility.
16An estimate of the PRA is calculated using the frequency of antigens. The

method and antigen frequencies can be found here https://unos.org/news/

optn-public-comment-proposal-offers-alternate-cpra-calculation-method/.
17Fifteen years ago it was common to view a PRA above 80 as highly sensitized. But progress in matching

patients in kidney exchange pools has changed this view, and today most KE programs consider only PRA
above 95 and even 98 to be high.18 We note that the deceased donor allocation system in the US shifted
in 2014 from assigning all patients with PRA above 80 the same priority points, to assigning priority points
that strictly increase with PRA.
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(Manski et al., 2019).
Technologies and habits create differences between KE programs and hospitals with re-

spect to HLA typing. We describe a few notable examples. Not all KE programs record
all 6 loci. Another difference is in the resolution typing of alleles. As an example consider
allele A*02:01 which has locus A, allele group 02 (serotype) and all 4 digits 02:01 are the
specific allele.19 Some KE programs or hospitals record only the serotype A*02 and others
will record the specific allele 02:01.20 Some differences are due to continuous discoveries of
alleles and their structure. HLA DQ for instance has two chains, α and β, that are adjacent
on the same chromosome. Some KE programs record these as two different antigens DQA
and DQB while others will view them as one “combined” antigen.

Hospitals differ also with respect to antibody typing. First, some record only serotypes
and some record the entire alleles. Another notable difference is how hospitals determine
what is an antibody (for the purpose of a virtual crossmatch). An antibody has a strength
and hospitals set thresholds for what is considered an antibody. A common measure for
the strength of an antibody is the mean fluorescence intensity (MFI). Hospitals use different
thresholds to determine antibodies, as there are currently no accurate prediction tools for
crossmatch tests.21 Figure 2 presents a partial list of antibodies of a patient in a database
that also lists weak antibodies. In this example B7, B27, B48, B55 have MFI much lower
than 4000 and are very unlikely to act as antibodies and reject a kidney. A29, A43, and
B8 all have MFI above 4000 and are likely to cause a rejection of an organ that has at
least one of these HLAs. Often 2-digit typing is sufficient. But sometimes the patient and
the donor have different alleles of the same group which can result in an apparent but false
match between a donor’s antigens and a patient’s antibodies. The patient in this example is
unlikely to reject an organ that does not have A*29:01 or A*29:02, even if it has A*29:03.22

The differences described above have a direct impact on frictions in the matching process,
and can slow down merging and collaboration attempts between hospitals and KE programs.
In the early days of kidney exchange, when hospitals all conducted their own blood tests
and the technology for testing and the language for describing the immunological data was
not so detailed, hospitals sometimes faced incentive problems about listing an antibody that

19For more about nomenclature see http://hla.alleles.org/nomenclature/naming.html.
20There are also some equivalences between different groups. HLA equivalence tables can be found here:

https://optn.transplant.hrsa.gov/governance/public-comment/update-hla-equivalency-tables/

. These table keep updating.
21An (ad hoc) threshold of 4000 MFI is very common for most types of antibodies. KE databases used by

Methodist Specialty and Transplant Hospital at San Antonio (MSTH), Israel and several other KE programs
(using software developed by Ross Anderson, Itai Ashlagi, Sukolsak Sakshuwong and Jon Silberholz) allow
thresholds for virtual crossmatching to be set flexibly; so all antibodies can be listed together with their MFI
levels, whether weak or strong.

22We believe that there is a lot to gain from international exchanges due to population heterogeneity at
the specific allele level. This is because patients develop antibodies to the antigens to which they become
exposed (e.g. through blood transfusions, childbirth, previous transplants, etc.). But different populations
have different distributions of HLA’s, and so a highly sensitized patient who is very unlikely to find a match
at her home location because of her many antibodies, may be more likely to find a match from a population
of donors some of whose HLA may be relatively rare in the patient’s home location, because she may not
have developed antibodies to those.
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Figure 2: Example for a list of antibodies of a patient together with their MFI level.

(they thought) had a low concentration, since listing the antibody would mean that they
would not be offered kidneys that appeared incompatible, but might actually be compatible.
On the other hand, suppressing the report of an antibody entirely led to the offer of many
kidneys that were ultimately incompatible, so that the offers had to be rejected, which
delayed transplants.23

Powerful donors. Just as some patients are hard to match, some donors are powerful in
the sense that they have an increased chance of being compatible with some highly sensitized
patients. These are donors who have rare HLAs, or, better yet, donors who are homozygous
in rare HLAs, which is to say they have fewer than the usual number of distinct HLAs
because they have inherited some of the same HLAs from both parents. Thus a high PRA
patient, who has many antibodies, may sometimes not have antibodies to the particular
HLAs of a powerful donor. 24

Crossmatches. Given the data on patient and donor ABOs, the donor HLA, and the
patient antibodies one can determine virtual matches. This is sometimes called a virtual
crossmatch. To verify whether the patient will not reject the donor’s kidney, a physical cross-
match test is required prior to the transplant, involving blood samples from the prospective
donor and patient. A positive (negative) crossmatch between a patient and a donor means

23Notice how the choices available to participating transplant centers change with changes in the market
design resulting from changes in the available testing and reporting technologies, and also with innovations
like having a centralized blood testing facility (to which hospitals send blood samples, rather than reports
about those samples).

24The frequencies can be found here:
https://unos.org/news/optn-public-comment-proposal-offers-alternate-cpra-calculation-method/.
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that the patient will (not) reject the donor’s kidney.25

Pair types. The compatibility structure helps to classify pairs based on how difficult they
are to match. It will be convenient to refer to the blood types of the patient-donor pairs, so
that e.g. an A-B pair is one in which the patient has blood type A and the donor has blood
type B. An exchange pool is likely to have fewer A-O pairs than O-A pairs because A-O pairs
are often compatible (since they are ABO-compatible), and so can choose a direct live-donor
transplant from the donor to the patient rather than exchange with another pair. When
there are few highly sensitized (high PRA) patients, blood type compatibility is of first order
importance. So pairs which are ABO compatible (even if they are tissue type incompatible)
are over-demanded. That is (A-O,AB-O, B-O, AB-B, AB-A) pairs are offering to exchange
more widely acceptable kidneys than they are seeking. In contrast, ABO incompatible
pairs (O-A, O-B, O-AB, A-AB, B-AB) are under-demanded: they are seeking a more highly
demanded kidney than they are offering, and so it will be harder to match all such pairs at
any given time.

More generally, we will refer to some pairs as hard-to-match if they are either under-
demanded or the patient is highly sensitized. Other pairs can be thought of as easy-to-match.
In general, hard-to-match pairs may accumulate in the pool, and easy-to-match pairs will
be quickly matched. Consequently the most efficient use of easy to match pairs is to match
them to hard-to-match pairs: it is seldom efficient to match two easy-to-match pairs to each
other, given the abundance of hard-to-match pairs who may remain unmatched.

2.3 Common operations in kidney exchange platforms

KE programs that serve multiple hospitals share similar operations and dynamics, with exact
details varying across platforms.26

• Submissions. Hospitals submit medical data to the KE program about their patient-
donor pairs and non-directed donors as they become available or, in some hospitals,
after attempts to arrange an internal in-hospital kidney exchange for those pairs has
failed. This latter practice selects easy-to-match pairs out of the exchange pool, by
matching them to each other. This makes it even harder to match hard-to-match pairs.
So attention has to be paid to incentives for hospitals to participate fully (Ashlagi and
Roth, 2014; Agarwal et al., 2019).27

• Matching and match offers. KE programs periodically identify a set of exchanges within
the patient-donor network. This is usually done using a weighted integer optimization
program with weights assigned to each potential transplant. This includes deciding
how and when to end a chain. For each potential transplant in an exchange, the
associated hospital is informed and is given details about the potential donor.

25This terminology can be confusing: a positive crossmatch is bad news.
26While there are substantial similarities internationally, we give here a possibly U.S.-centric view.
27Some platforms only enroll pairs that have already passed all screening procedures, while others enroll

pairs at earlier stages.
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• Offer reviews and transplants. Hospitals confirm whether the offers (matched donors)
are acceptable. If all offers in a given exchange are acceptable, crossmatches between
the relevant blood samples are done. If these crossmatches are negative, the next step
is transplantation (organs are typically shipped to the patient’s hospital). But if one
of these stages fails, the donors and patients in the exchange remain in the exchange
pool.28

2.4 Some differences across platforms

While in general the logistics are similar it is worth pointing out some differences. See
also Biró et al. (2019c) for a detailed description of logistics of KE programs in European
countries.

• Upper bounds of cycle and chain lengths. Multi-hospital KE programs usually bound
the cycle length to 3.29 Chains are usually limited to size 3 or 4.30 Exceptions include
the APKD, NKR, Israel, and the Czech Republic, which impose no limit on the chain
length. Numerous countries do not allow non-directed donation and therefore don’t
have chains at all.31

• Prioritization/weight in matching. KE programs use different prioritization when iden-
tifying matches. In fact almost every KE program uses different weights for various
criteria. These include weights for HLA mismatches between the patient and the donor,
ABO mismatch, age of the patients, difference between the age of the donor and recip-
ient, distance, and so forth. Many countries, such as the UK, use an hierarchical set
of objectives (see (Biró et al., 2019a)).

• Matching frequency. In the US KE programs identify matches almost on a daily basis.
In European countries, Australia, and Canada, matching frequencies vary with many
KE programs matching periodically every 1-4 months. We elaborate on this issue in
Section 3.4.

• Positive crossmatches and refusals of match offers. KE programs suffer from high fric-
tions due to high rates of offer refusals and positive crossmatches. In multi-hospital US
KE programs (APKD, NKR, UNOS) refusals of offers are very common and KE pro-
grams attempt to elicit more refined preferences and request physicians’ to pre-select

28When one link of a cycle fails, none of the transplants in the cycle can be conducted. But when the
exchange is a chain, transplants can be performed up until the first positive crossmatch, and other links can
be sought to ”repair” and extend the chain. (This is one of the reasons that chains are such a productive
source of kidney exchange transplants.)

29This includes the Alliance for Paired Kidney Donation (APKD), UNOS, and the National Kidney Reg-
istry (NKR), and national KE programs in Netherlands, Spain, Portugal, UK Australia, and France.

30Programs differ by whether the chain can continue into the next match run or not. For example, in the
UNOS program a segment of a chain is limited to 4 but can proceed to the next match run, whereas the UK
KE program terminated chains after a single segment (Manlove and O’malley, 2015).

31Such countries include France, Belgium, Austria, Sweden, Switzerland,Poland and Greece.
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acceptable matches (Fumo et al., 2015). To overcome the delays from positive cross-
matches, rather than shipping blood samples between centers, some KE programs use
a centralized blood lab that carries out crossmatches in-house.32 This has implications
over time differences between match offers. We return to these frictions in Section 3.5.

3 Operational issues

This section briefly describes operational challenges facing kidney exchange platforms. In
the Appendix, we provide some simulation models for further research in this area.

3.1 Eliciting preferences

One early problem facing all of the multi-hospital KE programs was that transplant centers
were consistently rejecting potential donors for reasons that could in principle have been
stated in advance. But it was difficult for surgeons to pre-emptively accept or reject donors
for each potential patient, particularly from a large set of donors, from most of whom any
particular patient would never be offered a match. The reason is that each donor is a big
set of attributes that take some time to be evaluated. One way this problem was addressed
was by introducing a threshold language, so that, for each patient at a given time, a surgeon
could specify the maximum age, body mass index, blood pressure, etc. for which a donor
would be considered for that patient (Fumo et al., 2015). Thresholds help, but are far
from perfect: i.e. a proposed transplant that meets all the specified thresholds can still
be rejected.33 Increasing the accuracy of the virtual matches, including by enhancing the
language in which they can be described while preserving enough simplicity so that they will
be effectively used by busy doctors, is an ongoing part of the market design.34

3.2 Matching in thick pools

Early research in kidney exchange considered static pools that were assumed to be suffi-
ciently large so that tissue-type incompatibilities were of lesser importance. Allocations that
maximize the number of transplants have a simple and intuitive structure in such (idealized)
pools (Roth et al., 2007; Ashlagi and Roth, 2014), which essentially carries over to suffi-
ciently thick dynamic pools (Ünver, 2010). The main idea behind the structure, which is
briefly described below, provides some initial guidance for measuring efficiency of a platform
(Agarwal et al., 2019).

In sufficiently thick pools, efficient allocations are effectively determined by blood types,
and there is essentially no need for cycles with more than 3 pairs. For some intuition consider

32Examples include the UK, Austria, Belgium, the Czech Republic, and the APKD.
33E.g. a surgeon might specify that he would consider donors up to age 60, moderately overweight, and

with slightly elevated blood pressure, but mean in practice that a 60 year old would have to be otherwise
ideal, and someone with elevated blood pressure would have to be under 50.

34Issues related to the desirability of using simple languages comes up in many areas of market design, see
e.g. Milgrom (2010).
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the sets of A-O and O-A patient-donor pairs. If the only types of pairs were A-O and O-A,
which are over- and under-demanded, it would be possible to match every A-O pair with a
different O-A pair in 2-way cycles. Such an allocation maximizes the number of transplants
(Figure 3). Allocations that would match some A-O pairs with each other would generate
fewer transplants. This intuition carries over for other types of pairs (see Roth et al. (2007)
and Ashlagi and Roth (2014) for the structure of efficient matching in large static pools).

Figure 3: A-O and O-A patient-donor pairs. In large pools with A-O and O-A pairs, all A-O pairs
(in which the patient is not too highly sensitized) can match in 2-way exchanges with O-A pairs.

However “sufficiently thick” is an idealization not yet met in practice anywhere in the
world, so in practice tissue-type incompatibilities play a very large role. Even relatively large
pools do not match all their (overdemanded) O donors to their (underdemanded) O patients.
For example, at the National Kidney Registry (NKR), which the largest platform, for about
7% of the transplanted O organs, the recipient is a non-O patient (Agarwal et al., 2019).
Despite the scarcity of O donors, this may be efficient when the patient who receives the
blood type O kidney is so highly sensitized that there may be only one kidney in the pool
which is compatible. To put it another way, because there is a large population of highly
sensitized patients, there are many hard to match pairs, including those with blood type O
donors. Hard-to-match pairs in which the patient is very highly sensitized are not in fact
“overdemanded,” regardless of their blood types.35

One strategy for matching hard-to-match pairs is to increase the number of easy-to-match
pairs included in the exchange pool. One class of easy-to-match pairs that are often excluded
are compatible pairs, i.e. pairs in which the patient could receive a transplant directly from
his/her intended donor. These pairs may nevertheless benefit from participating in kidney
exchange, e.g. by getting a better matched kidney, or one from a younger donor, while
incidentally helping a hard to match pair to be matched. Compatible pairs help in two
ways: 1. they help highly sensitized pairs by making the pool of easy-to-match pairs thicker,
so that not only is there another donor from whom a hard-to-match pair could receive a
kidney, but it is more likely that that pair can form part of a cycle or chain; 2. they increase
the supply of O-donors (who are selected out of the exchange pool when compatible pairs

35See Ashlagi et al. (2012a) for a theory of sparse pools based on random graphs, where chains play an
important role.
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don’t participate).36

3.3 Optimization

KE programs typically use optimization to find matches using cycles and chains within their
pool. The static optimization problem is to maximize the (weighted) number of transplants
using logistically feasible cycles and chains subject to the constraint that no pair or NDD
is matched more than once. Weights capture weak priorities of the platform. This problem
is NP-complete (Abraham et al., 2007) even without chains.37 Following Roth et al. (2007)
and Abraham et al. (2007), researchers have produced different formulations and algorithms
to solve this problem. We discuss some ideas briefly.

Consider the (directed) compatibility graph, G = (V,E). The set V can be partitioned
into nodes P consisting of patient-donor pairs, and N , consisting of NDDs. An edge connects
one node to another if the donor at the first node is compatible with the recipient at the
second node. Let we be the weight on edge e and for each exchange C let wC be the sum of
the weights of edges in that exchange. Let Ck be the set of cycles with at most k edges and
Chj the set of chains with at most j edges. (By adding a directed edge from each pair to
each NDD, chains can be viewed as cycles that include an NDD.) Let Ck(v) and Chj(v) be
these subsets of cycles and chains that contain node v, respectively. A simple formulation
that allows cycles of length at most k and chains of length at most j is:

max
∑

C∈Ck ∪ Chj

wCzC

s.t.
∑

C∈Ck(v)

zC +
∑

C∈Chj(v)

zC ≤ 1 v ∈ V,

zC ∈ {0, 1} C ∈ Ck ∪ Chj

For small pools and short cycles and chains, an optimization solver will often manage
to handle the above formulation. Other algorithms use formulations based on flows. For
each v ∈ V , let δ−(v) be the edges pointing to v and δ+(v) be the edges outgoing from v.
Similarly define δ−(S) and δ+(S) the edges that point in to and out of a set of nodes S ⊆ V .
When pools are large the number of variables (chains and cycles) grows exponentially large.

One simple formulation is to maximize flow (without cycles and chain variables) under
the constraints: (i) incoming flow equals outgoing flow, and (ii) each node has at most one
unit of outgoing flow. One should further rule out exchanges of infeasible size. If the pool is
large or dense there can be exponentially many of these constraints. Instead one can solve

36See e.g. Roth et al. (2005b, 2008); Gentry et al. (2007) and Sönmez et al. (2020). The latter paper
considers a model with a continuum of pairs, in which no patients are too highly sensitized to be matched,
but in which blood type O patients still benefit from the inclusion of compatible pairs.

37The problem can be solved in polynomial time in two cases: if all exchanges are limited to size two this
becomes a maximum matching problem, and if chains and cycles are of an unbounded size this becomes a
maximum flow problem.
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this formulation using constraint generation techniques, re-solving the problem constraining
only against infeasible exchanges that have been previously found.

Researchers developed and adopted a variety of formulations (including objectives and
constraints on feasible exchanges) as well as methods (e.g., column generation and branch
and price) to address this optimization problem (Biro et al., 2009; Glorie et al., 2012; Manlove
and O’malley, 2015; Anderson et al., 2015b; Constantino et al., 2013; Alvelos et al., 2019;
Dickerson et al., 2012c; Alvelos et al., 2019).38

How important is the use of sophisticated optimization? Our experience (and that of
the American inter-hospital exchanges) is that most instances can be solved with simple
algorithms.39 This is because pools at the steady-state are usually not too large and not too
dense (hard-to-match pairs are the ones that usually accumulate and easy-to-match pairs
match quickly). In fact, a large and dense steady-state pool probably signals flaws in the
matching process. It is important, however, not to miss these very highly sensitized patients,
who are typically matched through chains or cycles of size longer than 2.

3.4 Matching in a Dynamic Pool

Kidney exchange pools are dynamic with patient-donor pairs and NDDs arriving and match-
ing over time. There is an inherent trade-off between identifying matches faster to reduce
waiting times and waiting for more enrollments to create more match opportunities. KE
programs face the decision of when to identify matches. Figure 4 illustrates the potential
benefit from waiting.

Figure 4: Waiting can lead to more matches. Pairs a,b,c are existing in the pool and d arrives in
the future. Matching b with c without waiting results in one instead of two exchanges.

In the US, platforms shifted gradually towards small batch sizes, which means matching
very frequently. National programs including the APKD and the NKR identify exchanges
on a daily basis, and the UNOS program identifies matches twice a week. One concern is
that this behaviour is driven by competition across platforms as hospitals may enroll pairs
in multiple platforms. But even the (exceptionally productive) single-hospital program at
Methodist Specialty and Transplant Hospital at San Antonio (MSTH) runs matches on a
daily basis. In other countries the situation is different. National programs in Canada,
United Kingdom, Netherlands, Czech Republic, Australia, and other countries search for
exchanges every 2 − 4 months (Ferrari et al., 2015; Malik and Cole, 2014; Johnson et al.,
2008). We briefly discuss research on this front.

38The open source KE software mentioned above uses formulations in Anderson et al. (2015b) and is
provided at https://web.stanford.edu/~iashlagi/. One formulation is based on the travelling salesman
problem and is able to handle long chains effectively.

39Even searching by brute force often works.
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A matching policy employed by a platform determines which exchanges to implement
and when. Two simple and commonly used policies are greedy and batching. The greedy
policy forms exchanges as soon as they become available. A batching policy identifies an
optimal set of exchanges in the pool every fixed number of periods.

In a simulation study Ashlagi et al. (2018) measure the effect batching policies have on
efficiency (measured by the fraction of matched pairs and waiting times). The study uses
APKD and MSTH data, which have different pool compositions. Pairs sampled from the
data arrive according to a Poisson process and depart according to an exponential random
variable, unless they match earlier. Matches are done through 2 and 3-way cycles and
chains with different lengths. The main finding is that very frequent matching results in
almost no harm. Figure 5 plots the fraction of matched pairs and the average waiting time
under different matching frequencies and different sets of weights using the APKD data.40

Assigning high priority to highly sensitized patients increases their match rate, but at the
expense of hard-to-match and under-demanded pairs.

(a) Fraction matched (b) Average waiting time

Figure 5: Batching policies using APKD data (from Ashlagi et al. (2018)). The x-axis
represents the number of days between two match-runs. Each plot, S1-S3, stands for different
prioritization/weights assigned to pairs based on the patients’ PRA.

The reason that the percentage matched goes down with the batch size is due to the
departure rate. But even when the departure rate is low, Ashlagi et al. (2018) report that
there is a very small benefit from waiting. Monteiro et al. (2020) find minor improvements
from using batching when pairs either don’t depart or depart exponentially after the next
batch.41

Figure 6 provide similar simulations results for numerous arrival rates using NKR data.
While accumulating pairs does not increase the fraction matched, an increase in the arrival

40The figure presented here assumes no frictions, but see Ashlagi et al. (2018) for similar findings from
simulations that account also for delays due to blood shipping, refusal of offers and positive crossmatches.

41They further find interesting trade-offs between assigning or not assigning priority to pairs according to
their waiting times.
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rate does. We return to this insight in Section 4 when we discuss mergers and increasing the
thickness of the KE pool.

Figure 6: Batching policies for different arrival rates using NKR data (from Agarwal et al. (2018)).
Each plot corresponds to the batch size in days.

Why is this happening? Intuitively, under-demanded pairs as well as hard-to- match pairs
with very highly sensitized patients accumulate in the pool. Suppose that now a potentially
easy to match A-O patient-donor pair arrives to the pool. One possibility is that it can
match immediately with one of the many O-A patient-donor pairs in the pool. If not, it is
likely because the (newly arrived) A patient is very highly sensitized and part of a hard-
to-match pair. This suggests that delaying other pairs from matching is unlikely to help
this A-O pair in the near future. So when the departure rate is low, delaying easy-to-match
pairs is unnecessary, because an easy-to-match pair is likely to match with one (of the many)
hard-to-match pairs (and it would be inefficient to match together two easy to match pairs).
When the departure rate is high, matching infrequently will result in many departures of
easy-to-match pairs.

The class of batching policies is not exhaustive and the intuition above ignores some
plausible scenarios. Suppose the donor of an easy-to-match pair is compatible with the
patient of a hard-to-match pair but these pairs are not part of any exchange. It may be
beneficial to wait for another pair to arrive that can close a 3-way cycle with both of these
pairs. An open question is whether there are policies that can significantly outperform a
greedy policy.42

Theory. A growing literature helps in understanding matching policies on dynamic net-
worked environments. Ünver (2010) characterizes the optimal policy in a dynamic kidney
exchange model with linear waiting costs, in which compatibility is essentially determined
only by blood types, i.e. in which highly sensitized pairs don’t play any important role. A

42We previously experimented with heuristic strategies, which haven’t outperformed a greedy policy.
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greedy algorithm is shown to be optimal for 2-way cycles and almost optimal for 2 and 3-way
cycles.43

One stream of papers considers models in which compatibilities are based on random
graphs, modeling the sparsity due to sensitivity of patients. Several of these papers assume
nodes (pairs) do not depart the pool unless matched (Anderson et al., 2017; Ashlagi et al.,
2019b,c; Blum and Mansour, 2020). These papers find that greedy matching is optimal when
minimizing average waiting times.44 Other papers assume nodes depart the pool according
to some hazard rate. Akbarpour et al. (2020d) seeks to maximize the number of matches
and Ashlagi et al. (2019c) analyzes the trade-offs between waiting times and the number of
matches. These papers also find greedy matching to be optimal in a large market.45

More sophisticated policies have been considered by Dickerson et al. (2012b,a); Dickerson
and Sandholm (2014). One of the key ideas is to take account of the potential of different
kinds of patient-donor pairs in the compatibility graph (as shadow prices) to determine
whether to match them or keep them in the pool.

What next? As kidney exchange grows, accounting for match quality (e.g., life years
gained from transplant) may become increasingly attractive for platforms. Platforms do
assign (different) weights to matches based on the characteristics of the donor and the patient.
These weights are mostly determined in an ad-hoc manner within each KE program and are
also largely fixed over time. More work is needed to explore the trade-offs between match
qualities, number of matches, and keeping waiting times low.46 Another theoretical avenue
is to explore models that allow for more correlation in the compatibility graph than do the
random-graph based models in the above papers. Finally, little is known about dynamic
matching in the presence of match failures (described in more detail next).

3.5 Frictions

As already mentioned, doctors enter not only medical data but also preferences and thresh-
olds for acceptable characteristics of a donor (e.g., age, creatinine level, BMI, weight). De-
spite these data, a significant fraction of proposed (computer-identified) matches fail to
convert to transplants. For example in the UNOS KE program, prior to 2015, out of 2246 of

43Using thresholds to facilitate 3-way cycles is beneficial, but generates relatively small improvements.
44An elegant and simple analysis for policies based on chains is given by Blum and Mansour (2020). When

3-way cycles are also included, greedy is optimal among a large class of policies (Anderson et al., 2017).
45The models assume different type structures and different limits regarding the growth of the market

(e.g., whether the edge probability remains constant or decreases with the size of the pool).
46Computational experiments that also incorporate compatible pairs have been done in Roth et al. (2004,

2005b) and Li et al. (2019). There are also a few theoretical studies that look at matchings of size two;
Blanchet et al. (2020) characterizes, as a function of the quality distribution, the optimal amount of waiting
in a stochastic model. Mertikopoulos et al. (2019) explore trade-offs between quality and number of matches.
Ashlagi et al. (2020a) find that in a dynamic version of the classic assignment model (with known qualities)
simple “queue-like” policies have almost no allocative efficiency loss. Kerimov et al. (2020) consider a
dynamic model with deterministic match values and find that “small” batching is required to achieve low
regret. For a dynamic model with no distributional information see Ashlagi et al. (2019a).
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the potential matches identified (as part of exchanges), only 172 converted into transplants.
This is due to the high rate of declined match offers as well as the high rate of positive cross-
matches. We discuss these subtle issues briefly and point to relevant work and potential
directions for research.

Match offers are presently declined at a rate of about 25-35% at the APKD and UNOS and
around 20% at the NKR (Ashlagi et al., 2018; Agarwal et al., 2018; Hanto et al., 2008; Fumo
et al., 2015). This suggests that the data and preference criteria are too coarse. Platforms
now often ask physicians to pre-specify which donors (from a selected set of potential donors)
would be acceptable to each of their patients. But in large pools this can still be a costly
task. It is worth noting that the NKR (monetarily) penalizes a hospital that refuses a match
offer it pre-selected to be acceptable. In contrast to the US, refusal rates are very low in
countries with centralized KE programs (studies documenting the performance of such KE
programs do not report such failures).47

The chance that a virtual match results in a positive crossmatch is more than 35% at
the APKD and UNOS for highly sensitized patients with PRA above 90 and around 10% on
average for other patients. High numbers are also reported at the NKR and other countries
such as Canada (Cole et al., 2015). These numbers were even higher when only a few HLA
antigens were listed. As discussed in Section 2 hospitals determine in an ad-hoc manner the
strength (MFI) threshold for listing an antibody.

How to reduce frictions? Numerous KE programs maintain a blood lab and do cross-
matches in-house (examples include centralized KE programs in Europe, single center pro-
grams, and the APKD). This eliminates delays due to shipping blood samples after exchanges
are identified.

It is common that a match between a patient and a donor is successful but the corre-
sponding exchange is not (or only partially) implemented. KE programs attempt to use the
knowledge from successful one-way matches to improve the information in the compatibility
graph and increase the future match rate. See Fumo et al. (2015) for how APKD has handled
some of these strategies. Some countries that find exchanges at a low frequency re-optimize
over the compatibility graph after matches that result in a positive crossmatch. Matching
infrequently without re-optimizing while having high match failures is likely to lead to a very
low match rate (as this delays discovering the actual compatibility graph).48 Simulations
that consider this tension can be found in Santos et al. (2017) and Ashlagi et al. (2018).49

Some studies consider the problem of maximizing the expected number of matches (Kli-
mentova et al., 2016; Dickerson et al., 2019; Wang et al., 2017; Bidkhori et al., 2020) or using
robust optimization (McElfresh et al., 2019). Several papers consider identifying exchanges
that are not necessarily disjoint, after which more than one crossmatch would be possible
while having “backup” options (Blum et al., 2013; Bray et al., 2015; Glorie et al., 2015).
Other papers ask which links in the compatibility graph one should test if pre-testing is

47See, e.g., (Ferrari et al., 2015; Biró et al., 2019c; Kal-van et al., 2011).
48This helps explaining the low match rate in UNOS.
49See also Carvalho et al. (2020); Dickerson et al. (2020).
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feasible (Assadi et al., 2019; Blum et al., 2020; McElfresh et al., 2020). These studies do not
consider match rate over time.

An important challenge when attempting to reduce frictions is not harming highly sensi-
tized patients, who are the most likely to have a positive crossmatch.50 Adam Bingaman and
Cathi Murphey who collaborate on kidney exchange at MSTH (a highly successful kidney
exchange at a single transplant center) conduct many crossmatches for each highly sensi-
tized patient. They feel that not having to coordinate with other hospitals gives them more
freedom to conduct as many crossmatch tests as they think desirable for highly sensitized
patients.51

4 Thickening the network

4.1 What does it mean to have a thicker pool?

The composition of the pool, arrival rates (enrollment), and departure rates (without being
matched) are key factors for the potential number of transplants a KE program can facilitate.
To illustrate this, Figure 7 plots simulation results using data from different KE programs
between the years 2012-2014. Each plot measures the fraction of the pool matched for
different rates of arrivals.52 During this time period, NKR, APKD and UNOS had very
similar pool compositions,53 but many more pairs and NDDs enrolled to the NKR. 54 Not
surprisingly, countries with national KE programs also vary significantly with respect to the
number of pairs registered and their pool compositions.55

NDDs and easy-to-match pairs (including compatible pairs, who are invited to enroll in
some kidney exchange pools to find a better matched kidney than that of their compatible
intended donor) all positively contribute to the composition of the pool. These, together
with a large arrival rate, will lower waiting times and increase the match rate for all pairs
(especially hard-to-match pairs).56

50Indeed this is still poorly understood and just a few simulations of matching policies have been considered
(Santos et al., 2017; Ashlagi et al., 2018).

51Cathi : “I don’t track how many crossmatches came out positive. A lot of the times I think it will be
positive but I want to do it anyway”.

52The experiments simulate operational details and use departure rate estimates. Pairs and NDDs are
sampled with replacement from the corresponding data. The simulation generating the 1st quartile at the
NKR uses pairs and NDDs from hospitals that enroll among the top quartile of hospitals with respect to the
percentage of pairs they enroll to the NKR.

53Roughly 13-15% over-demanded pairs and about 42-43% under-demanded pairs.
54In 2014, 155, 244, and 243 pairs and 5, 4, and 51 NDDS enrolled to the APKD, UNOS, and NKR,

respectively.The NKR and APKD now offer NDD’s a ”voucher” intended to be used in the future by a
family member, who would receive a chain-ending kidney (see e.g. Wall et al. (2017); Krawiec et al. (2017);
Akbarpour et al. (2020b)).

55For example, the Dutch program registered 655 pairs between 2004 and 2014, UK registered 991 pairs
prior to 2014, Canada registered 491 pairs between November 2009 and December 2013 France had 78 pairs
between 2013 and 2018 (Biró et al., 2019c; Ferrari et al., 2015).

56That an increase in the match rate results in lower waiting times is intuitive and can formally be
understood through Little’s law (Little and Graves, 2008), which states that the arrival rate multiplied by
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(a) Fraction matched without delays (b) Fraction matched with delays

Figure 7: Pool composition and scale (adapted from Ashlagi et al. (2018) and Agarwal et al.
(2018)). The left and right plots are generated without and with delays, respectively (delays
due to receiving match offer responses and crossmatch tests).

The thickness of the pool depends not just on how many patient-donor pairs are available,
but on how highly sensitized they are. Pools often contain a large fraction of highly sensitized
patients, which means that the underlying compatibility graph is quite sparse. In such pools
short cycles, especially between just 2 pairs, will be difficult to find. But chains initiated by
NDDs will be very valuable, and can often be quite long and lead shorter waiting times.57

To make this clear, consider a pool in which all patients have a PRA of 99%, (i.e. each
patient has only a 1% chance of being compatible with an otherwise blood type compatible
donor). In a large enough pool, the chance that one pair can find another to donate to isn’t
small, but the chance that the second pair can donate back to the first is still only 1%, so
pairwise exchanges will be rare (This is why easy to match pairs are so valuable, since they
make it possible to match hard to match pairs in short cycles containing the easy to match
pair.). But if a NDD donates to a hard to match pair, the chance that pair can pass it
forward to some other hard to match pair, who can continue to pass it forward is not so
small, which is how long chains form.

Theoretical studies looked at the benefit of chains and cycles in dynamic settings, where
the underlying model is is based on random graphs (Anderson et al., 2015a; Ashlagi et al.,
2019b; Blum and Mansour, 2020). These papers find that in sparse pools with many highly
sensitized patients, chains result in significantly lower waiting times than relying only on
cycles. The addition of easy-to-match pairs (or NDDs) reduce the need for long chains and
make short cycles more common (Ashlagi et al., 2019b; Blum and Mansour, 2020).58

the average waiting time equals the average number of pairs waiting.
57See Ashlagi et al. (2012b); Ashlagi and Roth (2012, 2014); Ashlagi et al. (2013); Anderson et al. (2015b);

Bingaman et al. (2018).
58See also (Gentry et al., 2007; Sönmez and Ünver, 2014).
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Another potential way to increase thickness is increasing the density of the compatibility
graph, by increasing the heterogeneity of HLA and antibodies in the pool. For example
highly sensitized patients in some region may be less sensitized to donors in other regions.
We speculate that there is such potential in international exchange, especially due to het-
erogeneity in the specific allele level.

4.2 How and whether to merge

KE programs in countries like the US and Israel seek the participation of more hospitals, to
merge patient-donor pools or collaborate with each other in other ways.59 When measuring
the fraction of the pool transplanted, the marginal benefit from increasing the pool with the
same composition decreases (Figure 7). 60 While increasing the arrival rate beyond some
efficient size will have a minor impact on the fraction of the pool transplanted, patients may
still benefit from lower waiting times because this is similar to having a faster matching
process. (Ashlagi et al., 2018).

When hospitals are not forced to participate, they can choose how to participate and
which pairs or NDDs to enroll. Hospitals can choose to match some of their pairs internally
(Sönmez and Ünver, 2013b; Ashlagi and Roth, 2014). This behavior is common in the US.
Agarwal et al. (2019) find that more than 50% of the exchange transplants between 2012-2014
were done through internal exchanges. Hospitals select harder-to-match pairs on average to
register with inter-hospital KE programs than they match internally (and internal matches
are less efficient, e.g., more than 11% of the recipients of internally matched O transplanted
kidneys have a non-O blood type, while in the large platforms this percentage is around
2.5%).

To engage participation of hospitals one needs to pay attention to the possibility of free-
riding behavior. Several inter-hospital KE programs now use a point system to incentivize
hospitals to enroll their NDDs, which create a big positive externality, since they can initiate
large chains of transplants, that benefit patients of multiple hospitals. These points were
used to decide in which hospital to terminate a chain.61 But easy-to-match pairs also have
a positive benefit–the way to match hard to match pairs is to match them with easy to
match pairs–while many hard-to-match pairs will remain unmatched, or will only be matched
instead of another hard to match pair. A hospital that enrolls only under-demanded pairs
does not help to generate extra transplants and in fact negatively affects other hospitals.
Ashlagi and Roth (2014) advocated using a “frequent flyer” system to alleviate free-riding
behavior. Agarwal et al. (2019) find that a simple point system that assigns for each type of
pair and NDD its marginal benefit can improve transplant centers’ incentives to participate

59The APKD, NKR and UNOS each serve more than 50 hospitals, which register their pairs and NDDS.
60This fraction converges to the optimal fraction matched in a sufficiently large static pool of the same

composition.
61The idea is to keep track of which hospitals have contributed NDD’s to the inter-hospital KE program

(instead of having the NDD donate to someone on the originating hospital’s deceased donor waiting list). In
this way, contributing hospitals can have some chain-ending donations directed back to their deceased donor
waiting lists, so that they are ’repaid’ for the NDD.
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fully in an exchange platform (by registering easy to match as well as hard to match pairs).62

For example, in a thick pool, an additional over-demanded, easy to match A-O patient-donor
pair would typically generate about two transplants, one for it’s own patient and one for
an under-demanded O-A. The actual value of a particular pair, however, depends on the
sparsity of the network and how sensitized the A patient is. In contrast, an additional
under-demanded pair that is transplanted means that another under-demanded pair is not.
(To carry forward the frequent flier analogy, enrolling easy to match pairs earns a transplant
center frequent flier points, while getting a hard to match pair transplanted spends some of
its points.)63

The NKR is now using a mixture of incentive schemes for hospitals. First, it reduces
registration fees for a hospital that commits to enroll all its pairs.64 Second, inspired by
Ashlagi and Roth (2014), it adopted a point system (called the Center Liquidity Contribution
system) that assigns a value for each type of pair that is aligned with its’ average marginal
benefit. The points are utilized to break ties between “optimal solutions”.

There are several theoretical and practical questions regarding point systems: When
should values be updated? Should hospitals be penalized when they have a deficit? Should
points be used only as tie-breakers? How should a point system behave when hospitals have
different size and different compositions?

Single center KE programs. These incentive issues aren’t present in the same way at
single-center KE programs that achieve efficient scale. MSTH is the largest single center
KE program in the U.S., with more than 500 transplants since inception in 2008.65 Some
features of the program include: prospective education, flexibility in assigning antibodies
and many crossmatch tests66, storage of blood samples, ABOi transplants, and involvement
of compatible pairs (Bingaman et al., 2012).

Part of MSTH’s success at recruiting compatible pairs to participate in kidney exchange
has to do with the operational details of the way they introduce KE. While many centers
invite pairs into KE only after they prove to be incompatible, MSTH reports that they
indicate at the outset of compatibility testing that the object is to obtain the best transplant
possible, and that this might involve KE even for a compatible pair, e.g. to obtain a kidney
from a younger or better matched donor.

Compatible pairs are assigned a high priority in match-runs and are usually matched
with young donors. An important consideration is the preferences of donors for when to
donate, especially those of compatible pairs.67 This success is likely to be hard for small

62The paper offers a simulation framework to calculate these points, in a way that recalls the Shapley
value (Shapley, 1953; Roth, 1988).

63See also Hajaj et al. (2015) who study a credit system in dynamic kidney exchange.
64The NKR is the only platform we are aware of that charges fees for different types of services.
65More than UNOS and APKD and many countries. See here a report of MSTH from 2018 (Bingaman

et al., 2018).
66Including intensive testing of potential one-way matches especially with highly sensitized patients.
67Cathi Murphey: “donors play a big role in the timing of exchanges.”
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hospitals to replicate.68

Another remarkable single-center KE program is in India, at the Trivedi Institute of
Transplantation Sciences in Ahmedabad, India (Kute et al., 2018). Kidney exchange is par-
ticularly important for India, because, in its absence, many patients are transplanted with
incompatible kidneys, which requires them to be treated with large amounts of immunosup-
presion. In India this turns out to be quite dangerous, and many such patients succumb to
opportunistic diseases. But kidney exchange allows patients to receive compatible kidneys,
so that they require less immunosuppression and suffer less infection.69

An interesting research direction is to understand better the trade-offs between single
and multi-hospital KE programs.

Other collaborations. One way in which pools of patient-donor pairs available for kidney
exchange can be merged is via international exchanges, across borders. Recent examples
include a Czech-Austrian exchange (Böhmig et al., 2017), a chain between Israel and Czech
Republic70, the newly formed kidney exchange network of Scandiatransplant, which creates
a single pool of patient-donor pairs across the Nordic countries, and efforts to merge pools
among kidney exchange networks elsewhere in Europe (Biró et al., 2019c).

Several collaboration attempts between KE programs haven’t been very fruitful (e.g.,
between NKR and APKD, and between Spain, Italy, and Portugal).71 The pattern is similar;
the match-run was done on “left-over” pools after each KE program ran its own match. These
pools consist mostly of under-demanded pairs and very sensitized patients.72

Cross border collaborations may face free-riding like behavior. Some form of agreements
or incentive schemes as well as transparency are likely to be necessary for these to succeed. In
addition to the proposal by Agarwal et al. (2019), Biró et al. (2019b) offers to use matching
mechanisms based on the Shapley value, and Klimentova et al. (2020) considers maximizing
under fairness constraints, at the level of countries. Collaborations may sometimes be es-
pecially difficult when countries face different legal, regulatory, and operational restrictions
governing the kinds of exchanges that are feasible.

4.3 Global kidney exchange

More patients can be helped if kidney exchange can include more countries. Indeed, kidney
failure is a global problem, and transplantation is the treatment of choice, but there is a
worldwide shortage of transplants. However this shortage has somewhat different causes

68Indeed numerous hospitals attempted to follow the footsteps of MSTH but eventually chose to participate
in a multi-hospital KE program.

69While there are special difficulties associated with kidney transplantation in India, the avail-
able technology is exceedingly modern: see e.g. https://marketdesigner.blogspot.com/2019/05/

robot-assisted-kidney-transplantation.html.
70https://www.mzv.cz/telaviv/en/bilateral_relations/unprecedented_czech_israeli_

cooperation_1.html
71The combined pool between the three countries included 113 pairs and resulted in one 3-way cycle

https://www.lamoncloa.gob.es/lang/en/gobierno/news/Paginas/2018/20180808transplant.aspx.
72See (Biró et al., 2019c; Mincu et al., 2020) for more forms of collaborations in European countries.
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in the rich countries of the developed world than in the middle income countries of the
developing world. In wealthy countries, a shortage of transplantable organs is the limiting
factor, while in many middle income countries, financial barriers prevent transplantation for
much of the population, despite the fact that there are transplant centers that can perform
transplants for those who can afford them. Liyanage et al. (2015) estimate that 2-7 million
people die every year worldwide due to inability to pay for dialysis or kidney transplantation.

Recent efforts to make kidney exchange truly global have included efforts to invite into
American kidney exchange patient-donor pairs coming from countries in which kidney ex-
change is unavailable, or in which the national health insurance doesn’t cover the full costs of
transplantation for many citizens. One obstacle is that there will often be financial barriers
that prevent the health insurance system of those countries from paying the costs incurred
by their citizens in the U.S. However this needn’t be an insuperable obstacle, because trans-
plantation is much cheaper than dialysis, and so substantial savings accrue to American
health care payers whenever an American patient is transplanted, sufficient to pay the costs
of the foreign pair in the U.S., and after they return home (Krawiec and Rees, 2014; Rees
et al., 2017a; Bozek et al., 2018). These pilot KE programs, still in their infancy as practical
alternatives, offer the prospect of enabling patient-donor pairs from around the world to
assist each other in receiving transplants.

5 Maintaining social support

Kidney exchange requires a lot of organization and logistics. Wouldn’t it be simpler to buy
kidneys from willing sellers, so that each patient in need could receive a compatible kidney
directly from a living donor? It turns out that things are not so simple: there are laws
almost everywhere in the world against paying donors for organs. In the U.S., the relevant
legislation is the National Organ Transplant Act (NOTA), 42 U.S.C. 274e 1984, which states
in part “it shall be unlawful for any person to knowingly acquire, receive or otherwise transfer
any human organ for valuable consideration for use in human transplantation”.

Transactions that some people would like to engage in but others think they should
not be allowed to are called repugnant transactions (Roth, 2007).73 Kidney exchange was
organized with the intention of increasing transplantation without violating the law against
compensating donors, or arousing the repugnance that motivates the law.

73Of course some transactions may have negative externalities that directly harm third parties, and it is
easy to understand the objections of those who are harmed. When we study repugnant transactions as such
we normally concentrate on transactions in which the harms to those who object are difficult to measure–
sometimes by specifying that a third party can’t detect that the transaction has taken place unless someone
tells them (Ambuehl et al., 2015). Thus e.g. same-sex marriage is a transaction that two people would like to
engage in, by marrying each other, but others may think they shouldn’t be allowed to, although you can’t even
tell if someone is married unless someone tells you (e.g. by wearing a wedding ring). Receiving payment for a
kidney (as opposed to donating it altruistically) falls into this category of repugnant transactions. There are
a wide variety of repugnant transactions that are banned in some places and legal in others, many involving
payment for body parts (e.g. surrogacy is widely legal in the U.S. but widely illegal elsewhere, as is payment
for blood plasma).
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Note that the language of the 1984 NOTA bans ”valuable consideration” for an organ
for transplant, not just monetary compensation. So it wasn’t completely clear that kidney
exchange was fully legal in the U.S. But in 2007, some years after kidney exchanges started
to be performed in the U.S., Congress amended the NOTA to say that kidney exchange does
not involve valuable consideration of the kind considered by the Act, suggesting that kidney
exchange does indeed avoid much the repugnance associated with kidney sales.74

That is not to say that kidney exchange hasn’t faced some opposition. In Germany, it is
essentially illegal. (German law says that, barring the intervention of a judge, a patient can
only receive a living donor transplant from a member of his or her immediate family.)

Global Kidney Exchange has also been viewed as repugnant in some quarters, (see e.g.
Delmonico and Ascher (2017)) and replies by Rees et al. (2017b); Roth et al. (2017); Marino
et al. (2017); Roth et al. (2020)). Positions against it have been taken by a number of
European transplant societies (Europe, 2018). But it has received support from the American
Society of Transplant Surgeons, from the European Society of Transplantation committee
on Ethical, Legal and Psychological Aspects of Transplantation (Ambagtsheer et al., 2020)
and from Italy at the World Health Organization75.A very clear analysis of the ethical issues
involved (concluding with very strong support of GKE) is given in the Lancet by a trio of
moral philosophers, Minerva et al. (2019).76. Perhaps most significant for the future of GKE
is that it has been well received in countries whose patient-donor pairs have benefited from
kidney exchange in the U.S.77 We are thus optimistic that kidney exchange will continue to
expand, so that more patients and donors from around the world can receive transplants of
compatible kidneys.

.

6 Open questions and research directions

This section recapitulates a few of the research opportunities mentioned in previous sections.

1. Social support for transplantation innovation. Why does kidney exchange face
big legal obstacles in Germany, but not in the U.S. or a number of other European countries?
Why have some transplant professionals regarded Global Kidney Exchange with repugnance?

74The amendment, known as the Charlie W. Norwood Living Organ Donation Act, Public Law 110-
144, 110th Congress, 2007 passed without any dissenting votes in either the House or the Senate
https://www.govtrack.us/congress/bills/110/hr710

75see https://asts.org/about-asts/position-statements#.Xm1Onc5Kg2w, https://

marketdesigner.blogspot.com/2017/12/more-on-endorsement-of-global-kidney.html, and
https://marketdesigner.blogspot.com/2018/01/italy-recommends-global-kidney-exchange.html

76Minerva et al. (2019) summarize their conclusions by saying ”Misguided objections should not be allowed
to prevent the GKE from realising its potential to reduce suffering and save the lives of rich and poor patients
alike.” See also Singer et al. (2020).

77see e.g. the cover story of the April 14, 2017 issue of Newsweek En Espanol, by Iván Carrillo, which covers
GKE between the U.S. and Mexico, and speaks of it as building ”UN PUENTE DE VIDA,” a bridge of life.
https://marketdesigner.blogspot.com/2017/04/a-bridge-of-life-global-kidney-exchange.html
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Why is the U.S. progress on removing financial disincentives from living kidney donation so
slow? One simple hypothesis is that laws facilitating or banning different markets reflect
quite different popular opinion in different jurisdictions. But Roth and Wang (2020) find little
support for this hypothesis: public opinion in Germany shows strong support for legalization
of kidney exchange, for example.78 Because innovations in transplantation require social and
sometimes legislative support, a better understanding of the connection between those will
help make further progress. (Section 5).

2. International exchanges. What are the benefits from international collaborations
that stem from biological heterogeneity (and not simply due to larger scale)? How should
the rules, incentives, and operational procedures be designed to promote fruitful, ongoing
collaborations? (Section 4).

3. Initiating non-directed donor chains with a deceased donor kidney. Presently,
the non-directed donor who initiates a chain is virtually always a living donor, but it has been
proposed that such chains can be initiated with the kidney from an appropriate deceased
donor (Melcher et al., 2016).(See also Furian et al. (2019), Furian et al. (2020), and Wang
et al. (2020).) However regulatory barriers still need to be navigated before this becomes
commonplace, and this will involve investigating and developing new operational procedures.
The integration of the deceased donor waiting list raises several questions. Can one design a
policy that does not harm patients on the deceased donor waiting list who have no intended
living donor? For example initiating chains with O donors may harm O patients on the
list. And when should a chain be terminated with a final donation back to someone on the
deceased donor waiting list who does not have a willing living donor to continue the chain?
Among other differences from conventional chains, non-directed living donors are known in
advance and remain available for a while, but deceased donors often become available with
little notice, at which point their organs must be transplanted immediately. So consideration
will have to be given how to start such chains quickly, and continue them efficiently. (Section
2.1).

4.Improving on greedy matching. When exchange pools contain many hard to match
pairs, greedy matching works well, because easy-to-match pairs and non-directed donors
can often be efficiently matched when they arrive. How can greedy matching be improved?
Suppose for example that a pair arrives that can donate a kidney to the patient in some very
hard to match pair, but there isn’t yet a cycle or chain that includes that transplant. Can
efficiency be improved by keeping both pairs in the pool in the hope of facilitating such an
exchange? (Section 3.4).

78Roth and Wang (2020) study public attitudes towards global kidney exchange, commercial surrogacy,
and prostitution in Germany, the Philippines, Spain and the U.S., where the laws vary widely. They find
public support for legal surrogacy and global kidney exchange both where it is banned and where it is legal.
On a different matter of repugnance related to kidney transplantation, see e.g. Leider and Roth (2010) and
Eĺıas et al. (2019) on public attitudes towards compensation for kidney donors.
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5. Matching optimization. What should be optimized when choosing a set of trans-
plants? Current optimization protocols embody (explicitly in match weights, and implicitly
in match frequency) ad hoc trade-offs involving match qualities, number of matches, and
waiting times. But match quality is multi-dimensional. There are immediate observables,
such as number of HLA mismatches. But these are proxies for other objectives that need to
be better estimated from data and effectively incorporated into matching objectives, such
as expected graft life, and how sensitized the patient will be after the current graft fails and
a new transplant is needed. Moreover, with heterogeneous match qualities (additional life
years), greedy matching policies may not be efficient. We need a better understanding of of
dynamic matching when matches yield different values.79 (Section 3.4).

6. Dynamics with frictions. Little is understood regarding optimal and simple dynamic
matching policies in the presence of match failures (such as positive crossmatches). Fairness
concerns as well as trade-offs between long and short term efficiency arise as highly sensitized
patients are more likely to have a positive crossmatch (Section 3.5). To better match over
time it is helpful to study when and why pairs leave the platform without a match (Section
3.4). Moreover, many donors often have certain periods in which they are available to do-
nate.80 We need further study of dynamic mechanisms to control the incentives for hospitals
to participate fully in multi-hospital KE programs (Section 4).

7. Frequent flier point systems for contributions to the exchange pool. Systems
for giving credit to hospitals for contributing nondirected donors and easy to match pairs to
the pool (to be balanced against contributing hard to match pairs) need to be designed to
accurately measure contributions, and to provide appropriate incentives. As behavior and
pool composition change, the appropriate credits will change. And some hospitals may build
up large credits and others large deficits, which will alter incentives. So the system must
be designed to allow it to be dynamically maintained to retain its desirable properties. We
therefore need to understand better dynamic mechanisms (without money) that achieve high
efficiency. A natural approach is to prioritize matching hard-to-match pairs of hospitals that
accumulated credits. If ties were common (the graph was dense) one can expect to sustain
cooperation and maintain a stable system.81 Ashlagi and Kerimov (2019) find that even
minimal ability to break ties between hospitals enables maintaining a stable credit system,
which keeps credits from diverging.82 Some challenges may arise due to the different size
and composition (of hard- and easy-to-match pairs) in hospitals. Moreover, when should the

79See Ashlagi et al. (2019a); Blanchet et al. (2020); Mertikopoulos et al. (2019); Kerimov et al. (2020) for
theoretical papers that consider centralized dynamic matching.

80In this connection, there is often information both about when currently available donors will no longer
be available, and when donors who are not currently available will become available.

81See for example Kash et al. (2015); Johnson et al. (2014); Hauser and Hopenhayn (2008); Möbius (2001)
for literature on scrip systems and trading favors in dynamic games.

82The main idea relies on the power of two choices in computer science (Mitzenmacher, 2001), which allows
creating the desired drift in the credits of each hospital. This is encouraging due to the sparsity in kidney
exchange pools.
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value of credits be updated (noting that simple systems would be desired for transparency)?
How should credits be utilized? Should hospitals be penalized if they have negative credits?
83 (Section 4.2)

8. Single center versus inter-hospital exchange. When might it be advantageous for
a single transplant center with a sufficiently large exchange pool to operate independently
of multi-hospital exchange? I.e. coordinating with other hospitals brings benefits in terms
of thickness of the pool, but costs in coordinating crossmatch tests and other policies. And
when it comes to innovation there are trade-offs between size and nimbleness. How should
we assess these? How should the protocols of inter-hospital exchange networks be altered to
make them more attractive to successful single center kidney exchange programs? (Section
4.2)

9. Eliciting and modeling preferences. What preferences should a KE program elicit,
from patients, donors, surgeons, and transplant center directors? It may be useful to develop
machine learning models to predict positive crossmatches and match refusals, and to refine
optimization models that seek to maximize long-term consequences of transplants (such as
graft survival and subsequent patient sensitivity), and to understand the trade-offs involved
with waiting (while on dialysis) for a better match. 84 A good starting point for exploring
this direction is the growing literature on waitlist mechanisms motivated by the allocation
of cadaver organs (which also suffer a high refusal rate, and discarded organs), as well as
waitlists for public housing.85 While it is natural to explore patients’ or surgeons preferences,
we note that, in kidney exchange, donors’ preferences can also play an important role.
(Section 3.5.)

10. Understanding the bridge(s) between theory and practice. Kidney exchange
has profited mightily from a literature ranging from stylized mathematical models pub-
lished in analytical journals, to clinically oriented studies of designs adopted in practice
and reported in medical journals. In between are theoretical papers that model important
institutional details relevant to practice, and empirical papers that take careful account of
clinical data. Theory and practice cross-pollinate each other, but there is room to learn how
to do that better. In particular, tractable mathematical models that lead to theorems with
potentially practical conclusions nevertheless often depend on simplifying assumptions that,
on their face, ignore important facts on the ground.86 Early, idealized models of kidney ex-
change (some written before we realized how idealized they were) sometimes looked at very

83Kanoria and Qian (2019) identify settings, in which utilizing credits via a max-weight algorithm can
increase efficiency.

84Data from both deceased and live donations can assist with learning about and modeling refusals.
85See, e.g., Su and Zenios (2006); Bloch and Cantala (2017); Leshno (2014); Baccara et al. (2020); Arnosti

and Shi (2019); Ashlagi et al. (2020a,b) for theoretical studies and Agarwal et al. (2020a); Ata et al. (2020);
Agarwal et al. (2020b) for empirical studies.

86Market design theorists must of course be careful that the results they derive aren’t driven primarily by
those of their assumptions that are unrealistic.
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large markets, because limit theorems or continuum assumptions can yield analytical results
more easily than detailed finite models. But these models abstract away from perhaps the
most important problem of kidney exchange, which is that there are some pairs that are
very hard to match, because they have a very low probability of being able to accept any
particular kidney. (When there are infinitely many donor kidneys, this problem vanishes by
assumption.) But the analytical attractiveness of large market models ensures their contin-
ued supply, and we have learned about how to estimate some aspects of their connection
to practical exchange by comparing the limit results to simulations.87 Better theory about
speeds of convergence and related matters will also help to bridge this kind of gap. Theory
is also easier if we assume that all exchanges will be between only two pairs (because then
we can tap into elegant nondirected graph theory). In the early days of kidney exchange this
actually matched clinical practice, but kidney exchange today depends heavily on chains.
Theoretical results that bridge this gap would be useful too, e.g. to help us understand which
kinds of results from models of pairwise exchange can be expected to carry over to exchange
that includes chains. More generally, models of varying degrees of abstraction sometimes
give insights that could have been missed in the welter of important detail, but there is
room for theory to guide modeling by directing our attention to critical details that cannot
be ignored for at least some kinds of conclusions.

7 Concluding remarks

The design of kidney exchange networks has involved almost continuous modification, some-
times at high levels (e.g. what kinds of exchanges to perform) and sometimes at the most
detailed of operational levels (e.g. how to communicate with hospitals).88 This makes it
quite different from the design experience of some other matching markets, like medical
labor clearinghouses and school choice. In those applications, a given design could stay in
place for a number of years, and be modified only occasionally. Perhaps the difference is that,
hiring medical residents and fellows isn’t the everyday work of hospitals, nor is matching
students to schools the main work of schools. Instead, those markets only operate annually,
and the rest of the time are not subjected to constant exploration by the participants. In
contrast, kidney transplantation is the daily concern of transplant centers, and so every as-
pect of the kidney exchange market design is examined and tested on an almost daily basis.
And, in the United States, the three principle inter-hospital exchanges compete with one
another to a certain extent, including the fact that some pairs are registered in more than
one exchange.

Nevertheless, the design of kidney exchanges shares a lot in common with other applica-
tions of market design (cf. Roth (2008, 2015, 2018)). The first task of a marketplace–in this
case the inter-hospital kidney exchange network–is to make the market thick. For kidney ex-
change, this means assembling a sufficiently large, constantly renewed pool of patient-donor

87Here too, care needs to be taken so that the simulations model relevant clinical detail.
88The different levels of detail at which practical market design operates have generated a number of

metaphors, from architecture (Wilson, 2002), to engineering (Roth, 2002), to plumbing (Duflo, 2017).
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pairs.
A second task is to tame the congestion that can arise in arranging and conducting

transplants in a large pool of pairs. At a high level, non-simultaneous chains removed
the logistical bottleneck of having to assemble many surgical teams and operating rooms
at once, and powerful integer programming heuristics allow the computationally complex
computations needed to produce a match proposal to proceed quickly. At a more nitty-gritty
level, arranging for reliable virtual crossmatches, for moving blood samples for physical cross
matches, for transportation of organs, for communicating among transplant centers, are all
operations that are designed more smoothly today, because of many incremental changes.

A third role of a well designed kidney exchange clearinghouse is to make all transactions
safe and reliable. This involves high level issues like arranging standard financial charges (so
that hospitals with different costs of nephrectomies can nevertheless exchange kidneys in a
way that doesn’t dismay their administrators (cf. Rees et al. (2012)), and issues closer to the
viscera, like being able to rely on another hospital to capably perform a donor nephrectomy,
and have the kidney shipped reliably to arrive predictably (with tracking in place in case of
plane-schedule mishaps).

And a final, important task of market design is to find, and build, the social support
needed for the market to thrive.

Looking back, kidney exchange has accomplished a lot, but not nearly enough. The
number of people waiting for a kidney transplant is growing, despite the growth of exchange.
But there is room for kidney exchange to continue to grow and to increase the availability
of transplants further, by designing international kidney exchanges, by starting chains with
deceased donor kidneys, and by introducing other market design innovations that have yet
to be explored or even conceived.
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uman. Market failure in kidney exchange. American Economic Review, 109(11):4026–70,
2019.

Nikhil Agarwal, Itai Ashlagi, Michael A Rees, Paulo J Somaini, and Daniel C Waldinger.
Equilibrium allocations under alternative waitlist designs: Evidence from deceased donor
kidneys. Forthcoming in Econometrica, 2020a.

Nikhil Agarwal, Charles Hodgson, and Paulo Somaini. Choices and outcomes in assignment
mechanisms: The allocation of deceased donor kidneys. 2020b.

Mohammad Akbarpour, Julien Combe, Yinghua He, Victor Hiller, Robert Shimer, and
Olivier Tercieux. Unpaired kidney exchange: Overcoming double coincidence of wants
without money. 2020a. NBER Working Paper No. 27765, September.

Mohammad Akbarpour, Julien Combe, Yinghua He, Victor Hiller, Robert Shimer, and
Olivier Tercieux. Unpaired kidney exchange: Overcoming double coincidence of wants
without money. In Proceedings of the 21st ACM Conference on Economics and Computa-
tion, pages 465–466, 2020b.

Mohammad Akbarpour, Farshad Fatemi, and Negar Matoorian. The iranian market for
kidneys. In Working paper, Stanford GSB, 2020c.

Mohammad Akbarpour, Shengwu Li, and Shayan Oveis Gharan. Thickness and information
in dynamic matching markets. Journal of Political Economy, 128(3):000–000, 2020d.

Filipe Alvelos, Xenia Klimentova, and Ana Viana. Maximizing the expected number of
transplants in kidney exchange programs with branch-and-price. Annals of Operations
Research, 272(1-2):429–444, 2019.

Frederike Ambagtsheer, Bernadette Haase-Kromwijk, Frank JMF Dor, Greg Moorlock,
Franco Citterio, Thierry Berney, and Emma K Massey. Global kidney exchange: Oppor-
tunity or exploitation? an elpat/esot appraisal. Transplant International, 33(9):989–998,
2020. URL https://onlinelibrary.wiley.com/doi/full/10.1111/tri.13630.

Sandro Ambuehl, Muriel Niederle, and Alvin E Roth. More money, more problems? can
high pay be coercive and repugnant? American Economic Review, 105(5):357–60, 2015.

31

https://onlinelibrary.wiley.com/doi/full/10.1111/tri.13630


Ross Anderson, Itai Ashlagi, David Gamarnik, Michael Rees, Alvin E Roth, Tayfun Sönmez,
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Markus Möbius. Trading favors. Unpublished paper.[283], 2001.

Tiago Monteiro, Xenia Klimentova, João Pedro Pedroso, and Ana Viana. A comparison
of matching algorithms for kidney exchange programs addressing waiting time. Central
European Journal of Operations Research, pages 1–14, 2020.

Felix T Rapaport. The case for a living emotionally related international kidney donor
exchange registry. In Transplantation proceedings, volume 18(3), pages 5–9, 1986.

Michael A Rees, Jonathan E Kopke, Ronald P Pelletier, Dorry L Segev, Matthew E Rutter,
Alfredo J Fabrega, Jeffrey Rogers, Oleh G Pankewycz, Janet Hiller, Alvin E Roth, et al.
A nonsimultaneous, extended, altruistic-donor chain. New England Journal of Medicine,
360(11):1096–1101, 2009.

Michael A Rees, Mark A Schnitzler, EY Zavala, James A Cutler, Alvin E Roth, Frank D
Irwin, Stephen W Crawford, and Alan B Leichtman. Call to develop a standard acquisition
charge model for kidney paired donation. American Journal of transplantation, 12(6):
1392–1397, 2012.

39



Michael A Rees, Ty B Dunn, Christian S Kuhr, Christopher L Marsh, Jeffrey Rogers, Susan E
Rees, Alejandra Cicero, Laurie J Reece, Alvin E Roth, Obi Ekwenna, et al. Kidney
exchange to overcome financial barriers to kidney transplantation. American Journal of
Transplantation, 17(3):782–790, 2017a.

Michael A Rees, Siegfredo R Paloyo, Alvin E Roth, Kimberly D Krawiec, Obi Ekwenna,
Christopher L Marsh, AJ Wenig, and Ty B Dunn. Global kidney exchange: Financially
incompatible pairs are not transplantable compatible pairs. American journal of trans-
plantation: official journal of the American Society of Transplantation and the American
Society of Transplant Surgeons, 17(10):2743, 2017b.

Alvin E Roth. Incentive compatibility in a market with indivisible goods. Economics letters,
9(2):127–132, 1982.

Alvin E Roth. The evolution of the labor market for medical interns and residents: a case
study in game theory. Journal of political Economy, 92(6):991–1016, 1984.

Alvin E Roth, editor. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge
University Press, 1988.

Alvin E Roth. A natural experiment in the organization of entry-level labor markets: regional
markets for new physicians and surgeons in the united kingdom. The American economic
review, pages 415–440, 1991.

Alvin E Roth. The economist as engineer: Game theory, experimentation, and computation
as tools for design economics. Econometrica, 70(4):1341–1378, 2002.

Alvin E Roth. Repugnance as a constraint on markets. The Journal of Economic Perspec-
tives, 21(3):37–58, 2007.

Alvin E Roth. What have we learned from market design? The Economic Journal, 118
(527):285–310, 2008.

Alvin E Roth. Who gets what—and why: The new economics of matchmaking and market
design. Houghton Mifflin Harcourt, 2015.

Alvin E Roth. Marketplaces, markets, and market design. American Economic Review, 108
(7):1609–58, 2018.

Alvin E Roth and Elliott Peranson. The redesign of the matching market for american
physicians: Some engineering aspects of economic design. American economic review, 89
(4):748–780, 1999.

Alvin E Roth and Stephanie W Wang. Popular repugnance contrasts with legal bans on
controversial markets. Proceedings of the National Academy of Sciences, 117(33):19792–
19798, 2020.

40
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A APPENDIX: Simulation models

Simulation models are important for testing different KE operational policies. We begin with
simulating static pools and then discuss how to generate the dynamics in a KE program.

A.1 Generating compatibility graphs

The first ingredient is to be able to generate an exchange pool represented by a compatibility
graph. A general framework for creating a pool is: (i) generate incompatible pairs and NDDs
(nodes), and then (ii) generate compatibilities between patients and potential donors in the
pool (directed edges).

With clinical data, generating the graph is straightforward. First sample pairs or NDDs
from the data, and then create edges using virtual crossmatches using donors’ antigens and
patients’ antibodies.

Without these data the following is useful for simulating whether a donor and a patient
are compatible. Each patient is associated with a (virtual) PRA which is a number between
0 and 1. To replace the virtual crossmatch test between a donor and patient, we do a PRA
test: draw a random number for the donor and if that number is higher than the PRA level,
they passed the test successfully. The donor and the patient are virtually compatible if they
are ABO compatible and the PRA test succeeded.
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Sampling from pool compositions. A few papers provide statistics of pool composi-
tions, from which one can sample pairs directly (and then generate edges after testing for
virtual compatibility). Such a table is given in Glorie et al. (2012) for the Dutch data. Tables
1 and 2 provide such statistics of the historical APKD (2010-2019) and NKR (2010-2014)
pools. To generate a pair first sample from a patient-donor ABO and then the PRA of the
patient according to the marginal distribution.

Patient-Donor Percentage Marginal frequencies (PRA intervals)
ABO of pairs 0-1 1-10 10-50 50-80 80-95 95-99 99-100

AB-AB 0.2 0 0 0 50 0 25 25
AB-B 0.4 0 0 0 16.7 16.7 0 66.7
AB-A 0.7 0 8.3 0 8.3 50 0 33.3
AB-O 0.6 10 0 20 10 0 20 40
B-AB 0.9 37.5 6.2 18.8 6.2 12.5 0 18.8
B-B 2.4 0 4.9 12.2 12.2 31.7 9.8 29.3
B-A 5.8 46.5 8.1 13.1 9.1 12.1 1 10.1
B-O 4.2 9.9 1.4 4.2 16.9 19.7 15.5 32.4

A-AB 1 41.2 5.9 5.9 11.8 17.6 0 17.6
A-B 3.6 30.6 9.7 6.5 14.5 9.7 1.6 27.4
A-A 9.7 4.2 1.8 16.9 19.3 18.1 10.8 28.9
A-O 8.8 12.7 4.7 9.3 19.3 15.3 18 20.7

O-AB 2.3 46.2 10.3 23.1 5.1 12.8 0 2.6
O-B 9.2 47.1 10.8 14 7.6 8.3 4.5 7.6
O-A 29.4 49.9 10 12.8 8.8 6.4 3.6 8.6
O-O 20.7 4.5 2.8 13.9 17.3 23.9 16.2 21.3

Table 1: APKD pool composition (2010-2019). PRA percentages are conditional on patient-
donor ABO types.

Note: It is important to note that hospitals that participate at the APKD and NKR have
conducted many internal exchanges (see Section 4.2). Without this behavior, these pools
would likely contain a larger fraction of easy-to-match pairs.

Two (new) simulation models. We describe here two simulation models that are re-
finements of previously suggested models by Saidman et al. (2006) and Segev et al. (2005),
who build on ideas from Zenios et al. (2001).

Model 1. Generate incompatible (unrelated) pairs (p, d) as follows.

1. A patient p is generated by drawing a blood type and a PRA level using the general
population distribution given in Table 3.

2. k ≥ 1 incompatible donors are generated sequentially. For each donor, draw a blood
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Patient-Donor Percentage Marginal frequencies (PRA intervals)
ABO of pairs 0-1 1-10 10-50 50-80 80-95 95-99 99-100

AB-AB 0.5 0 0 0 11.1 44.4 11.1 33.3
AB-B 0.3 20 0 0 20 20 40 0
AB-A 1 10.5 5.3 5.3 21.1 10.5 26.3 21.1
AB-O 0.7 7.7 0 7.7 30.8 15.4 7.7 30.8
B-AB 1.3 50 4.2 8.3 8.3 16.7 4.2 8.3
B-B 2.5 4.3 2.1 6.4 12.8 23.4 19.1 31.9
B-A 7.8 59.9 2.7 13.6 9.5 4.8 4.8 4.8
B-O 3.8 14.1 2.8 16.9 19.7 18.3 15.5 12.7

A-AB 1.9 50 5.6 13.9 8.3 11.1 5.6 5.6
A-B 5.3 52.5 2 10.1 14.1 11.1 2 8.1
A-A 9.7 7.7 1.6 15.3 21.9 18 14.2 21.3
A-O 8.5 6.9 1.9 13.1 15.6 22.5 13.1 26.9

O-AB 1.9 47.2 13.9 13.9 13.9 2.8 2.8 5.6
O-B 10 57.7 6.3 13.2 5.8 4.2 4.8 7.9
O-A 26.2 48.8 6.3 15.7 10.2 5.7 5.7 7.7
O-O 18.7 7.1 2 14.2 21.9 23.1 15.7 16

Table 2: NKR pool composition (2010-2014). PRA percentages are conditional on patient-
donor ABO types.

type independently according to the ABO distribution in Table 3.89 If a generated donor
is compatible with patient (ABO and PRA test) , go back to step 1.

3. If all donors are incompatible, pick one of the donors at random, call it d and (p, d)
joins the pool.90

An adjustment to model 1 following (Saidman et al., 2006): Instead of step 2, draw for
each donor also whether it is a spouse or a different unrelated donor (also non-biological) as
well as the gender, according to the Table 3. In the case, in which the patient is a woman
with PRA X, and the donor is her spouse, the PRA test is successful with probability
100− 0.75(100−X). 91

The second model accounts for the relation between the patient and the donor (Zenios
et al., 2001).

Model 2. Generate incompatible (unrelated) pair (p, d) as follows.

89A few types of donors are omitted from the statistics (e.g., half siblings, life partner, twin.)
90Sometimes a patient joins the pool with more than one incompatible donor. But often incompatible

intended donors do not join the pool due to some failure in the work-up process (Zenios et al., 2001; Segev
et al., 2005).

91This is because women are more likely to reject their husband’s kidney than a random kidney, because
of antibodies developed at childbirth to paternal antigens.
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Characteristic Frequency (%)

PRA range (average)
0-1 (0) 62.56

1-50 (30) 16.48
50-80 (65) 6.9
80-95 (87) 5.06
95-99 (97) 2.74

99-100 (99.5) 6.26
ABO

O 49.31
A 32.05
B 15.02

AB 3.62
Patient sex

Male 61.53
Female 38.47

Donor relation
Parent 10.56
Child 18.46

Sibling 23.02
Spouse 15.9

Other unrelated 32.06

Table 3: Patient and living donor distributions from OPTN data (2010-2019).

1. A patient p is generated by drawing two independent ABO proteins according to Table
4, which together determine p’s blood type.92

2. The PRA of p is generated according to Table 3.

3. Generate 1 incompatible donor d and draw the relation of d to p according to Table 3.
Generate the ABO of the donor according to Bayes Rule in case the donor is a relative
and otherwise draw it independently. If d is compatible with the patient (ABO and
PRA test) , go back to step 1, and otherwise (p, d) joins the pool.

Comments and comparisons to previous models:

• One can adapt model 2 also to the ethnicity of the patient and donor based on Table
4.

92For example, the chance that a random patient has blood type O is the chance she has no A or B proteins
(with probability 70.22*70.22) and the chance that she has blood type A, means that she at least one A
protein and no B). Using this distribution one can generate a random patient. Then, using Bayes rule, one
can generate the ABO of potential relatives (including a spouse).
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Population O A B

General 70.22% 19.98% 9.98%
White 66.85% 25.43% 7.74%
Black 70.79% 16.02% 13.27%
Asian 62.52% 17.5% 20.10%

Hispanic 76.93% 16.96% 6.08%

Table 4: ABO protein distributions calculated from the ABO distributions in the OPTN
data (O represents not A and not B).

• Both Saidman et al. (2006) and Segev et al. (2005) create compatibility graphs that
are more densely connected than the ones generated by contemporary clinical data
(Ashlagi and Roth, 2012). The ABO composition generated is also different than
those at the APKD, NKR and Dutch pool (Glorie et al., 2012). One reason is due
to modeling all patients with PRA 80-100 to have a simulated PRA of 90.93 Instead
Table 3 provides a much more refined PRA distribution.94

• Model 1, even with the new PRA table (and its adjustment to capture spouses), still
generates a pool with a highly skewed ABO distribution for values of k ≤ 4. When k
takes values between 5-10 the generated pool fits the data better (but this may vary
across KE programs).

• Model 2 generates a compatibility graph that fits better contemporary multi-hospital
exchange pools such as the APKD and NKR. We find that this modified model matches
well the pool composition and also different connectivity measures (such as number of
two-way cycles, one-way matches, size of maximum matching).

A.2 Simulating dynamics and operations of a pool

To simulate dynamics of a KE pool one needs to simulate (i) arrivals of pairs and NDDs (ii)
the matching process including possible frictions, (iii) departures not due to matches, and
(iv) the times during which donors are available.

Arrivals can naturally be simulated using a Poisson process, in which upon arrival of a new
node one can draw the type of the node (what kind of pair or NDD). Departures are naturally
simulated using estimated hazard rate (although more should be done to understand the
departure process). The reasons for departure may matter for evaluating a policy.95

93For example the model by Saidman et al. (2006) generates a larger fraction of under-demanded pairs
than in NKR and APKD pools (we observed 8% more O-A pairs and 6% more O-B pairs than in historical
datasets from NKR and APKD).

94See also a similar refined distribution in (Glorie et al., 2012).
95Reasons can include too sick to be transplanted, or transplanted elsewhere (from a deceased or live

donor).
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In some situations, donors have a window, in which they know they will be available to
donate. Incorporating these windows may have different implications for paired donors and
non-directed donors.96

There are a variety of possible match failures. Common to all KE programs are frictions
due to crossmatches. Much more should be done to predict crossmatch failures. All studies
we are aware of assumed that crossmatches fail independently for each donor and patient
that are virtually compatible.97 Typically patients with higher PRA have a higher likelihood
to have a positive crossmatch with a donor. Statistics are given in numerous papers for a
variety of KE programs (e.g., Ashlagi et al. (2011b); Wang et al. (2017); Agarwal et al.
(2019); Biró et al. (2019a); Dickerson et al. (2019)).

Multi-hospital KE programs in the US typically make many match offers and a non-
negligible percentage of offers are refused by hospitals. Statistics can be found in Ashlagi
et al. (2011b); Wang et al. (2017); Agarwal et al. (2019), also assuming independent failures.98

Other frictions include shipping delays of blood samples (when there is no central blood
lab) and other delays due to communication. Statistics can be found in Agarwal et al. (2019);
Ashlagi et al. (2011b).

Finally, for a detailed description of a simulation process that replicates common oper-
ations of a KE program (as described in Section 2.3, such the NKR, see Appendix C in
Agarwal et al. (2019).

96Cathi Murphey: “I divide the donors into 2 categories- the ones that can go anytime and the other
group that have a window. The ones that have a window are usually students or teachers or people who
have jobs that have high and low peaks. Like landscapers. So they usually donate during spring break or
the summer or over Christmas time. The other category are people that have jobs that they can take off of
work at anytime or they don’t work.”

97Whether using clinical or simulated data.
98But it is very much possible that some hospitals refuse more offers than others.
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